aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang16-rt/lib/scudo/standalone/primary64.h
blob: b653bc802022ff411ca2b34fdd7a6a4d53e31d09 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
//===-- primary64.h ---------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef SCUDO_PRIMARY64_H_
#define SCUDO_PRIMARY64_H_

#include "bytemap.h"
#include "common.h"
#include "list.h"
#include "local_cache.h"
#include "memtag.h"
#include "options.h"
#include "release.h"
#include "stats.h"
#include "string_utils.h"

namespace scudo {

// SizeClassAllocator64 is an allocator tuned for 64-bit address space.
//
// It starts by reserving NumClasses * 2^RegionSizeLog bytes, equally divided in
// Regions, specific to each size class. Note that the base of that mapping is
// random (based to the platform specific map() capabilities). If
// PrimaryEnableRandomOffset is set, each Region actually starts at a random
// offset from its base.
//
// Regions are mapped incrementally on demand to fulfill allocation requests,
// those mappings being split into equally sized Blocks based on the size class
// they belong to. The Blocks created are shuffled to prevent predictable
// address patterns (the predictability increases with the size of the Blocks).
//
// The 1st Region (for size class 0) holds the TransferBatches. This is a
// structure used to transfer arrays of available pointers from the class size
// freelist to the thread specific freelist, and back.
//
// The memory used by this allocator is never unmapped, but can be partially
// released if the platform allows for it.

template <typename Config> class SizeClassAllocator64 {
public:
  typedef typename Config::PrimaryCompactPtrT CompactPtrT;
  static const uptr CompactPtrScale = Config::PrimaryCompactPtrScale;
  static const uptr GroupSizeLog = Config::PrimaryGroupSizeLog;
  typedef typename Config::SizeClassMap SizeClassMap;
  typedef SizeClassAllocator64<Config> ThisT;
  typedef SizeClassAllocatorLocalCache<ThisT> CacheT;
  typedef typename CacheT::TransferBatch TransferBatch;
  typedef typename CacheT::BatchGroup BatchGroup;

  static uptr getSizeByClassId(uptr ClassId) {
    return (ClassId == SizeClassMap::BatchClassId)
               ? roundUpTo(sizeof(TransferBatch), 1U << CompactPtrScale)
               : SizeClassMap::getSizeByClassId(ClassId);
  }

  static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; }

  void init(s32 ReleaseToOsInterval) {
    DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT)));
    DCHECK_EQ(PrimaryBase, 0U);
    // Reserve the space required for the Primary.
    PrimaryBase = reinterpret_cast<uptr>(
        map(nullptr, PrimarySize, nullptr, MAP_NOACCESS, &Data));

    u32 Seed;
    const u64 Time = getMonotonicTime();
    if (!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed)))
      Seed = static_cast<u32>(Time ^ (PrimaryBase >> 12));
    const uptr PageSize = getPageSizeCached();
    for (uptr I = 0; I < NumClasses; I++) {
      RegionInfo *Region = getRegionInfo(I);
      // The actual start of a region is offset by a random number of pages
      // when PrimaryEnableRandomOffset is set.
      Region->RegionBeg = getRegionBaseByClassId(I) +
                          (Config::PrimaryEnableRandomOffset
                               ? ((getRandomModN(&Seed, 16) + 1) * PageSize)
                               : 0);
      Region->RandState = getRandomU32(&Seed);
      Region->ReleaseInfo.LastReleaseAtNs = Time;
    }
    setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
  }

  void unmapTestOnly() {
    for (uptr I = 0; I < NumClasses; I++) {
      RegionInfo *Region = getRegionInfo(I);
      *Region = {};
    }
    if (PrimaryBase)
      unmap(reinterpret_cast<void *>(PrimaryBase), PrimarySize, UNMAP_ALL,
            &Data);
    PrimaryBase = 0U;
  }

