aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang14/lib/StaticAnalyzer/Checkers/NullabilityChecker.cpp
blob: fe8f7e7bf69e7a37f82ed63c5893aee9d3f32e91 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
//===-- NullabilityChecker.cpp - Nullability checker ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This checker tries to find nullability violations. There are several kinds of
// possible violations:
// * Null pointer is passed to a pointer which has a _Nonnull type.
// * Null pointer is returned from a function which has a _Nonnull return type.
// * Nullable pointer is passed to a pointer which has a _Nonnull type.
// * Nullable pointer is returned from a function which has a _Nonnull return
//   type.
// * Nullable pointer is dereferenced.
//
// This checker propagates the nullability information of the pointers and looks
// for the patterns that are described above. Explicit casts are trusted and are
// considered a way to suppress false positives for this checker. The other way
// to suppress warnings would be to add asserts or guarding if statements to the
// code. In addition to the nullability propagation this checker also uses some
// heuristics to suppress potential false positives.
//
//===----------------------------------------------------------------------===//

#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"

#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"

#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Path.h"

using namespace clang;
using namespace ento;

namespace {

/// Returns the most nullable nullability. This is used for message expressions
/// like [receiver method], where the nullability of this expression is either
/// the nullability of the receiver or the nullability of the return type of the
/// method, depending on which is more nullable. Contradicted is considered to
/// be the most nullable, to avoid false positive results.
Nullability getMostNullable(Nullability Lhs, Nullability Rhs) {
  return static_cast<Nullability>(
      std::min(static_cast<char>(Lhs), static_cast<char>(Rhs)));
}

const char *getNullabilityString(Nullability Nullab) {
  switch (Nullab) {
  case Nullability::Contradicted:
    return "contradicted";
  case Nullability::Nullable:
    return "nullable";
  case Nullability::Unspecified:
    return "unspecified";
  case Nullability::Nonnull:
    return "nonnull";
  }
  llvm_unreachable("Unexpected enumeration.");
  return "";
}

// These enums are used as an index to ErrorMessages array.
enum class ErrorKind : int {
  NilAssignedToNonnull,
  NilPassedToNonnull,
  NilReturnedToNonnull,
  NullableAssignedToNonnull,
  NullableReturnedToNonnull,
  NullableDereferenced,
  NullablePassedToNonnull
};

class NullabilityChecker
    : public Checker<check::Bind, check::PreCall, check::PreStmt<ReturnStmt>,
                     check::PostCall, check::PostStmt<ExplicitCastExpr>,
                     check::PostObjCMessage, check::DeadSymbols,
                     check::Location, check::Event<ImplicitNullDerefEvent>> {

public:
  // If true, the checker will not diagnose nullabilility issues for calls
  // to system headers. This option is motivated by the observation that large
  // projects may have many nullability warnings. These projects may
  // find warnings about nullability annotations that they have explicitly
  // added themselves higher priority to fix than warnings on calls to system
  // libraries.
  DefaultBool NoDiagnoseCallsToSystemHeaders;

  void checkBind(SVal L, SVal V, const Stmt *S, CheckerContext &C) const;
  void checkPostStmt(const ExplicitCastExpr *CE, CheckerContext &C) const;
  void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
  void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
  void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
  void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
  void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
  void checkEvent(ImplicitNullDerefEvent Event) const;
  void checkLocation(SVal Location, bool IsLoad, const Stmt *S,
                     CheckerContext &C) const;

  void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
                  const char *Sep) const override;

  enum CheckKind {
    CK_NullPassedToNonnull,
    CK_NullReturnedFromNonnull,
    CK_NullableDereferenced,
    CK_NullablePassedToNonnull,
    CK_NullableReturnedFromNonnull,
    CK_NumCheckKinds
  };

  DefaultBool ChecksEnabled[CK_NumCheckKinds];
  CheckerNameRef CheckNames[CK_NumCheckKinds];
  mutable std::unique_ptr<BugType> BTs[CK_NumCheckKinds];

  const std::unique_ptr<BugType> &getBugType(CheckKind Kind) const {
    if (!BTs[Kind])
      BTs[Kind].reset(new BugType(CheckNames[Kind], "Nullability",
                                  categories::MemoryError));
    return BTs[Kind];
  }

  // When set to false no nullability information will be tracked in
  // NullabilityMap. It is possible to catch errors like passing a null pointer
  // to a callee that expects nonnull argument without the information that is
  // stroed in the NullabilityMap. This is an optimization.
  DefaultBool NeedTracking;

private:
  class NullabilityBugVisitor : public BugReporterVisitor {
  public:
    NullabilityBugVisitor(const MemRegion *M) : Region(M) {}

    void Profile(llvm::FoldingSetNodeID &ID) const override {
      static int X = 0;
      ID.AddPointer(&X);
      ID.AddPointer(Region);
    }

    PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
                                     BugReporterContext &BRC,
                                     PathSensitiveBugReport &BR) override;

  private:
    // The tracked region.
    const MemRegion *Region;
  };

  /// When any of the nonnull arguments of the analyzed function is null, do not
  /// report anything and turn off the check.
  ///
  /// When \p SuppressPath is set to true, no more bugs will be reported on this
  /// path by this checker.
  void reportBugIfInvariantHolds(StringRef Msg, ErrorKind Error, CheckKind CK,
                                 ExplodedNode *N, const MemRegion *Region,
                                 CheckerContext &C,
                                 const Stmt *ValueExpr = nullptr,
                                 bool SuppressPath = false) const;

  void reportBug(StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N,
                 const MemRegion *Region, BugReporter &BR,
                 const Stmt *ValueExpr = nullptr) const {
    const std::unique_ptr<BugType> &BT = getBugType(CK);
    auto R = std::make_unique<PathSensitiveBugReport>(*BT, Msg, N);
    if (Region) {
      R->markInteresting(Region);
      R->addVisitor<NullabilityBugVisitor>(Region);
    }
    if (ValueExpr) {
      R->addRange(ValueExpr->getSourceRange());
      if (Error == ErrorKind::NilAssignedToNonnull ||
          Error == ErrorKind::NilPassedToNonnull ||
          Error == ErrorKind::NilReturnedToNonnull)
        if (const auto *Ex = dyn_cast<Expr>(ValueExpr))
          bugreporter::trackExpressionValue(N, Ex, *R);
    }
    BR.emitReport(std::move(R));
  }

  /// If an SVal wraps a region that should be tracked, it will return a pointer
  /// to the wrapped region. Otherwise it will return a nullptr.
  const SymbolicRegion *getTrackRegion(SVal Val,
                                       bool CheckSuperRegion = false) const;

  /// Returns true if the call is diagnosable in the current analyzer
  /// configuration.
  bool isDiagnosableCall(const CallEvent &Call) const {
    if (NoDiagnoseCallsToSystemHeaders && Call.isInSystemHeader())
      return false;

    return true;
  }
};

class NullabilityState {
public:
  NullabilityState(Nullability Nullab, const Stmt *Source = nullptr)
      : Nullab(Nullab), Source(Source) {}

  const Stmt *getNullabilitySource() const { return Source; }

  Nullability getValue() const { return Nullab; }

  void Profile(llvm::FoldingSetNodeID &ID) const {
    ID.AddInteger(static_cast<char>(Nullab));
    ID.AddPointer(Source);
  }

  void print(raw_ostream &Out) const {
    Out << getNullabilityString(Nullab) << "\n";
  }

private:
  Nullability Nullab;
  // Source is the expression which determined the nullability. For example in a
  // message like [nullable nonnull_returning] has nullable nullability, because
  // the receiver is nullable. Here the receiver will be the source of the
  // nullability. This is useful information when the diagnostics are generated.
  const Stmt *Source;
};

bool operator==(NullabilityState Lhs, NullabilityState Rhs) {
  return Lhs.getValue() == Rhs.getValue() &&
         Lhs.getNullabilitySource() == Rhs.getNullabilitySource();
}

} // end anonymous namespace

REGISTER_MAP_WITH_PROGRAMSTATE(NullabilityMap, const MemRegion *,
                               NullabilityState)

// We say "the nullability type invariant is violated" when a location with a
// non-null type contains NULL or a function with a non-null return type returns
// NULL. Violations of the nullability type invariant can be detected either
// directly (for example, when NULL is passed as an argument to a nonnull
// parameter) or indirectly (for example, when, inside a function, the
// programmer defensively checks whether a nonnull parameter contains NULL and
// finds that it does).
//
// As a matter of policy, the nullability checker typically warns on direct
// violations of the nullability invariant (although it uses various
// heuristics to suppress warnings in some cases) but will not warn if the
// invariant has already been violated along the path (either directly or
// indirectly). As a practical matter, this prevents the analyzer from
// (1) warning on defensive code paths where a nullability precondition is
// determined to have been violated, (2) warning additional times after an
// initial direct violation has been discovered, and (3) warning after a direct
// violation that has been implicitly or explicitly suppressed (for
// example, with a cast of NULL to _Nonnull). In essence, once an invariant
// violation is detected on a path, this checker will be essentially turned off
// for the rest of the analysis
//
// The analyzer takes this approach (rather than generating a sink node) to
// ensure coverage of defensive paths, which may be important for backwards
// compatibility in codebases that were developed without nullability in mind.
REGISTER_TRAIT_WITH_PROGRAMSTATE(InvariantViolated, bool)

