aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang16-rt/lib/asan/asan_poisoning.cpp
blob: 5164b7d860f48a485cd7252a5b411bdc5a008644 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
//===-- asan_poisoning.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// Shadow memory poisoning by ASan RTL and by user application.
//===----------------------------------------------------------------------===//

#include "asan_poisoning.h"

#include "asan_report.h"
#include "asan_stack.h"
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_interface_internal.h"
#include "sanitizer_common/sanitizer_libc.h"

namespace __asan {

static atomic_uint8_t can_poison_memory;

void SetCanPoisonMemory(bool value) {
  atomic_store(&can_poison_memory, value, memory_order_release);
}

bool CanPoisonMemory() {
  return atomic_load(&can_poison_memory, memory_order_acquire);
}

void PoisonShadow(uptr addr, uptr size, u8 value) {
  if (value && !CanPoisonMemory()) return;
  CHECK(AddrIsAlignedByGranularity(addr));
  CHECK(AddrIsInMem(addr));
  CHECK(AddrIsAlignedByGranularity(addr + size));
  CHECK(AddrIsInMem(addr + size - ASAN_SHADOW_GRANULARITY));
  CHECK(REAL(memset));
  FastPoisonShadow(addr, size, value);
}

void PoisonShadowPartialRightRedzone(uptr addr,
                                     uptr size,
                                     uptr redzone_size,
                                     u8 value) {
  if (!CanPoisonMemory()) return;
  CHECK(AddrIsAlignedByGranularity(addr));
  CHECK(AddrIsInMem(addr));
  FastPoisonShadowPartialRightRedzone(addr, size, redzone_size, value);
}

struct ShadowSegmentEndpoint {
  u8 *chunk;
  s8 offset;  // in [0, ASAN_SHADOW_GRANULARITY)
  s8 value;  // = *chunk;

  explicit ShadowSegmentEndpoint(uptr address) {
    chunk = (u8*)MemToShadow(address);
    offset = address & (ASAN_SHADOW_GRANULARITY - 1);
    value = *chunk;
  }
};

void AsanPoisonOrUnpoisonIntraObjectRedzone(uptr ptr, uptr size, bool poison) {
  uptr end = ptr + size;
  if (Verbosity()) {
    Printf("__asan_%spoison_intra_object_redzone [%p,%p) %zd\n",
           poison ? "" : "un", (void *)ptr, (void *)end, size);
    if (Verbosity() >= 2)
      PRINT_CURRENT_STACK();
  }
  CHECK(size);
  CHECK_LE(size, 4096);
  CHECK(IsAligned(end, ASAN_SHADOW_GRANULARITY));
  if (!IsAligned(ptr, ASAN_SHADOW_GRANULARITY)) {
    *(u8 *)MemToShadow(ptr) =
        poison ? static_cast<u8>(ptr % ASAN_SHADOW_GRANULARITY) : 0;
    ptr |= ASAN_SHADOW_GRANULARITY - 1;
    ptr++;
  }
  for (; ptr < end; ptr += ASAN_SHADOW_GRANULARITY)
    *(u8*)MemToShadow(ptr) = poison ? kAsanIntraObjectRedzone : 0;
}

}  // namespace __asan

// ---------------------- Interface ---------------- {{{1
using namespace __asan;

