1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
//===--- IsolateDeclarationCheck.cpp - clang-tidy -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "IsolateDeclarationCheck.h"
#include "../utils/LexerUtils.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
using namespace clang::ast_matchers;
using namespace clang::tidy::utils::lexer;
namespace clang {
namespace tidy {
namespace readability {
namespace {
AST_MATCHER(DeclStmt, isSingleDecl) { return Node.isSingleDecl(); }
AST_MATCHER(DeclStmt, onlyDeclaresVariables) {
return llvm::all_of(Node.decls(), [](Decl *D) { return isa<VarDecl>(D); });
}
} // namespace
void IsolateDeclarationCheck::registerMatchers(MatchFinder *Finder) {
Finder->addMatcher(declStmt(onlyDeclaresVariables(), unless(isSingleDecl()),
hasParent(compoundStmt()))
.bind("decl_stmt"),
this);
}
static SourceLocation findStartOfIndirection(SourceLocation Start,
int Indirections,
const SourceManager &SM,
const LangOptions &LangOpts) {
assert(Indirections >= 0 && "Indirections must be non-negative");
if (Indirections == 0)
return Start;
// Note that the post-fix decrement is necessary to perform the correct
// number of transformations.
while (Indirections-- != 0) {
Start = findPreviousAnyTokenKind(Start, SM, LangOpts, tok::star, tok::amp);
if (Start.isInvalid() || Start.isMacroID())
return SourceLocation();
}
return Start;
}
static bool isMacroID(SourceRange R) {
return R.getBegin().isMacroID() || R.getEnd().isMacroID();
}
/// This function counts the number of written indirections for the given
/// Type \p T. It does \b NOT resolve typedefs as it's a helper for lexing
/// the source code.
/// \see declRanges
static int countIndirections(const Type *T, int Indirections = 0) {
if (T->isFunctionPointerType()) {
const auto *Pointee = T->getPointeeType()->castAs<FunctionType>();
return countIndirections(
Pointee->getReturnType().IgnoreParens().getTypePtr(), ++Indirections);
}
// Note: Do not increment the 'Indirections' because it is not yet clear
// if there is an indirection added in the source code of the array
// declaration.
if (const auto *AT = dyn_cast<ArrayType>(T))
return countIndirections(AT->getElementType().IgnoreParens().getTypePtr(),
Indirections);
if (isa<PointerType>(T) || isa<ReferenceType>(T))
return countIndirections(T->getPointeeType().IgnoreParens().getTypePtr(),
++Indirections);
return Indirections;
}
static bool typeIsMemberPointer(const Type *T) {
if (isa<ArrayType>(T))
return typeIsMemberPointer(T->getArrayElementTypeNoTypeQual());
if ((isa<PointerType>(T) || isa<ReferenceType>(T)) &&
isa<PointerType>(T->getPointeeType()))
return typeIsMemberPointer(T->getPointeeType().getTypePtr());
return isa<MemberPointerType>(T);
}
/// This function tries to extract the SourceRanges that make up all
/// declarations in this \c DeclStmt.
///
/// The resulting vector has the structure {UnderlyingType, Decl1, Decl2, ...}.
/// Each \c SourceRange is of the form [Begin, End).
/// If any of the create ranges is invalid or in a macro the result will be
/// \c None.
/// If the \c DeclStmt contains only one declaration, the result is \c None.
/// If the \c DeclStmt contains declarations other than \c VarDecl the result
/// is \c None.
///
/// \code
/// int * ptr1 = nullptr, value = 42;
/// // [ ][ ] [ ] - The ranges here are inclusive
/// \endcode
/// \todo Generalize this function to take other declarations than \c VarDecl.
static Optional<std::vector<SourceRange>>
declRanges(const DeclStmt *DS, const SourceManager &SM,
const LangOptions &LangOpts) {
std::size_t DeclCount = std::distance(DS->decl_begin(), DS->decl_end());
if (DeclCount < 2)
return None;
if (rangeContainsExpansionsOrDirectives(DS->getSourceRange(), SM, LangOpts))
return None;
// The initial type of the declaration and each declaration has it's own
// slice. This is necessary, because pointers and references bind only
// to the local variable and not to all variables in the declaration.
// Example: 'int *pointer, value = 42;'
std::vector<SourceRange> Slices;
Slices.reserve(DeclCount + 1);
// Calculate the first slice, for now only variables are handled but in the
// future this should be relaxed and support various kinds of declarations.
const auto *FirstDecl = dyn_cast<VarDecl>(*DS->decl_begin());
if (FirstDecl == nullptr)
return None;
// FIXME: Member pointers are not transformed correctly right now, that's
// why they are treated as problematic here.
if (typeIsMemberPointer(FirstDecl->getType().IgnoreParens().getTypePtr()))
return None;
// Consider the following case: 'int * pointer, value = 42;'
// Created slices (inclusive) [ ][ ] [ ]
// Because 'getBeginLoc' points to the start of the variable *name*, the
// location of the pointer must be determined separately.