  TransferBatch *popBatch(CacheT *C, uptr ClassId) {
    DCHECK_LT(ClassId, NumClasses);
    RegionInfo *Region = getRegionInfo(ClassId);
    ScopedLock L(Region->Mutex);
    TransferBatch *B = popBatchImpl(C, ClassId);
    if (UNLIKELY(!B)) {
      if (UNLIKELY(!populateFreeList(C, ClassId, Region)))
        return nullptr;
      B = popBatchImpl(C, ClassId);
      // if `populateFreeList` succeeded, we are supposed to get free blocks.
      DCHECK_NE(B, nullptr);
    }
    Region->Stats.PoppedBlocks += B->getCount();
    return B;
  }

  // Push the array of free blocks to the designated batch group.
  void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) {
    DCHECK_LT(ClassId, NumClasses);
    DCHECK_GT(Size, 0);

    RegionInfo *Region = getRegionInfo(ClassId);
    if (ClassId == SizeClassMap::BatchClassId) {
      ScopedLock L(Region->Mutex);
      // Constructing a batch group in the free list will use two blocks in
      // BatchClassId. If we are pushing BatchClassId blocks, we will use the
      // blocks in the array directly (can't delegate local cache which will
      // cause a recursive allocation). However, The number of free blocks may
      // be less than two. Therefore, populate the free list before inserting
      // the blocks.
      if (Size == 1 && UNLIKELY(!populateFreeList(C, ClassId, Region)))
        return;
      pushBlocksImpl(C, ClassId, Array, Size);
      Region->Stats.PushedBlocks += Size;
      return;
    }

    // TODO(chiahungduan): Consider not doing grouping if the group size is not
    // greater than the block size with a certain scale.

    // Sort the blocks so that blocks belonging to the same group can be pushed
    // together.
    bool SameGroup = true;
    for (u32 I = 1; I < Size; ++I) {
      if (compactPtrGroup(Array[I - 1]) != compactPtrGroup(Array[I]))
        SameGroup = false;
      CompactPtrT Cur = Array[I];
      u32 J = I;
      while (J > 0 && compactPtrGroup(Cur) < compactPtrGroup(Array[J - 1])) {
        Array[J] = Array[J - 1];
        --J;
      }
      Array[J] = Cur;
    }

    ScopedLock L(Region->Mutex);
    pushBlocksImpl(C, ClassId, Array, Size, SameGroup);

    Region->Stats.PushedBlocks += Size;
    if (ClassId != SizeClassMap::BatchClassId)
      releaseToOSMaybe(Region, ClassId);
  }

  void disable() {
    // The BatchClassId must be locked last since other classes can use it.
    for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) {
      if (static_cast<uptr>(I) == SizeClassMap::BatchClassId)
        continue;
      getRegionInfo(static_cast<uptr>(I))->Mutex.lock();
    }
    getRegionInfo(SizeClassMap::BatchClassId)->Mutex.lock();
  }

  void enable() {
    getRegionInfo(SizeClassMap::BatchClassId)->Mutex.unlock();
    for (uptr I = 0; I < NumClasses; I++) {
      if (I == SizeClassMap::BatchClassId)
        continue;
      getRegionInfo(I)->Mutex.unlock();
    }
  }

  template <typename F> void iterateOverBlocks(F Callback) {
    for (uptr I = 0; I < NumClasses; I++) {
      if (I == SizeClassMap::BatchClassId)
        continue;
      const RegionInfo *Region = getRegionInfo(I);
      const uptr BlockSize = getSizeByClassId(I);
      const uptr From = Region->RegionBeg;
      const uptr To = From + Region->AllocatedUser;
      for (uptr Block = From; Block < To; Block += BlockSize)
        Callback(Block);
    }
  }

  void getStats(ScopedString *Str) {
    // TODO(kostyak): get the RSS per region.
    uptr TotalMapped = 0;
    uptr PoppedBlocks = 0;
    uptr PushedBlocks = 0;
    for (uptr I = 0; I < NumClasses; I++) {
      RegionInfo *Region = getRegionInfo(I);
      if (Region->MappedUser)
        TotalMapped += Region->MappedUser;
      PoppedBlocks += Region->Stats.PoppedBlocks;
      PushedBlocks += Region->Stats.PushedBlocks;
    }
    Str->append("Stats: SizeClassAllocator64: %zuM mapped (%uM rss) in %zu "
                "allocations; remains %zu\n",
                TotalMapped >> 20, 0U, PoppedBlocks,
                PoppedBlocks - PushedBlocks);

