1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
#ifndef MEMPROF_DATA_INC
#define MEMPROF_DATA_INC
/*===-- MemProfData.inc - MemProf profiling runtime structures -*- C++ -*-=== *\
|*
|* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|* See https://llvm.org/LICENSE.txt for license information.
|* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|*
\*===----------------------------------------------------------------------===*/
/*
* This is the main file that defines all the data structure, signature,
* constant literals that are shared across profiling runtime library,
* and host tools (reader/writer).
*
* This file has two identical copies. The primary copy lives in LLVM and
* the other one sits in compiler-rt/include/profile directory. To make changes
* in this file, first modify the primary copy and copy it over to compiler-rt.
* Testing of any change in this file can start only after the two copies are
* synced up.
*
\*===----------------------------------------------------------------------===*/
#ifdef _MSC_VER
#define PACKED(...) __pragma(pack(push,1)) __VA_ARGS__ __pragma(pack(pop))
#else
#define PACKED(...) __VA_ARGS__ __attribute__((__packed__))
#endif
// A 64-bit magic number to uniquely identify the raw binary memprof profile file.
#define MEMPROF_RAW_MAGIC_64 \
((uint64_t)255 << 56 | (uint64_t)'m' << 48 | (uint64_t)'p' << 40 | (uint64_t)'r' << 32 | \
(uint64_t)'o' << 24 | (uint64_t)'f' << 16 | (uint64_t)'r' << 8 | (uint64_t)129)
// The version number of the raw binary format.
#define MEMPROF_RAW_VERSION 2ULL
namespace llvm {
namespace memprof {
// A struct describing the header used for the raw binary memprof profile format.
PACKED(struct Header {
uint64_t Magic;
uint64_t Version;
uint64_t TotalSize;
uint64_t SegmentOffset;
uint64_t MIBOffset;
uint64_t StackOffset;
});
// A struct describing the information necessary to describe a /proc/maps
// segment entry for a particular binary/library identified by its build id.
PACKED(struct SegmentEntry {
uint64_t Start;
uint64_t End;
uint64_t Offset;
// This field is unused until sanitizer procmaps support for build ids for
// Linux-Elf is implemented.
uint8_t BuildId[32] = {0};
SegmentEntry(uint64_t S, uint64_t E, uint64_t O) :
Start(S), End(E), Offset(O) {}
SegmentEntry(const SegmentEntry& S) {
Start = S.Start;
End = S.End;
Offset = S.Offset;
}
SegmentEntry& operator=(const SegmentEntry& S) {
Start = S.Start;
End = S.End;
Offset = S.Offset;
return *this;
}
bool operator==(const SegmentEntry& S) const {
return Start == S.Start &&
End == S.End &&
Offset == S.Offset;
}
});
// Packed struct definition for MSVC. We can't use the PACKED macro defined in
// MemProfData.inc since it would mean we are embedding a directive (the
// #include for MIBEntryDef) into the macros which is undefined behaviour.
#ifdef _MSC_VER
__pragma(pack(push,1))
#endif
// A struct representing the heap allocation characteristics of a particular
// runtime context. This struct is shared between the compiler-rt runtime and
// the raw profile reader. The indexed format uses a separate, self-describing
// backwards compatible format.
struct MemInfoBlock{
#define MIBEntryDef(NameTag, Name, Type) Type Name;
#include "MIBEntryDef.inc"
#undef MIBEntryDef
bool operator==(const MemInfoBlock& Other) const {
bool IsEqual = true;
#define MIBEntryDef(NameTag, Name, Type) \
IsEqual = (IsEqual && Name == Other.Name);
#include "MIBEntryDef.inc"
#undef MIBEntryDef
return IsEqual;
}
MemInfoBlock() {
#define MIBEntryDef(NameTag, Name, Type) Name = Type();
#include "MIBEntryDef.inc"
#undef MIBEntryDef
}
MemInfoBlock(uint32_t Size, uint64_t AccessCount, uint32_t AllocTs,
uint32_t DeallocTs, uint32_t AllocCpu, uint32_t DeallocCpu)
: MemInfoBlock() {
AllocCount = 1U;
TotalAccessCount = AccessCount;
MinAccessCount = AccessCount;
MaxAccessCount = AccessCount;
TotalSize = Size;
MinSize = Size;
MaxSize = Size;
AllocTimestamp = AllocTs;
DeallocTimestamp = DeallocTs;
TotalLifetime = DeallocTimestamp - AllocTimestamp;
MinLifetime = TotalLifetime;
MaxLifetime = TotalLifetime;
// Access density is accesses per byte. Multiply by 100 to include the
// fractional part.