SourceLocation Start = findStartOfIndirection(
FirstDecl->getLocation(),
countIndirections(FirstDecl->getType().IgnoreParens().getTypePtr()), SM,
LangOpts);
// Fix function-pointer declarations that have a '(' in front of the
// pointer.
// Example: 'void (*f2)(int), (*g2)(int, float) = gg;'
// Slices: [ ][ ] [ ]
if (FirstDecl->getType()->isFunctionPointerType())
Start = findPreviousTokenKind(Start, SM, LangOpts, tok::l_paren);
// It is possible that a declarator is wrapped with parens.
// Example: 'float (((*f_ptr2)))[42], *f_ptr3, ((f_value2)) = 42.f;'
// The slice for the type-part must not contain these parens. Consequently
// 'Start' is moved to the most left paren if there are parens.
while (true) {
if (Start.isInvalid() || Start.isMacroID())
break;
Token T = getPreviousToken(Start, SM, LangOpts);
if (T.is(tok::l_paren)) {
Start = findPreviousTokenStart(Start, SM, LangOpts);
continue;
}
break;
}
SourceRange DeclRange(DS->getBeginLoc(), Start);
if (DeclRange.isInvalid() || isMacroID(DeclRange))
return None;
// The first slice, that is prepended to every isolated declaration, is
// created.
Slices.emplace_back(DeclRange);
// Create all following slices that each declare a variable.
SourceLocation DeclBegin = Start;
for (const auto &Decl : DS->decls()) {
const auto *CurrentDecl = cast<VarDecl>(Decl);
// FIXME: Member pointers are not transformed correctly right now, that's
// why they are treated as problematic here.
if (typeIsMemberPointer(CurrentDecl->getType().IgnoreParens().getTypePtr()))
return None;
SourceLocation DeclEnd =
CurrentDecl->hasInit()
? findNextTerminator(CurrentDecl->getInit()->getEndLoc(), SM,
LangOpts)
: findNextTerminator(CurrentDecl->getEndLoc(), SM, LangOpts);
SourceRange VarNameRange(DeclBegin, DeclEnd);
if (VarNameRange.isInvalid() || isMacroID(VarNameRange))
return None;
Slices.emplace_back(VarNameRange);
DeclBegin = DeclEnd.getLocWithOffset(1);
}
return Slices;
}
static Optional<std::vector<StringRef>>
collectSourceRanges(llvm::ArrayRef<SourceRange> Ranges, const SourceManager &SM,
const LangOptions &LangOpts) {
std::vector<StringRef> Snippets;
Snippets.reserve(Ranges.size());
for (const auto &Range : Ranges) {
CharSourceRange CharRange = Lexer::getAsCharRange(
CharSourceRange::getCharRange(Range.getBegin(), Range.getEnd()), SM,
LangOpts);
if (CharRange.isInvalid())
return None;
bool InvalidText = false;
StringRef Snippet =
Lexer::getSourceText(CharRange, SM, LangOpts, &InvalidText);
if (InvalidText)
return None;
Snippets.emplace_back(Snippet);
}
return Snippets;
}
/// Expects a vector {TypeSnippet, Firstdecl, SecondDecl, ...}.
static std::vector<std::string>
createIsolatedDecls(llvm::ArrayRef<StringRef> Snippets) {
// The first section is the type snippet, which does not make a decl itself.
assert(Snippets.size() > 2 && "Not enough snippets to create isolated decls");
std::vector<std::string> Decls(Snippets.size() - 1);
for (std::size_t I = 1; I < Snippets.size(); ++I)
Decls[I - 1] = Twine(Snippets[0])
.concat(Snippets[0].endswith(" ") ? "" : " ")
.concat(Snippets[I].ltrim())
.concat(";")
.str();
return Decls;
}
void IsolateDeclarationCheck::check(const MatchFinder::MatchResult &Result) {
const auto *WholeDecl = Result.Nodes.getNodeAs<DeclStmt>("decl_stmt");
auto Diag =
diag(WholeDecl->getBeginLoc(),
"multiple declarations in a single statement reduces readability");
Optional<std::vector<SourceRange>> PotentialRanges =
declRanges(WholeDecl, *Result.SourceManager, getLangOpts());
if (!PotentialRanges)
return;
Optional<std::vector<StringRef>> PotentialSnippets = collectSourceRanges(
*PotentialRanges, *Result.SourceManager, getLangOpts());
if (!PotentialSnippets)
return;
std::vector<std::string> NewDecls = createIsolatedDecls(*PotentialSnippets);
std::string Replacement = llvm::join(
NewDecls,
(Twine("\n") + Lexer::getIndentationForLine(WholeDecl->getBeginLoc(),
*Result.SourceManager))
.str());
Diag << FixItHint::CreateReplacement(WholeDecl->getSourceRange(),
Replacement);
}
} // namespace readability
} // namespace tidy
} // namespace clang
|