    for (uptr I = 0; I < NumClasses; I++)
      getStats(Str, I, 0);
  }

  bool setOption(Option O, sptr Value) {
    if (O == Option::ReleaseInterval) {
      const s32 Interval = Max(
          Min(static_cast<s32>(Value), Config::PrimaryMaxReleaseToOsIntervalMs),
          Config::PrimaryMinReleaseToOsIntervalMs);
      atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval);
      return true;
    }
    // Not supported by the Primary, but not an error either.
    return true;
  }

  uptr releaseToOS() {
    uptr TotalReleasedBytes = 0;
    for (uptr I = 0; I < NumClasses; I++) {
      if (I == SizeClassMap::BatchClassId)
        continue;
      RegionInfo *Region = getRegionInfo(I);
      ScopedLock L(Region->Mutex);
      TotalReleasedBytes += releaseToOSMaybe(Region, I, /*Force=*/true);
    }
    return TotalReleasedBytes;
  }

  const char *getRegionInfoArrayAddress() const {
    return reinterpret_cast<const char *>(RegionInfoArray);
  }

  static uptr getRegionInfoArraySize() { return sizeof(RegionInfoArray); }

  uptr getCompactPtrBaseByClassId(uptr ClassId) {
    // If we are not compacting pointers, base everything off of 0.
    if (sizeof(CompactPtrT) == sizeof(uptr) && CompactPtrScale == 0)
      return 0;
    return getRegionInfo(ClassId)->RegionBeg;
  }

  CompactPtrT compactPtr(uptr ClassId, uptr Ptr) {
    DCHECK_LE(ClassId, SizeClassMap::LargestClassId);
    return compactPtrInternal(getCompactPtrBaseByClassId(ClassId), Ptr);
  }

  void *decompactPtr(uptr ClassId, CompactPtrT CompactPtr) {
    DCHECK_LE(ClassId, SizeClassMap::LargestClassId);
    return reinterpret_cast<void *>(
        decompactPtrInternal(getCompactPtrBaseByClassId(ClassId), CompactPtr));
  }

  static BlockInfo findNearestBlock(const char *RegionInfoData, uptr Ptr) {
    const RegionInfo *RegionInfoArray =
        reinterpret_cast<const RegionInfo *>(RegionInfoData);
    uptr ClassId;
    uptr MinDistance = -1UL;
    for (uptr I = 0; I != NumClasses; ++I) {
      if (I == SizeClassMap::BatchClassId)
        continue;
      uptr Begin = RegionInfoArray[I].RegionBeg;
      uptr End = Begin + RegionInfoArray[I].AllocatedUser;
      if (Begin > End || End - Begin < SizeClassMap::getSizeByClassId(I))
        continue;
      uptr RegionDistance;
      if (Begin <= Ptr) {
        if (Ptr < End)
          RegionDistance = 0;
        else
          RegionDistance = Ptr - End;
      } else {
        RegionDistance = Begin - Ptr;
      }

      if (RegionDistance < MinDistance) {
        MinDistance = RegionDistance;
        ClassId = I;
      }
    }

    BlockInfo B = {};
    if (MinDistance <= 8192) {
      B.RegionBegin = RegionInfoArray[ClassId].RegionBeg;
      B.RegionEnd = B.RegionBegin + RegionInfoArray[ClassId].AllocatedUser;
      B.BlockSize = SizeClassMap::getSizeByClassId(ClassId);
      B.BlockBegin =
          B.RegionBegin + uptr(sptr(Ptr - B.RegionBegin) / sptr(B.BlockSize) *
                               sptr(B.BlockSize));
      while (B.BlockBegin < B.RegionBegin)
        B.BlockBegin += B.BlockSize;
      while (B.RegionEnd < B.BlockBegin + B.BlockSize)
        B.BlockBegin -= B.BlockSize;
    }
    return B;
  }