enum class NullConstraint { IsNull, IsNotNull, Unknown };

static NullConstraint getNullConstraint(DefinedOrUnknownSVal Val,
                                        ProgramStateRef State) {
  ConditionTruthVal Nullness = State->isNull(Val);
  if (Nullness.isConstrainedFalse())
    return NullConstraint::IsNotNull;
  if (Nullness.isConstrainedTrue())
    return NullConstraint::IsNull;
  return NullConstraint::Unknown;
}

const SymbolicRegion *
NullabilityChecker::getTrackRegion(SVal Val, bool CheckSuperRegion) const {
  if (!NeedTracking)
    return nullptr;

  auto RegionSVal = Val.getAs<loc::MemRegionVal>();
  if (!RegionSVal)
    return nullptr;

  const MemRegion *Region = RegionSVal->getRegion();

  if (CheckSuperRegion) {
    if (auto FieldReg = Region->getAs<FieldRegion>())
      return dyn_cast<SymbolicRegion>(FieldReg->getSuperRegion());
    if (auto ElementReg = Region->getAs<ElementRegion>())
      return dyn_cast<SymbolicRegion>(ElementReg->getSuperRegion());
  }

  return dyn_cast<SymbolicRegion>(Region);
}

PathDiagnosticPieceRef NullabilityChecker::NullabilityBugVisitor::VisitNode(
    const ExplodedNode *N, BugReporterContext &BRC,
    PathSensitiveBugReport &BR) {
  ProgramStateRef State = N->getState();
  ProgramStateRef StatePrev = N->getFirstPred()->getState();

  const NullabilityState *TrackedNullab = State->get<NullabilityMap>(Region);
  const NullabilityState *TrackedNullabPrev =
      StatePrev->get<NullabilityMap>(Region);
  if (!TrackedNullab)
    return nullptr;

  if (TrackedNullabPrev &&
      TrackedNullabPrev->getValue() == TrackedNullab->getValue())
    return nullptr;

  // Retrieve the associated statement.
  const Stmt *S = TrackedNullab->getNullabilitySource();
  if (!S || S->getBeginLoc().isInvalid()) {
    S = N->getStmtForDiagnostics();
  }

  if (!S)
    return nullptr;

  std::string InfoText =
      (llvm::Twine("Nullability '") +
       getNullabilityString(TrackedNullab->getValue()) + "' is inferred")
          .str();

  // Generate the extra diagnostic.
  PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
                             N->getLocationContext());
  return std::make_shared<PathDiagnosticEventPiece>(Pos, InfoText, true);
}

/// Returns true when the value stored at the given location has been
/// constrained to null after being passed through an object of nonnnull type.
static bool checkValueAtLValForInvariantViolation(ProgramStateRef State,
                                                  SVal LV, QualType T) {
  if (getNullabilityAnnotation(T) != Nullability::Nonnull)
    return false;

  auto RegionVal = LV.getAs<loc::MemRegionVal>();
  if (!RegionVal)
    return false;

  // If the value was constrained to null *after* it was passed through that
  // location, it could not have been a concrete pointer *when* it was passed.
  // In that case we would have handled the situation when the value was
  // bound to that location, by emitting (or not emitting) a report.
  // Therefore we are only interested in symbolic regions that can be either
  // null or non-null depending on the value of their respective symbol.
  auto StoredVal = State->getSVal(*RegionVal).getAs<loc::MemRegionVal>();
  if (!StoredVal || !isa<SymbolicRegion>(StoredVal->getRegion()))
    return false;

  if (getNullConstraint(*StoredVal, State) == NullConstraint::IsNull)
    return true;

  return false;
}

static bool
checkParamsForPreconditionViolation(ArrayRef<ParmVarDecl *> Params,
                                    ProgramStateRef State,
                                    const LocationContext *LocCtxt) {
  for (const auto *ParamDecl : Params) {
    if (ParamDecl->isParameterPack())
      break;

    SVal LV = State->getLValue(ParamDecl, LocCtxt);
    if (checkValueAtLValForInvariantViolation(State, LV,
                                              ParamDecl->getType())) {
      return true;
    }
  }
  return false;
}

static bool
checkSelfIvarsForInvariantViolation(ProgramStateRef State,
                                    const LocationContext *LocCtxt) {
  auto *MD = dyn_cast<ObjCMethodDecl>(LocCtxt->getDecl());
  if (!MD || !MD->isInstanceMethod())
    return false;

  const ImplicitParamDecl *SelfDecl = LocCtxt->getSelfDecl();
  if (!SelfDecl)
    return false;