// Current implementation of __asan_(un)poison_memory_region doesn't check
// that user program (un)poisons the memory it owns. It poisons memory
// conservatively, and unpoisons progressively to make sure asan shadow
// mapping invariant is preserved (see detailed mapping description here:
// https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm).
//
// * if user asks to poison region [left, right), the program poisons
// at least [left, AlignDown(right)).
// * if user asks to unpoison region [left, right), the program unpoisons
// at most [AlignDown(left), right).
void __asan_poison_memory_region(void const volatile *addr, uptr size) {
  if (!flags()->allow_user_poisoning || size == 0) return;
  uptr beg_addr = (uptr)addr;
  uptr end_addr = beg_addr + size;
  VPrintf(3, "Trying to poison memory region [%p, %p)\n", (void *)beg_addr,
          (void *)end_addr);
  ShadowSegmentEndpoint beg(beg_addr);
  ShadowSegmentEndpoint end(end_addr);
  if (beg.chunk == end.chunk) {
    CHECK_LT(beg.offset, end.offset);
    s8 value = beg.value;
    CHECK_EQ(value, end.value);
    // We can only poison memory if the byte in end.offset is unaddressable.
    // No need to re-poison memory if it is poisoned already.
    if (value > 0 && value <= end.offset) {
      if (beg.offset > 0) {
        *beg.chunk = Min(value, beg.offset);
      } else {
        *beg.chunk = kAsanUserPoisonedMemoryMagic;
      }
    }
    return;
  }
  CHECK_LT(beg.chunk, end.chunk);
  if (beg.offset > 0) {
    // Mark bytes from beg.offset as unaddressable.
    if (beg.value == 0) {
      *beg.chunk = beg.offset;
    } else {
      *beg.chunk = Min(beg.value, beg.offset);
    }
    beg.chunk++;
  }
  REAL(memset)(beg.chunk, kAsanUserPoisonedMemoryMagic, end.chunk - beg.chunk);
  // Poison if byte in end.offset is unaddressable.
  if (end.value > 0 && end.value <= end.offset) {
    *end.chunk = kAsanUserPoisonedMemoryMagic;
  }
}

void __asan_unpoison_memory_region(void const volatile *addr, uptr size) {
  if (!flags()->allow_user_poisoning || size == 0) return;
  uptr beg_addr = (uptr)addr;
  uptr end_addr = beg_addr + size;
  VPrintf(3, "Trying to unpoison memory region [%p, %p)\n", (void *)beg_addr,
          (void *)end_addr);
  ShadowSegmentEndpoint beg(beg_addr);
  ShadowSegmentEndpoint end(end_addr);
  if (beg.chunk == end.chunk) {
    CHECK_LT(beg.offset, end.offset);
    s8 value = beg.value;
    CHECK_EQ(value, end.value);
    // We unpoison memory bytes up to enbytes up to end.offset if it is not
    // unpoisoned already.
    if (value != 0) {
      *beg.chunk = Max(value, end.offset);
    }
    return;
  }
  CHECK_LT(beg.chunk, end.chunk);
  if (beg.offset > 0) {
    *beg.chunk = 0;
    beg.chunk++;
  }
  REAL(memset)(beg.chunk, 0, end.chunk - beg.chunk);
  if (end.offset > 0 && end.value != 0) {
    *end.chunk = Max(end.value, end.offset);
  }
}

int __asan_address_is_poisoned(void const volatile *addr) {
  return __asan::AddressIsPoisoned((uptr)addr);
}

uptr __asan_region_is_poisoned(uptr beg, uptr size) {
  if (!size)
    return 0;
  uptr end = beg + size;
  if (!AddrIsInMem(beg))
    return beg;
  if (!AddrIsInMem(end))
    return end;
  CHECK_LT(beg, end);
  uptr aligned_b = RoundUpTo(beg, ASAN_SHADOW_GRANULARITY);
  uptr aligned_e = RoundDownTo(end, ASAN_SHADOW_GRANULARITY);
  uptr shadow_beg = MemToShadow(aligned_b);
  uptr shadow_end = MemToShadow(aligned_e);
  // First check the first and the last application bytes,
  // then check the ASAN_SHADOW_GRANULARITY-aligned region by calling
  // mem_is_zero on the corresponding shadow.
  if (!__asan::AddressIsPoisoned(beg) && !__asan::AddressIsPoisoned(end - 1) &&
      (shadow_end <= shadow_beg ||
       __sanitizer::mem_is_zero((const char *)shadow_beg,
                                shadow_end - shadow_beg)))
    return 0;
  // The fast check failed, so we have a poisoned byte somewhere.
  // Find it slowly.
  for (; beg < end; beg++)
    if (__asan::AddressIsPoisoned(beg))
      return beg;
  UNREACHABLE("mem_is_zero returned false, but poisoned byte was not found");
  return 0;
}