  AtomicOptions Options;

private:
  static const uptr RegionSize = 1UL << Config::PrimaryRegionSizeLog;
  static const uptr NumClasses = SizeClassMap::NumClasses;
  static const uptr PrimarySize = RegionSize * NumClasses;

  static const uptr MapSizeIncrement = Config::PrimaryMapSizeIncrement;
  // Fill at most this number of batches from the newly map'd memory.
  static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U;

  struct RegionStats {
    uptr PoppedBlocks;
    uptr PushedBlocks;
  };

  struct ReleaseToOsInfo {
    uptr PushedBlocksAtLastRelease;
    uptr RangesReleased;
    uptr LastReleasedBytes;
    u64 LastReleaseAtNs;
  };

  struct UnpaddedRegionInfo {
    HybridMutex Mutex;
    SinglyLinkedList<BatchGroup> FreeList;
    uptr RegionBeg = 0;
    RegionStats Stats = {};
    u32 RandState = 0;
    uptr MappedUser = 0;    // Bytes mapped for user memory.
    uptr AllocatedUser = 0; // Bytes allocated for user memory.
    MapPlatformData Data = {};
    ReleaseToOsInfo ReleaseInfo = {};
    bool Exhausted = false;
  };
  struct RegionInfo : UnpaddedRegionInfo {
    char Padding[SCUDO_CACHE_LINE_SIZE -
                 (sizeof(UnpaddedRegionInfo) % SCUDO_CACHE_LINE_SIZE)] = {};
  };
  static_assert(sizeof(RegionInfo) % SCUDO_CACHE_LINE_SIZE == 0, "");

  uptr PrimaryBase = 0;
  MapPlatformData Data = {};
  atomic_s32 ReleaseToOsIntervalMs = {};
  alignas(SCUDO_CACHE_LINE_SIZE) RegionInfo RegionInfoArray[NumClasses];

  RegionInfo *getRegionInfo(uptr ClassId) {
    DCHECK_LT(ClassId, NumClasses);
    return &RegionInfoArray[ClassId];
  }

  uptr getRegionBaseByClassId(uptr ClassId) const {
    return PrimaryBase + (ClassId << Config::PrimaryRegionSizeLog);
  }

  static CompactPtrT compactPtrInternal(uptr Base, uptr Ptr) {
    return static_cast<CompactPtrT>((Ptr - Base) >> CompactPtrScale);
  }

  static uptr decompactPtrInternal(uptr Base, CompactPtrT CompactPtr) {
    return Base + (static_cast<uptr>(CompactPtr) << CompactPtrScale);
  }

  static uptr compactPtrGroup(CompactPtrT CompactPtr) {
    return static_cast<uptr>(CompactPtr) >> (GroupSizeLog - CompactPtrScale);
  }
  static uptr batchGroupBase(uptr Base, uptr GroupId) {
    return (GroupId << GroupSizeLog) + Base;
  }

  // Push the blocks to their batch group. The layout will be like,
  //
  // FreeList - > BG -> BG -> BG
  //              |     |     |
  //              v     v     v
  //              TB    TB    TB
  //              |
  //              v
  //              TB
  //
  // Each BlockGroup(BG) will associate with unique group id and the free blocks
  // are managed by a list of TransferBatch(TB). To reduce the time of inserting
  // blocks, BGs are sorted and the input `Array` are supposed to be sorted so
  // that we can get better performance of maintaining sorted property.
  // Use `SameGroup=true` to indicate that all blocks in the array are from the
  // same group then we will skip checking the group id of each block.
  //
  // Note that this aims to have a better management of dirty pages, i.e., the
  // RSS usage won't grow indefinitely. There's an exception that we may not put
  // a block to its associated group. While populating new blocks, we may have
  // blocks cross different groups. However, most cases will fall into same
  // group and they are supposed to be popped soon. In that case, it's not worth
  // sorting the array with the almost-sorted property. Therefore, we use
  // `SameGroup=true` instead.
  //
  // The region mutex needs to be held while calling this method.
  void pushBlocksImpl(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size,
                      bool SameGroup = false) {
    DCHECK_GT(Size, 0U);
    RegionInfo *Region = getRegionInfo(ClassId);