  SVal SelfVal = State->getSVal(State->getRegion(SelfDecl, LocCtxt));

  const ObjCObjectPointerType *SelfType =
      dyn_cast<ObjCObjectPointerType>(SelfDecl->getType());
  if (!SelfType)
    return false;

  const ObjCInterfaceDecl *ID = SelfType->getInterfaceDecl();
  if (!ID)
    return false;

  for (const auto *IvarDecl : ID->ivars()) {
    SVal LV = State->getLValue(IvarDecl, SelfVal);
    if (checkValueAtLValForInvariantViolation(State, LV, IvarDecl->getType())) {
      return true;
    }
  }
  return false;
}

static bool checkInvariantViolation(ProgramStateRef State, ExplodedNode *N,
                                    CheckerContext &C) {
  if (State->get<InvariantViolated>())
    return true;

  const LocationContext *LocCtxt = C.getLocationContext();
  const Decl *D = LocCtxt->getDecl();
  if (!D)
    return false;

  ArrayRef<ParmVarDecl*> Params;
  if (const auto *BD = dyn_cast<BlockDecl>(D))
    Params = BD->parameters();
  else if (const auto *FD = dyn_cast<FunctionDecl>(D))
    Params = FD->parameters();
  else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
    Params = MD->parameters();
  else
    return false;

  if (checkParamsForPreconditionViolation(Params, State, LocCtxt) ||
      checkSelfIvarsForInvariantViolation(State, LocCtxt)) {
    if (!N->isSink())
      C.addTransition(State->set<InvariantViolated>(true), N);
    return true;
  }
  return false;
}

void NullabilityChecker::reportBugIfInvariantHolds(
    StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N,
    const MemRegion *Region, CheckerContext &C, const Stmt *ValueExpr,
    bool SuppressPath) const {
  ProgramStateRef OriginalState = N->getState();

  if (checkInvariantViolation(OriginalState, N, C))
    return;
  if (SuppressPath) {
    OriginalState = OriginalState->set<InvariantViolated>(true);
    N = C.addTransition(OriginalState, N);
  }

  reportBug(Msg, Error, CK, N, Region, C.getBugReporter(), ValueExpr);
}

/// Cleaning up the program state.
void NullabilityChecker::checkDeadSymbols(SymbolReaper &SR,
                                          CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  NullabilityMapTy Nullabilities = State->get<NullabilityMap>();
  for (NullabilityMapTy::iterator I = Nullabilities.begin(),
                                  E = Nullabilities.end();
       I != E; ++I) {
    const auto *Region = I->first->getAs<SymbolicRegion>();
    assert(Region && "Non-symbolic region is tracked.");
    if (SR.isDead(Region->getSymbol())) {
      State = State->remove<NullabilityMap>(I->first);
    }
  }
  // When one of the nonnull arguments are constrained to be null, nullability
  // preconditions are violated. It is not enough to check this only when we
  // actually report an error, because at that time interesting symbols might be
  // reaped.
  if (checkInvariantViolation(State, C.getPredecessor(), C))
    return;
  C.addTransition(State);
}

/// This callback triggers when a pointer is dereferenced and the analyzer does
/// not know anything about the value of that pointer. When that pointer is
/// nullable, this code emits a warning.
void NullabilityChecker::checkEvent(ImplicitNullDerefEvent Event) const {
  if (Event.SinkNode->getState()->get<InvariantViolated>())
    return;

  const MemRegion *Region =
      getTrackRegion(Event.Location, /*CheckSuperRegion=*/true);
  if (!Region)
    return;

  ProgramStateRef State = Event.SinkNode->getState();
  const NullabilityState *TrackedNullability =
      State->get<NullabilityMap>(Region);

  if (!TrackedNullability)
    return;

  if (ChecksEnabled[CK_NullableDereferenced] &&
      TrackedNullability->getValue() == Nullability::Nullable) {
    BugReporter &BR = *Event.BR;
    // Do not suppress errors on defensive code paths, because dereferencing
    // a nullable pointer is always an error.
    if (Event.IsDirectDereference)
      reportBug("Nullable pointer is dereferenced",
                ErrorKind::NullableDereferenced, CK_NullableDereferenced,
                Event.SinkNode, Region, BR);
    else {
      reportBug("Nullable pointer is passed to a callee that requires a "
                "non-null",
                ErrorKind::NullablePassedToNonnull, CK_NullableDereferenced,
                Event.SinkNode, Region, BR);
    }
  }
}