#define CHECK_SMALL_REGION(p, size, isWrite)                  \
  do {                                                        \
    uptr __p = reinterpret_cast<uptr>(p);                     \
    uptr __size = size;                                       \
    if (UNLIKELY(__asan::AddressIsPoisoned(__p) ||            \
        __asan::AddressIsPoisoned(__p + __size - 1))) {       \
      GET_CURRENT_PC_BP_SP;                                   \
      uptr __bad = __asan_region_is_poisoned(__p, __size);    \
      __asan_report_error(pc, bp, sp, __bad, isWrite, __size, 0);\
    }                                                         \
  } while (false)


extern "C" SANITIZER_INTERFACE_ATTRIBUTE
u16 __sanitizer_unaligned_load16(const uu16 *p) {
  CHECK_SMALL_REGION(p, sizeof(*p), false);
  return *p;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
u32 __sanitizer_unaligned_load32(const uu32 *p) {
  CHECK_SMALL_REGION(p, sizeof(*p), false);
  return *p;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
u64 __sanitizer_unaligned_load64(const uu64 *p) {
  CHECK_SMALL_REGION(p, sizeof(*p), false);
  return *p;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __sanitizer_unaligned_store16(uu16 *p, u16 x) {
  CHECK_SMALL_REGION(p, sizeof(*p), true);
  *p = x;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __sanitizer_unaligned_store32(uu32 *p, u32 x) {
  CHECK_SMALL_REGION(p, sizeof(*p), true);
  *p = x;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __sanitizer_unaligned_store64(uu64 *p, u64 x) {
  CHECK_SMALL_REGION(p, sizeof(*p), true);
  *p = x;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __asan_poison_cxx_array_cookie(uptr p) {
  if (SANITIZER_WORDSIZE != 64) return;
  if (!flags()->poison_array_cookie) return;
  uptr s = MEM_TO_SHADOW(p);
  *reinterpret_cast<u8*>(s) = kAsanArrayCookieMagic;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
uptr __asan_load_cxx_array_cookie(uptr *p) {
  if (SANITIZER_WORDSIZE != 64) return *p;
  if (!flags()->poison_array_cookie) return *p;
  uptr s = MEM_TO_SHADOW(reinterpret_cast<uptr>(p));
  u8 sval = *reinterpret_cast<u8*>(s);
  if (sval == kAsanArrayCookieMagic) return *p;
  // If sval is not kAsanArrayCookieMagic it can only be freed memory,
  // which means that we are going to get double-free. So, return 0 to avoid
  // infinite loop of destructors. We don't want to report a double-free here
  // though, so print a warning just in case.
  // CHECK_EQ(sval, kAsanHeapFreeMagic);
  if (sval == kAsanHeapFreeMagic) {
    Report("AddressSanitizer: loaded array cookie from free-d memory; "
           "expect a double-free report\n");
    return 0;
  }
  // The cookie may remain unpoisoned if e.g. it comes from a custom
  // operator new defined inside a class.
  return *p;
}

// This is a simplified version of __asan_(un)poison_memory_region, which
// assumes that left border of region to be poisoned is properly aligned.
static void PoisonAlignedStackMemory(uptr addr, uptr size, bool do_poison) {
  if (size == 0) return;
  uptr aligned_size = size & ~(ASAN_SHADOW_GRANULARITY - 1);
  PoisonShadow(addr, aligned_size,
               do_poison ? kAsanStackUseAfterScopeMagic : 0);
  if (size == aligned_size)
    return;
  s8 end_offset = (s8)(size - aligned_size);
  s8* shadow_end = (s8*)MemToShadow(addr + aligned_size);
  s8 end_value = *shadow_end;
  if (do_poison) {
    // If possible, mark all the bytes mapping to last shadow byte as
    // unaddressable.
    if (end_value > 0 && end_value <= end_offset)
      *shadow_end = (s8)kAsanStackUseAfterScopeMagic;
  } else {
    // If necessary, mark few first bytes mapping to last shadow byte
    // as addressable
    if (end_value != 0)
      *shadow_end = Max(end_value, end_offset);
  }
}

void __asan_set_shadow_00(uptr addr, uptr size) {
  REAL(memset)((void *)addr, 0, size);
}