    auto CreateGroup = [&](uptr GroupId) {
      BatchGroup *BG = nullptr;
      TransferBatch *TB = nullptr;
      if (ClassId == SizeClassMap::BatchClassId) {
        DCHECK_GE(Size, 2U);
        BG = reinterpret_cast<BatchGroup *>(
            decompactPtr(ClassId, Array[Size - 1]));
        BG->Batches.clear();

        TB = reinterpret_cast<TransferBatch *>(
            decompactPtr(ClassId, Array[Size - 2]));
        TB->clear();
      } else {
        BG = C->createGroup();
        BG->Batches.clear();

        TB = C->createBatch(ClassId, nullptr);
        TB->clear();
      }

      BG->GroupId = GroupId;
      BG->Batches.push_front(TB);
      BG->PushedBlocks = 0;
      BG->PushedBlocksAtLastCheckpoint = 0;
      BG->MaxCachedPerBatch =
          TransferBatch::getMaxCached(getSizeByClassId(ClassId));

      return BG;
    };

    auto InsertBlocks = [&](BatchGroup *BG, CompactPtrT *Array, u32 Size) {
      SinglyLinkedList<TransferBatch> &Batches = BG->Batches;
      TransferBatch *CurBatch = Batches.front();
      DCHECK_NE(CurBatch, nullptr);

      for (u32 I = 0; I < Size;) {
        DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount());
        u16 UnusedSlots =
            static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
        if (UnusedSlots == 0) {
          CurBatch = C->createBatch(
              ClassId,
              reinterpret_cast<void *>(decompactPtr(ClassId, Array[I])));
          CurBatch->clear();
          Batches.push_front(CurBatch);
          UnusedSlots = BG->MaxCachedPerBatch;
        }
        // `UnusedSlots` is u16 so the result will be also fit in u16.
        u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
        CurBatch->appendFromArray(&Array[I], AppendSize);
        I += AppendSize;
      }

      BG->PushedBlocks += Size;
    };

    BatchGroup *Cur = Region->FreeList.front();

    if (ClassId == SizeClassMap::BatchClassId) {
      if (Cur == nullptr) {
        // Don't need to classify BatchClassId.
        Cur = CreateGroup(/*GroupId=*/0);
        Region->FreeList.push_front(Cur);
      }
      InsertBlocks(Cur, Array, Size);
      return;
    }

    // In the following, `Cur` always points to the BatchGroup for blocks that
    // will be pushed next. `Prev` is the element right before `Cur`.
    BatchGroup *Prev = nullptr;

    while (Cur != nullptr && compactPtrGroup(Array[0]) > Cur->GroupId) {
      Prev = Cur;
      Cur = Cur->Next;
    }

    if (Cur == nullptr || compactPtrGroup(Array[0]) != Cur->GroupId) {
      Cur = CreateGroup(compactPtrGroup(Array[0]));
      if (Prev == nullptr)
        Region->FreeList.push_front(Cur);
      else
        Region->FreeList.insert(Prev, Cur);
    }

    // All the blocks are from the same group, just push without checking group
    // id.
    if (SameGroup) {
      InsertBlocks(Cur, Array, Size);
      return;
    }