// Whenever we see a load from a typed memory region that's been annotated as
// 'nonnull', we want to trust the user on that and assume that it is is indeed
// non-null.
//
// We do so even if the value is known to have been assigned to null.
// The user should be warned on assigning the null value to a non-null pointer
// as opposed to warning on the later dereference of this pointer.
//
// \code
//   int * _Nonnull var = 0; // we want to warn the user here...
//   // . . .
//   *var = 42;              // ...and not here
// \endcode
void NullabilityChecker::checkLocation(SVal Location, bool IsLoad,
                                       const Stmt *S,
                                       CheckerContext &Context) const {
  // We should care only about loads.
  // The main idea is to add a constraint whenever we're loading a value from
  // an annotated pointer type.
  if (!IsLoad)
    return;

  // Annotations that we want to consider make sense only for types.
  const auto *Region =
      dyn_cast_or_null<TypedValueRegion>(Location.getAsRegion());
  if (!Region)
    return;

  ProgramStateRef State = Context.getState();

  auto StoredVal = State->getSVal(Region).getAs<loc::MemRegionVal>();
  if (!StoredVal)
    return;

  Nullability NullabilityOfTheLoadedValue =
      getNullabilityAnnotation(Region->getValueType());

  if (NullabilityOfTheLoadedValue == Nullability::Nonnull) {
    // It doesn't matter what we think about this particular pointer, it should
    // be considered non-null as annotated by the developer.
    if (ProgramStateRef NewState = State->assume(*StoredVal, true)) {
      Context.addTransition(NewState);
    }
  }
}

/// Find the outermost subexpression of E that is not an implicit cast.
/// This looks through the implicit casts to _Nonnull that ARC adds to
/// return expressions of ObjC types when the return type of the function or
/// method is non-null but the express is not.
static const Expr *lookThroughImplicitCasts(const Expr *E) {
  return E->IgnoreImpCasts();
}

/// This method check when nullable pointer or null value is returned from a
/// function that has nonnull return type.
void NullabilityChecker::checkPreStmt(const ReturnStmt *S,
                                      CheckerContext &C) const {
  auto RetExpr = S->getRetValue();
  if (!RetExpr)
    return;

  if (!RetExpr->getType()->isAnyPointerType())
    return;

  ProgramStateRef State = C.getState();
  if (State->get<InvariantViolated>())
    return;

  auto RetSVal = C.getSVal(S).getAs<DefinedOrUnknownSVal>();
  if (!RetSVal)
    return;

  bool InSuppressedMethodFamily = false;

  QualType RequiredRetType;
  AnalysisDeclContext *DeclCtxt =
      C.getLocationContext()->getAnalysisDeclContext();
  const Decl *D = DeclCtxt->getDecl();
  if (auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
    // HACK: This is a big hammer to avoid warning when there are defensive
    // nil checks in -init and -copy methods. We should add more sophisticated
    // logic here to suppress on common defensive idioms but still
    // warn when there is a likely problem.
    ObjCMethodFamily Family = MD->getMethodFamily();
    if (OMF_init == Family || OMF_copy == Family || OMF_mutableCopy == Family)
      InSuppressedMethodFamily = true;

    RequiredRetType = MD->getReturnType();
  } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
    RequiredRetType = FD->getReturnType();
  } else {
    return;
  }

  NullConstraint Nullness = getNullConstraint(*RetSVal, State);

  Nullability RequiredNullability = getNullabilityAnnotation(RequiredRetType);

  // If the returned value is null but the type of the expression
  // generating it is nonnull then we will suppress the diagnostic.
  // This enables explicit suppression when returning a nil literal in a
  // function with a _Nonnull return type:
  //    return (NSString * _Nonnull)0;
  Nullability RetExprTypeLevelNullability =
        getNullabilityAnnotation(lookThroughImplicitCasts(RetExpr)->getType());

  bool NullReturnedFromNonNull = (RequiredNullability == Nullability::Nonnull &&
                                  Nullness == NullConstraint::IsNull);
  if (ChecksEnabled[CK_NullReturnedFromNonnull] && NullReturnedFromNonNull &&
      RetExprTypeLevelNullability != Nullability::Nonnull &&
      !InSuppressedMethodFamily && C.getLocationContext()->inTopFrame()) {
    static CheckerProgramPointTag Tag(this, "NullReturnedFromNonnull");
    ExplodedNode *N = C.generateErrorNode(State, &Tag);
    if (!N)
      return;