void __asan_set_shadow_01(uptr addr, uptr size) {
  REAL(memset)((void *)addr, 0x01, size);
}

void __asan_set_shadow_02(uptr addr, uptr size) {
  REAL(memset)((void *)addr, 0x02, size);
}

void __asan_set_shadow_03(uptr addr, uptr size) {
  REAL(memset)((void *)addr, 0x03, size);
}

void __asan_set_shadow_04(uptr addr, uptr size) {
  REAL(memset)((void *)addr, 0x04, size);
}

void __asan_set_shadow_05(uptr addr, uptr size) {
  REAL(memset)((void *)addr, 0x05, size);
}

void __asan_set_shadow_06(uptr addr, uptr size) {
  REAL(memset)((void *)addr, 0x06, size);
}

void __asan_set_shadow_07(uptr addr, uptr size) {
  REAL(memset)((void *)addr, 0x07, size);
}

void __asan_set_shadow_f1(uptr addr, uptr size) {
  REAL(memset)((void *)addr, 0xf1, size);
}

void __asan_set_shadow_f2(uptr addr, uptr size) {
  REAL(memset)((void *)addr, 0xf2, size);
}

void __asan_set_shadow_f3(uptr addr, uptr size) {
  REAL(memset)((void *)addr, 0xf3, size);
}

void __asan_set_shadow_f5(uptr addr, uptr size) {
  REAL(memset)((void *)addr, 0xf5, size);
}

void __asan_set_shadow_f8(uptr addr, uptr size) {
  REAL(memset)((void *)addr, 0xf8, size);
}

void __asan_poison_stack_memory(uptr addr, uptr size) {
  VReport(1, "poisoning: %p %zx\n", (void *)addr, size);
  PoisonAlignedStackMemory(addr, size, true);
}

void __asan_unpoison_stack_memory(uptr addr, uptr size) {
  VReport(1, "unpoisoning: %p %zx\n", (void *)addr, size);
  PoisonAlignedStackMemory(addr, size, false);
}

static void FixUnalignedStorage(uptr storage_beg, uptr storage_end,
                                uptr &old_beg, uptr &old_end, uptr &new_beg,
                                uptr &new_end) {
  constexpr uptr granularity = ASAN_SHADOW_GRANULARITY;
  if (UNLIKELY(!AddrIsAlignedByGranularity(storage_end))) {
    uptr end_down = RoundDownTo(storage_end, granularity);
    // Ignore the last unaligned granule if the storage is followed by
    // unpoisoned byte, because we can't poison the prefix anyway. Don't call
    // AddressIsPoisoned at all if container changes does not affect the last
    // granule at all.
    if ((((old_end != new_end) && Max(old_end, new_end) > end_down) ||
         ((old_beg != new_beg) && Max(old_beg, new_beg) > end_down)) &&
        !AddressIsPoisoned(storage_end)) {
      old_beg = Min(end_down, old_beg);
      old_end = Min(end_down, old_end);
      new_beg = Min(end_down, new_beg);
      new_end = Min(end_down, new_end);
    }
  }

  // Handle misaligned begin and cut it off.
  if (UNLIKELY(!AddrIsAlignedByGranularity(storage_beg))) {
    uptr beg_up = RoundUpTo(storage_beg, granularity);
    // The first unaligned granule needs special handling only if we had bytes
    // there before and will have none after.
    if ((new_beg == new_end || new_beg >= beg_up) && old_beg != old_end &&
        old_beg < beg_up) {
      // Keep granule prefix outside of the storage unpoisoned.
      uptr beg_down = RoundDownTo(storage_beg, granularity);
      *(u8 *)MemToShadow(beg_down) = storage_beg - beg_down;
      old_beg = Max(beg_up, old_beg);
      old_end = Max(beg_up, old_end);
      new_beg = Max(beg_up, new_beg);
      new_end = Max(beg_up, new_end);
    }
  }
}