    // The blocks are sorted by group id. Determine the segment of group and
    // push them to their group together.
    u32 Count = 1;
    for (u32 I = 1; I < Size; ++I) {
      if (compactPtrGroup(Array[I - 1]) != compactPtrGroup(Array[I])) {
        DCHECK_EQ(compactPtrGroup(Array[I - 1]), Cur->GroupId);
        InsertBlocks(Cur, Array + I - Count, Count);

        while (Cur != nullptr && compactPtrGroup(Array[I]) > Cur->GroupId) {
          Prev = Cur;
          Cur = Cur->Next;
        }

        if (Cur == nullptr || compactPtrGroup(Array[I]) != Cur->GroupId) {
          Cur = CreateGroup(compactPtrGroup(Array[I]));
          DCHECK_NE(Prev, nullptr);
          Region->FreeList.insert(Prev, Cur);
        }

        Count = 1;
      } else {
        ++Count;
      }
    }

    InsertBlocks(Cur, Array + Size - Count, Count);
  }

  // Pop one TransferBatch from a BatchGroup. The BatchGroup with the smallest
  // group id will be considered first.
  //
  // The region mutex needs to be held while calling this method.
  TransferBatch *popBatchImpl(CacheT *C, uptr ClassId) {
    RegionInfo *Region = getRegionInfo(ClassId);
    if (Region->FreeList.empty())
      return nullptr;

    SinglyLinkedList<TransferBatch> &Batches =
        Region->FreeList.front()->Batches;
    DCHECK(!Batches.empty());

    TransferBatch *B = Batches.front();
    Batches.pop_front();
    DCHECK_NE(B, nullptr);
    DCHECK_GT(B->getCount(), 0U);

    if (Batches.empty()) {
      BatchGroup *BG = Region->FreeList.front();
      Region->FreeList.pop_front();

      // We don't keep BatchGroup with zero blocks to avoid empty-checking while
      // allocating. Note that block used by constructing BatchGroup is recorded
      // as free blocks in the last element of BatchGroup::Batches. Which means,
      // once we pop the last TransferBatch, the block is implicitly
      // deallocated.
      if (ClassId != SizeClassMap::BatchClassId)
        C->deallocate(SizeClassMap::BatchClassId, BG);
    }

    return B;
  }

  NOINLINE bool populateFreeList(CacheT *C, uptr ClassId, RegionInfo *Region) {
    const uptr Size = getSizeByClassId(ClassId);
    const u16 MaxCount = TransferBatch::getMaxCached(Size);

    const uptr RegionBeg = Region->RegionBeg;
    const uptr MappedUser = Region->MappedUser;
    const uptr TotalUserBytes = Region->AllocatedUser + MaxCount * Size;
    // Map more space for blocks, if necessary.
    if (TotalUserBytes > MappedUser) {
      // Do the mmap for the user memory.
      const uptr MapSize =
          roundUpTo(TotalUserBytes - MappedUser, MapSizeIncrement);
      const uptr RegionBase = RegionBeg - getRegionBaseByClassId(ClassId);
      if (UNLIKELY(RegionBase + MappedUser + MapSize > RegionSize)) {
        if (!Region->Exhausted) {
          Region->Exhausted = true;
          ScopedString Str;
          getStats(&Str);
          Str.append(
              "Scudo OOM: The process has exhausted %zuM for size class %zu.\n",
              RegionSize >> 20, Size);
          Str.output();
        }
        return false;
      }
      if (MappedUser == 0)
        Region->Data = Data;
      if (UNLIKELY(!map(
              reinterpret_cast<void *>(RegionBeg + MappedUser), MapSize,
              "scudo:primary",
              MAP_ALLOWNOMEM | MAP_RESIZABLE |
                  (useMemoryTagging<Config>(Options.load()) ? MAP_MEMTAG : 0),
              &Region->Data))) {
        return false;
      }
      Region->MappedUser += MapSize;
      C->getStats().add(StatMapped, MapSize);
    }

    const u32 NumberOfBlocks = Min(
        MaxNumBatches * MaxCount,
        static_cast<u32>((Region->MappedUser - Region->AllocatedUser) / Size));
    DCHECK_GT(NumberOfBlocks, 0);

    constexpr u32 ShuffleArraySize =
        MaxNumBatches * TransferBatch::MaxNumCached;
    CompactPtrT ShuffleArray[ShuffleArraySize];
    DCHECK_LE(NumberOfBlocks, ShuffleArraySize);