    SmallString<256> SBuf;
    llvm::raw_svector_ostream OS(SBuf);
    OS << (RetExpr->getType()->isObjCObjectPointerType() ? "nil" : "Null");
    OS << " returned from a " << C.getDeclDescription(D) <<
          " that is expected to return a non-null value";
    reportBugIfInvariantHolds(OS.str(), ErrorKind::NilReturnedToNonnull,
                              CK_NullReturnedFromNonnull, N, nullptr, C,
                              RetExpr);
    return;
  }

  // If null was returned from a non-null function, mark the nullability
  // invariant as violated even if the diagnostic was suppressed.
  if (NullReturnedFromNonNull) {
    State = State->set<InvariantViolated>(true);
    C.addTransition(State);
    return;
  }

  const MemRegion *Region = getTrackRegion(*RetSVal);
  if (!Region)
    return;

  const NullabilityState *TrackedNullability =
      State->get<NullabilityMap>(Region);
  if (TrackedNullability) {
    Nullability TrackedNullabValue = TrackedNullability->getValue();
    if (ChecksEnabled[CK_NullableReturnedFromNonnull] &&
        Nullness != NullConstraint::IsNotNull &&
        TrackedNullabValue == Nullability::Nullable &&
        RequiredNullability == Nullability::Nonnull) {
      static CheckerProgramPointTag Tag(this, "NullableReturnedFromNonnull");
      ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);

      SmallString<256> SBuf;
      llvm::raw_svector_ostream OS(SBuf);
      OS << "Nullable pointer is returned from a " << C.getDeclDescription(D) <<
            " that is expected to return a non-null value";

      reportBugIfInvariantHolds(OS.str(), ErrorKind::NullableReturnedToNonnull,
                                CK_NullableReturnedFromNonnull, N, Region, C);
    }
    return;
  }
  if (RequiredNullability == Nullability::Nullable) {
    State = State->set<NullabilityMap>(Region,
                                       NullabilityState(RequiredNullability,
                                                        S));
    C.addTransition(State);
  }
}

/// This callback warns when a nullable pointer or a null value is passed to a
/// function that expects its argument to be nonnull.
void NullabilityChecker::checkPreCall(const CallEvent &Call,
                                      CheckerContext &C) const {
  if (!Call.getDecl())
    return;

  ProgramStateRef State = C.getState();
  if (State->get<InvariantViolated>())
    return;

  ProgramStateRef OrigState = State;

  unsigned Idx = 0;
  for (const ParmVarDecl *Param : Call.parameters()) {
    if (Param->isParameterPack())
      break;

    if (Idx >= Call.getNumArgs())
      break;

    const Expr *ArgExpr = Call.getArgExpr(Idx);
    auto ArgSVal = Call.getArgSVal(Idx++).getAs<DefinedOrUnknownSVal>();
    if (!ArgSVal)
      continue;

    if (!Param->getType()->isAnyPointerType() &&
        !Param->getType()->isReferenceType())
      continue;

    NullConstraint Nullness = getNullConstraint(*ArgSVal, State);

    Nullability RequiredNullability =
        getNullabilityAnnotation(Param->getType());
    Nullability ArgExprTypeLevelNullability =
        getNullabilityAnnotation(ArgExpr->getType());

    unsigned ParamIdx = Param->getFunctionScopeIndex() + 1;

    if (ChecksEnabled[CK_NullPassedToNonnull] &&
        Nullness == NullConstraint::IsNull &&
        ArgExprTypeLevelNullability != Nullability::Nonnull &&
        RequiredNullability == Nullability::Nonnull &&
        isDiagnosableCall(Call)) {
      ExplodedNode *N = C.generateErrorNode(State);
      if (!N)
        return;

      SmallString<256> SBuf;
      llvm::raw_svector_ostream OS(SBuf);
      OS << (Param->getType()->isObjCObjectPointerType() ? "nil" : "Null");
      OS << " passed to a callee that requires a non-null " << ParamIdx
         << llvm::getOrdinalSuffix(ParamIdx) << " parameter";
      reportBugIfInvariantHolds(OS.str(), ErrorKind::NilPassedToNonnull,
                                CK_NullPassedToNonnull, N, nullptr, C, ArgExpr,
                                /*SuppressPath=*/false);
      return;
    }

    const MemRegion *Region = getTrackRegion(*ArgSVal);
    if (!Region)
      continue;

    const NullabilityState *TrackedNullability =
        State->get<NullabilityMap>(Region);

    if (TrackedNullability) {
      if (Nullness == NullConstraint::IsNotNull ||
          TrackedNullability->getValue() != Nullability::Nullable)
        continue;