void __sanitizer_annotate_contiguous_container(const void *beg_p,
                                               const void *end_p,
                                               const void *old_mid_p,
                                               const void *new_mid_p) {
  if (!flags()->detect_container_overflow)
    return;
  VPrintf(2, "contiguous_container: %p %p %p %p\n", beg_p, end_p, old_mid_p,
          new_mid_p);
  uptr storage_beg = reinterpret_cast<uptr>(beg_p);
  uptr storage_end = reinterpret_cast<uptr>(end_p);
  uptr old_end = reinterpret_cast<uptr>(old_mid_p);
  uptr new_end = reinterpret_cast<uptr>(new_mid_p);
  uptr old_beg = storage_beg;
  uptr new_beg = storage_beg;
  uptr granularity = ASAN_SHADOW_GRANULARITY;
  if (!(storage_beg <= old_end && storage_beg <= new_end &&
        old_end <= storage_end && new_end <= storage_end)) {
    GET_STACK_TRACE_FATAL_HERE;
    ReportBadParamsToAnnotateContiguousContainer(storage_beg, storage_end,
                                                 old_end, new_end, &stack);
  }
  CHECK_LE(storage_end - storage_beg,
           FIRST_32_SECOND_64(1UL << 30, 1ULL << 40));  // Sanity check.

  if (old_end == new_end)
    return;  // Nothing to do here.

  FixUnalignedStorage(storage_beg, storage_end, old_beg, old_end, new_beg,
                      new_end);

  uptr a = RoundDownTo(Min(old_end, new_end), granularity);
  uptr c = RoundUpTo(Max(old_end, new_end), granularity);
  uptr d1 = RoundDownTo(old_end, granularity);
  // uptr d2 = RoundUpTo(old_mid, granularity);
  // Currently we should be in this state:
  // [a, d1) is good, [d2, c) is bad, [d1, d2) is partially good.
  // Make a quick sanity check that we are indeed in this state.
  //
  // FIXME: Two of these three checks are disabled until we fix
  // https://github.com/google/sanitizers/issues/258.
  // if (d1 != d2)
  //  CHECK_EQ(*(u8*)MemToShadow(d1), old_mid - d1);
  if (a + granularity <= d1)
    CHECK_EQ(*(u8 *)MemToShadow(a), 0);
  // if (d2 + granularity <= c && c <= end)
  //   CHECK_EQ(*(u8 *)MemToShadow(c - granularity),
  //            kAsanContiguousContainerOOBMagic);

  uptr b1 = RoundDownTo(new_end, granularity);
  uptr b2 = RoundUpTo(new_end, granularity);
  // New state:
  // [a, b1) is good, [b2, c) is bad, [b1, b2) is partially good.
  if (b1 > a)
    PoisonShadow(a, b1 - a, 0);
  else if (c > b2)
    PoisonShadow(b2, c - b2, kAsanContiguousContainerOOBMagic);
  if (b1 != b2) {
    CHECK_EQ(b2 - b1, granularity);
    *(u8 *)MemToShadow(b1) = static_cast<u8>(new_end - b1);
  }
}

// Annotates a double ended contiguous memory area like std::deque's chunk.
// It allows detecting buggy accesses to allocated but not used begining
// or end items of such a container.
void __sanitizer_annotate_double_ended_contiguous_container(
    const void *storage_beg_p, const void *storage_end_p,
    const void *old_container_beg_p, const void *old_container_end_p,
    const void *new_container_beg_p, const void *new_container_end_p) {
  if (!flags()->detect_container_overflow)
    return;

  VPrintf(2, "contiguous_container: %p %p %p %p %p %p\n", storage_beg_p,
          storage_end_p, old_container_beg_p, old_container_end_p,
          new_container_beg_p, new_container_end_p);

  uptr storage_beg = reinterpret_cast<uptr>(storage_beg_p);
  uptr storage_end = reinterpret_cast<uptr>(storage_end_p);
  uptr old_beg = reinterpret_cast<uptr>(old_container_beg_p);
  uptr old_end = reinterpret_cast<uptr>(old_container_end_p);
  uptr new_beg = reinterpret_cast<uptr>(new_container_beg_p);
  uptr new_end = reinterpret_cast<uptr>(new_container_end_p);

  constexpr uptr granularity = ASAN_SHADOW_GRANULARITY;

  if (!(old_beg <= old_end && new_beg <= new_end) ||
      !(storage_beg <= new_beg && new_end <= storage_end) ||
      !(storage_beg <= old_beg && old_end <= storage_end)) {
    GET_STACK_TRACE_FATAL_HERE;
    ReportBadParamsToAnnotateDoubleEndedContiguousContainer(
        storage_beg, storage_end, old_beg, old_end, new_beg, new_end, &stack);
  }
  CHECK_LE(storage_end - storage_beg,
           FIRST_32_SECOND_64(1UL << 30, 1ULL << 40));  // Sanity check.