    const uptr CompactPtrBase = getCompactPtrBaseByClassId(ClassId);
    uptr P = RegionBeg + Region->AllocatedUser;
    for (u32 I = 0; I < NumberOfBlocks; I++, P += Size)
      ShuffleArray[I] = compactPtrInternal(CompactPtrBase, P);
    // No need to shuffle the batches size class.
    if (ClassId != SizeClassMap::BatchClassId)
      shuffle(ShuffleArray, NumberOfBlocks, &Region->RandState);
    for (u32 I = 0; I < NumberOfBlocks;) {
      // `MaxCount` is u16 so the result will also fit in u16.
      const u16 N = static_cast<u16>(Min<u32>(MaxCount, NumberOfBlocks - I));
      // Note that the N blocks here may have different group ids. Given that
      // it only happens when it crosses the group size boundary. Instead of
      // sorting them, treat them as same group here to avoid sorting the
      // almost-sorted blocks.
      pushBlocksImpl(C, ClassId, &ShuffleArray[I], N, /*SameGroup=*/true);
      I += N;
    }

    const uptr AllocatedUser = Size * NumberOfBlocks;
    C->getStats().add(StatFree, AllocatedUser);
    Region->AllocatedUser += AllocatedUser;

    return true;
  }

  void getStats(ScopedString *Str, uptr ClassId, uptr Rss) {
    RegionInfo *Region = getRegionInfo(ClassId);
    if (Region->MappedUser == 0)
      return;
    const uptr InUse = Region->Stats.PoppedBlocks - Region->Stats.PushedBlocks;
    const uptr TotalChunks = Region->AllocatedUser / getSizeByClassId(ClassId);
    Str->append("%s %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu "
                "inuse: %6zu total: %6zu rss: %6zuK releases: %6zu last "
                "released: %6zuK region: 0x%zx (0x%zx)\n",
                Region->Exhausted ? "F" : " ", ClassId,
                getSizeByClassId(ClassId), Region->MappedUser >> 10,
                Region->Stats.PoppedBlocks, Region->Stats.PushedBlocks, InUse,
                TotalChunks, Rss >> 10, Region->ReleaseInfo.RangesReleased,
                Region->ReleaseInfo.LastReleasedBytes >> 10, Region->RegionBeg,
                getRegionBaseByClassId(ClassId));
  }

  NOINLINE uptr releaseToOSMaybe(RegionInfo *Region, uptr ClassId,
                                 bool Force = false) {
    const uptr BlockSize = getSizeByClassId(ClassId);
    const uptr PageSize = getPageSizeCached();

    DCHECK_GE(Region->Stats.PoppedBlocks, Region->Stats.PushedBlocks);
    const uptr BytesInFreeList =
        Region->AllocatedUser -
        (Region->Stats.PoppedBlocks - Region->Stats.PushedBlocks) * BlockSize;
    if (BytesInFreeList < PageSize)
      return 0; // No chance to release anything.
    const uptr BytesPushed = (Region->Stats.PushedBlocks -
                              Region->ReleaseInfo.PushedBlocksAtLastRelease) *
                             BlockSize;
    if (BytesPushed < PageSize)
      return 0; // Nothing new to release.

    bool CheckDensity = BlockSize < PageSize / 16U;
    // Releasing smaller blocks is expensive, so we want to make sure that a
    // significant amount of bytes are free, and that there has been a good
    // amount of batches pushed to the freelist before attempting to release.
    if (CheckDensity) {
      if (!Force && BytesPushed < Region->AllocatedUser / 16U)
        return 0;
    }

    if (!Force) {
      const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs);
      if (IntervalMs < 0)
        return 0;
      if (Region->ReleaseInfo.LastReleaseAtNs +
              static_cast<u64>(IntervalMs) * 1000000 >
          getMonotonicTime()) {
        return 0; // Memory was returned recently.
      }
    }