      if (ChecksEnabled[CK_NullablePassedToNonnull] &&
          RequiredNullability == Nullability::Nonnull &&
          isDiagnosableCall(Call)) {
        ExplodedNode *N = C.addTransition(State);
        SmallString<256> SBuf;
        llvm::raw_svector_ostream OS(SBuf);
        OS << "Nullable pointer is passed to a callee that requires a non-null "
           << ParamIdx << llvm::getOrdinalSuffix(ParamIdx) << " parameter";
        reportBugIfInvariantHolds(OS.str(), ErrorKind::NullablePassedToNonnull,
                                  CK_NullablePassedToNonnull, N, Region, C,
                                  ArgExpr, /*SuppressPath=*/true);
        return;
      }
      if (ChecksEnabled[CK_NullableDereferenced] &&
          Param->getType()->isReferenceType()) {
        ExplodedNode *N = C.addTransition(State);
        reportBugIfInvariantHolds("Nullable pointer is dereferenced",
                                  ErrorKind::NullableDereferenced,
                                  CK_NullableDereferenced, N, Region, C,
                                  ArgExpr, /*SuppressPath=*/true);
        return;
      }
      continue;
    }
  }
  if (State != OrigState)
    C.addTransition(State);
}

/// Suppress the nullability warnings for some functions.
void NullabilityChecker::checkPostCall(const CallEvent &Call,
                                       CheckerContext &C) const {
  auto Decl = Call.getDecl();
  if (!Decl)
    return;
  // ObjC Messages handles in a different callback.
  if (Call.getKind() == CE_ObjCMessage)
    return;
  const FunctionType *FuncType = Decl->getFunctionType();
  if (!FuncType)
    return;
  QualType ReturnType = FuncType->getReturnType();
  if (!ReturnType->isAnyPointerType())
    return;
  ProgramStateRef State = C.getState();
  if (State->get<InvariantViolated>())
    return;

  const MemRegion *Region = getTrackRegion(Call.getReturnValue());
  if (!Region)
    return;

  // CG headers are misannotated. Do not warn for symbols that are the results
  // of CG calls.
  const SourceManager &SM = C.getSourceManager();
  StringRef FilePath = SM.getFilename(SM.getSpellingLoc(Decl->getBeginLoc()));
  if (llvm::sys::path::filename(FilePath).startswith("CG")) {
    State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
    C.addTransition(State);
    return;
  }

  const NullabilityState *TrackedNullability =
      State->get<NullabilityMap>(Region);

  if (!TrackedNullability &&
      getNullabilityAnnotation(ReturnType) == Nullability::Nullable) {
    State = State->set<NullabilityMap>(Region, Nullability::Nullable);
    C.addTransition(State);
  }
}

static Nullability getReceiverNullability(const ObjCMethodCall &M,
                                          ProgramStateRef State) {
  if (M.isReceiverSelfOrSuper()) {
    // For super and super class receivers we assume that the receiver is
    // nonnull.
    return Nullability::Nonnull;
  }
  // Otherwise look up nullability in the state.
  SVal Receiver = M.getReceiverSVal();
  if (auto DefOrUnknown = Receiver.getAs<DefinedOrUnknownSVal>()) {
    // If the receiver is constrained to be nonnull, assume that it is nonnull
    // regardless of its type.
    NullConstraint Nullness = getNullConstraint(*DefOrUnknown, State);
    if (Nullness == NullConstraint::IsNotNull)
      return Nullability::Nonnull;
  }
  auto ValueRegionSVal = Receiver.getAs<loc::MemRegionVal>();
  if (ValueRegionSVal) {
    const MemRegion *SelfRegion = ValueRegionSVal->getRegion();
    assert(SelfRegion);

    const NullabilityState *TrackedSelfNullability =
        State->get<NullabilityMap>(SelfRegion);
    if (TrackedSelfNullability)
      return TrackedSelfNullability->getValue();
  }
  return Nullability::Unspecified;
}

/// Calculate the nullability of the result of a message expr based on the
/// nullability of the receiver, the nullability of the return value, and the
/// constraints.
void NullabilityChecker::checkPostObjCMessage(const ObjCMethodCall &M,
                                              CheckerContext &C) const {
  auto Decl = M.getDecl();
  if (!Decl)
    return;
  QualType RetType = Decl->getReturnType();
  if (!RetType->isAnyPointerType())
    return;