  if ((old_beg == old_end && new_beg == new_end) ||
      (old_beg == new_beg && old_end == new_end))
    return;  // Nothing to do here.

  FixUnalignedStorage(storage_beg, storage_end, old_beg, old_end, new_beg,
                      new_end);

  // Handle non-intersecting new/old containers separately have simpler
  // intersecting case.
  if (old_beg == old_end || new_beg == new_end || new_end <= old_beg ||
      old_end <= new_beg) {
    if (old_beg != old_end) {
      // Poisoning the old container.
      uptr a = RoundDownTo(old_beg, granularity);
      uptr b = RoundUpTo(old_end, granularity);
      PoisonShadow(a, b - a, kAsanContiguousContainerOOBMagic);
    }

    if (new_beg != new_end) {
      // Unpoisoning the new container.
      uptr a = RoundDownTo(new_beg, granularity);
      uptr b = RoundDownTo(new_end, granularity);
      PoisonShadow(a, b - a, 0);
      if (!AddrIsAlignedByGranularity(new_end))
        *(u8 *)MemToShadow(b) = static_cast<u8>(new_end - b);
    }

    return;
  }

  // Intersection of old and new containers is not empty.
  CHECK_LT(new_beg, old_end);
  CHECK_GT(new_end, old_beg);

  if (new_beg < old_beg) {
    // Round down because we can't poison prefixes.
    uptr a = RoundDownTo(new_beg, granularity);
    // Round down and ignore the [c, old_beg) as its state defined by unchanged
    // [old_beg, old_end).
    uptr c = RoundDownTo(old_beg, granularity);
    PoisonShadow(a, c - a, 0);
  } else if (new_beg > old_beg) {
    // Round down and poison [a, old_beg) because it was unpoisoned only as a
    // prefix.
    uptr a = RoundDownTo(old_beg, granularity);
    // Round down and ignore the [c, new_beg) as its state defined by unchanged
    // [new_beg, old_end).
    uptr c = RoundDownTo(new_beg, granularity);

    PoisonShadow(a, c - a, kAsanContiguousContainerOOBMagic);
  }

  if (new_end > old_end) {
    // Round down to poison the prefix.
    uptr a = RoundDownTo(old_end, granularity);
    // Round down and handle remainder below.
    uptr c = RoundDownTo(new_end, granularity);
    PoisonShadow(a, c - a, 0);
    if (!AddrIsAlignedByGranularity(new_end))
      *(u8 *)MemToShadow(c) = static_cast<u8>(new_end - c);
  } else if (new_end < old_end) {
    // Round up and handle remained below.
    uptr a2 = RoundUpTo(new_end, granularity);
    // Round up to poison entire granule as we had nothing in [old_end, c2).
    uptr c2 = RoundUpTo(old_end, granularity);
    PoisonShadow(a2, c2 - a2, kAsanContiguousContainerOOBMagic);

    if (!AddrIsAlignedByGranularity(new_end)) {
      uptr a = RoundDownTo(new_end, granularity);
      *(u8 *)MemToShadow(a) = static_cast<u8>(new_end - a);
    }
  }
}

static const void *FindBadAddress(uptr begin, uptr end, bool poisoned) {
  CHECK_LE(begin, end);
  constexpr uptr kMaxRangeToCheck = 32;
  if (end - begin > kMaxRangeToCheck * 2) {
    if (auto *bad = FindBadAddress(begin, begin + kMaxRangeToCheck, poisoned))
      return bad;
    if (auto *bad = FindBadAddress(end - kMaxRangeToCheck, end, poisoned))
      return bad;
  }