    const uptr GroupSize = (1U << GroupSizeLog);
    const uptr AllocatedUserEnd = Region->AllocatedUser + Region->RegionBeg;
    ReleaseRecorder Recorder(Region->RegionBeg, &Region->Data);
    PageReleaseContext Context(BlockSize, Region->AllocatedUser,
                               /*NumberOfRegions=*/1U);

    const uptr CompactPtrBase = getCompactPtrBaseByClassId(ClassId);
    auto DecompactPtr = [CompactPtrBase](CompactPtrT CompactPtr) {
      return decompactPtrInternal(CompactPtrBase, CompactPtr);
    };
    for (BatchGroup &BG : Region->FreeList) {
      const uptr PushedBytesDelta =
          BG.PushedBlocks - BG.PushedBlocksAtLastCheckpoint;
      if (PushedBytesDelta * BlockSize < PageSize)
        continue;

      // Group boundary does not necessarily have the same alignment as Region.
      // It may sit across a Region boundary. Which means that we may have the
      // following two cases,
      //
      // 1. Group boundary sits before RegionBeg.
      //
      //                (BatchGroupBeg)
      // batchGroupBase  RegionBeg       BatchGroupEnd
      //        |            |                |
      //        v            v                v
      //        +------------+----------------+
      //         \                           /
      //          ------   GroupSize   ------
      //
      // 2. Group boundary sits after RegionBeg.
      //
      //               (BatchGroupBeg)
      //    RegionBeg  batchGroupBase               BatchGroupEnd
      //        |           |                             |
      //        v           v                             v
      //        +-----------+-----------------------------+
      //                     \                           /
      //                      ------   GroupSize   ------
      //
      // Note that in the first case, the group range before RegionBeg is never
      // used. Therefore, while calculating the used group size, we should
      // exclude that part to get the correct size.
      const uptr BatchGroupBeg =
          Max(batchGroupBase(CompactPtrBase, BG.GroupId), Region->RegionBeg);
      DCHECK_GE(AllocatedUserEnd, BatchGroupBeg);
      const uptr BatchGroupEnd =
          batchGroupBase(CompactPtrBase, BG.GroupId) + GroupSize;
      const uptr AllocatedGroupSize = AllocatedUserEnd >= BatchGroupEnd
                                          ? BatchGroupEnd - BatchGroupBeg
                                          : AllocatedUserEnd - BatchGroupBeg;
      if (AllocatedGroupSize == 0)
        continue;

      // TransferBatches are pushed in front of BG.Batches. The first one may
      // not have all caches used.
      const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch +
                             BG.Batches.front()->getCount();
      const uptr BytesInBG = NumBlocks * BlockSize;
      // Given the randomness property, we try to release the pages only if the
      // bytes used by free blocks exceed certain proportion of group size. Note
      // that this heuristic only applies when all the spaces in a BatchGroup
      // are allocated.
      if (CheckDensity && (BytesInBG * 100U) / AllocatedGroupSize <
                              (100U - 1U - BlockSize / 16U)) {
        continue;
      }

      BG.PushedBlocksAtLastCheckpoint = BG.PushedBlocks;
      // Note that we don't always visit blocks in each BatchGroup so that we
      // may miss the chance of releasing certain pages that cross BatchGroups.
      Context.markFreeBlocks(BG.Batches, DecompactPtr, Region->RegionBeg);
    }

    if (!Context.hasBlockMarked())
      return 0;

    auto SkipRegion = [](UNUSED uptr RegionIndex) { return false; };
    releaseFreeMemoryToOS(Context, Recorder, SkipRegion);

    if (Recorder.getReleasedRangesCount() > 0) {
      Region->ReleaseInfo.PushedBlocksAtLastRelease =
          Region->Stats.PushedBlocks;
      Region->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount();
      Region->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes();
    }
    Region->ReleaseInfo.LastReleaseAtNs = getMonotonicTime();
    return Recorder.getReleasedBytes();
  }
};

} // namespace scudo

#endif // SCUDO_PRIMARY64_H_