TotalAccessDensity = AccessCount * 100 / Size;
MinAccessDensity = TotalAccessDensity;
MaxAccessDensity = TotalAccessDensity;
// Lifetime access density is the access density per second of lifetime.
// Multiply by 1000 to convert denominator lifetime to seconds (using a
// minimum lifetime of 1ms to avoid divide by 0. Do the multiplication first
// to reduce truncations to 0.
TotalLifetimeAccessDensity =
TotalAccessDensity * 1000 / (TotalLifetime ? TotalLifetime : 1);
MinLifetimeAccessDensity = TotalLifetimeAccessDensity;
MaxLifetimeAccessDensity = TotalLifetimeAccessDensity;
AllocCpuId = AllocCpu;
DeallocCpuId = DeallocCpu;
NumMigratedCpu = AllocCpuId != DeallocCpuId;
}
void Merge(const MemInfoBlock &newMIB) {
AllocCount += newMIB.AllocCount;
TotalAccessCount += newMIB.TotalAccessCount;
MinAccessCount = newMIB.MinAccessCount < MinAccessCount ? newMIB.MinAccessCount : MinAccessCount;
MaxAccessCount = newMIB.MaxAccessCount > MaxAccessCount ? newMIB.MaxAccessCount : MaxAccessCount;
TotalSize += newMIB.TotalSize;
MinSize = newMIB.MinSize < MinSize ? newMIB.MinSize : MinSize;
MaxSize = newMIB.MaxSize > MaxSize ? newMIB.MaxSize : MaxSize;
TotalLifetime += newMIB.TotalLifetime;
MinLifetime = newMIB.MinLifetime < MinLifetime ? newMIB.MinLifetime : MinLifetime;
MaxLifetime = newMIB.MaxLifetime > MaxLifetime ? newMIB.MaxLifetime : MaxLifetime;
TotalAccessDensity += newMIB.TotalAccessDensity;
MinAccessDensity = newMIB.MinAccessDensity < MinAccessDensity
? newMIB.MinAccessDensity
: MinAccessDensity;
MaxAccessDensity = newMIB.MaxAccessDensity > MaxAccessDensity
? newMIB.MaxAccessDensity
: MaxAccessDensity;
TotalLifetimeAccessDensity += newMIB.TotalLifetimeAccessDensity;
MinLifetimeAccessDensity =
newMIB.MinLifetimeAccessDensity < MinLifetimeAccessDensity
? newMIB.MinLifetimeAccessDensity
: MinLifetimeAccessDensity;
MaxLifetimeAccessDensity =
newMIB.MaxLifetimeAccessDensity > MaxLifetimeAccessDensity
? newMIB.MaxLifetimeAccessDensity
: MaxLifetimeAccessDensity;
// We know newMIB was deallocated later, so just need to check if it was
// allocated before last one deallocated.
NumLifetimeOverlaps += newMIB.AllocTimestamp < DeallocTimestamp;
AllocTimestamp = newMIB.AllocTimestamp;
DeallocTimestamp = newMIB.DeallocTimestamp;
NumSameAllocCpu += AllocCpuId == newMIB.AllocCpuId;
NumSameDeallocCpu += DeallocCpuId == newMIB.DeallocCpuId;
AllocCpuId = newMIB.AllocCpuId;
DeallocCpuId = newMIB.DeallocCpuId;
}
#ifdef _MSC_VER
} __pragma(pack(pop));
#else
} __attribute__((__packed__));
#endif
} // namespace memprof
} // namespace llvm
#endif
|