  for (uptr i = begin; i < end; ++i)
    if (AddressIsPoisoned(i) != poisoned)
      return reinterpret_cast<const void *>(i);
  return nullptr;
}

const void *__sanitizer_contiguous_container_find_bad_address(
    const void *beg_p, const void *mid_p, const void *end_p) {
  if (!flags()->detect_container_overflow)
    return nullptr;
  uptr granularity = ASAN_SHADOW_GRANULARITY;
  uptr beg = reinterpret_cast<uptr>(beg_p);
  uptr end = reinterpret_cast<uptr>(end_p);
  uptr mid = reinterpret_cast<uptr>(mid_p);
  CHECK_LE(beg, mid);
  CHECK_LE(mid, end);
  // If the byte after the storage is unpoisoned, everything in the granule
  // before must stay unpoisoned.
  uptr annotations_end =
      (!AddrIsAlignedByGranularity(end) && !AddressIsPoisoned(end))
          ? RoundDownTo(end, granularity)
          : end;
  beg = Min(beg, annotations_end);
  mid = Min(mid, annotations_end);
  if (auto *bad = FindBadAddress(beg, mid, false))
    return bad;
  if (auto *bad = FindBadAddress(mid, annotations_end, true))
    return bad;
  return FindBadAddress(annotations_end, end, false);
}

int __sanitizer_verify_contiguous_container(const void *beg_p,
                                            const void *mid_p,
                                            const void *end_p) {
  return __sanitizer_contiguous_container_find_bad_address(beg_p, mid_p,
                                                           end_p) == nullptr;
}

const void *__sanitizer_double_ended_contiguous_container_find_bad_address(
    const void *storage_beg_p, const void *container_beg_p,
    const void *container_end_p, const void *storage_end_p) {
  if (!flags()->detect_container_overflow)
    return nullptr;
  uptr granularity = ASAN_SHADOW_GRANULARITY;
  uptr storage_beg = reinterpret_cast<uptr>(storage_beg_p);
  uptr storage_end = reinterpret_cast<uptr>(storage_end_p);
  uptr beg = reinterpret_cast<uptr>(container_beg_p);
  uptr end = reinterpret_cast<uptr>(container_end_p);

  // The prefix of the firs granule of the container is unpoisoned.
  if (beg != end)
    beg = Max(storage_beg, RoundDownTo(beg, granularity));

  // If the byte after the storage is unpoisoned, the prefix of the last granule
  // is unpoisoned.
  uptr annotations_end = (!AddrIsAlignedByGranularity(storage_end) &&
                          !AddressIsPoisoned(storage_end))
                             ? RoundDownTo(storage_end, granularity)
                             : storage_end;
  storage_beg = Min(storage_beg, annotations_end);
  beg = Min(beg, annotations_end);
  end = Min(end, annotations_end);

  if (auto *bad = FindBadAddress(storage_beg, beg, true))
    return bad;
  if (auto *bad = FindBadAddress(beg, end, false))
    return bad;
  if (auto *bad = FindBadAddress(end, annotations_end, true))
    return bad;
  return FindBadAddress(annotations_end, storage_end, false);
}

int __sanitizer_verify_double_ended_contiguous_container(
    const void *storage_beg_p, const void *container_beg_p,
    const void *container_end_p, const void *storage_end_p) {
  return __sanitizer_double_ended_contiguous_container_find_bad_address(
             storage_beg_p, container_beg_p, container_end_p, storage_end_p) ==
         nullptr;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __asan_poison_intra_object_redzone(uptr ptr, uptr size) {
  AsanPoisonOrUnpoisonIntraObjectRedzone(ptr, size, true);
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __asan_unpoison_intra_object_redzone(uptr ptr, uptr size) {
  AsanPoisonOrUnpoisonIntraObjectRedzone(ptr, size, false);
}

// --- Implementation of LSan-specific functions --- {{{1
namespace __lsan {
bool WordIsPoisoned(uptr addr) {
  return (__asan_region_is_poisoned(addr, sizeof(uptr)) != 0);
}
}