  ProgramStateRef State = C.getState();
  if (State->get<InvariantViolated>())
    return;

  const MemRegion *ReturnRegion = getTrackRegion(M.getReturnValue());
  if (!ReturnRegion)
    return;

  auto Interface = Decl->getClassInterface();
  auto Name = Interface ? Interface->getName() : "";
  // In order to reduce the noise in the diagnostics generated by this checker,
  // some framework and programming style based heuristics are used. These
  // heuristics are for Cocoa APIs which have NS prefix.
  if (Name.startswith("NS")) {
    // Developers rely on dynamic invariants such as an item should be available
    // in a collection, or a collection is not empty often. Those invariants can
    // not be inferred by any static analysis tool. To not to bother the users
    // with too many false positives, every item retrieval function should be
    // ignored for collections. The instance methods of dictionaries in Cocoa
    // are either item retrieval related or not interesting nullability wise.
    // Using this fact, to keep the code easier to read just ignore the return
    // value of every instance method of dictionaries.
    if (M.isInstanceMessage() && Name.contains("Dictionary")) {
      State =
          State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted);
      C.addTransition(State);
      return;
    }
    // For similar reasons ignore some methods of Cocoa arrays.
    StringRef FirstSelectorSlot = M.getSelector().getNameForSlot(0);
    if (Name.contains("Array") &&
        (FirstSelectorSlot == "firstObject" ||
         FirstSelectorSlot == "lastObject")) {
      State =
          State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted);
      C.addTransition(State);
      return;
    }

    // Encoding related methods of string should not fail when lossless
    // encodings are used. Using lossless encodings is so frequent that ignoring
    // this class of methods reduced the emitted diagnostics by about 30% on
    // some projects (and all of that was false positives).
    if (Name.contains("String")) {
      for (auto Param : M.parameters()) {
        if (Param->getName() == "encoding") {
          State = State->set<NullabilityMap>(ReturnRegion,
                                             Nullability::Contradicted);
          C.addTransition(State);
          return;
        }
      }
    }
  }

  const ObjCMessageExpr *Message = M.getOriginExpr();
  Nullability SelfNullability = getReceiverNullability(M, State);

  const NullabilityState *NullabilityOfReturn =
      State->get<NullabilityMap>(ReturnRegion);

  if (NullabilityOfReturn) {
    // When we have a nullability tracked for the return value, the nullability
    // of the expression will be the most nullable of the receiver and the
    // return value.
    Nullability RetValTracked = NullabilityOfReturn->getValue();
    Nullability ComputedNullab =
        getMostNullable(RetValTracked, SelfNullability);
    if (ComputedNullab != RetValTracked &&
        ComputedNullab != Nullability::Unspecified) {
      const Stmt *NullabilitySource =
          ComputedNullab == RetValTracked
              ? NullabilityOfReturn->getNullabilitySource()
              : Message->getInstanceReceiver();
      State = State->set<NullabilityMap>(
          ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource));
      C.addTransition(State);
    }
    return;
  }

  // No tracked information. Use static type information for return value.
  Nullability RetNullability = getNullabilityAnnotation(RetType);

  // Properties might be computed. For this reason the static analyzer creates a
  // new symbol each time an unknown property  is read. To avoid false pozitives
  // do not treat unknown properties as nullable, even when they explicitly
  // marked nullable.
  if (M.getMessageKind() == OCM_PropertyAccess && !C.wasInlined)
    RetNullability = Nullability::Nonnull;

  Nullability ComputedNullab = getMostNullable(RetNullability, SelfNullability);
  if (ComputedNullab == Nullability::Nullable) {
    const Stmt *NullabilitySource = ComputedNullab == RetNullability
                                        ? Message
                                        : Message->getInstanceReceiver();
    State = State->set<NullabilityMap>(
        ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource));
    C.addTransition(State);
  }
}

/// Explicit casts are trusted. If there is a disagreement in the nullability
/// annotations in the destination and the source or '0' is casted to nonnull
/// track the value as having contraditory nullability. This will allow users to
/// suppress warnings.
void NullabilityChecker::checkPostStmt(const ExplicitCastExpr *CE,
                                       CheckerContext &C) const {
  QualType OriginType = CE->getSubExpr()->getType();
  QualType DestType = CE->getType();
  if (!OriginType->isAnyPointerType())
    return;
  if (!DestType->isAnyPointerType())
    return;

  ProgramStateRef State = C.getState();
  if (State->get<InvariantViolated>())
    return;

  Nullability DestNullability = getNullabilityAnnotation(DestType);

  // No explicit nullability in the destination type, so this cast does not
  // change the nullability.
  if (DestNullability == Nullability::Unspecified)
    return;

  auto RegionSVal = C.getSVal(CE).getAs<DefinedOrUnknownSVal>();
  const MemRegion *Region = getTrackRegion(*RegionSVal);
  if (!Region)
    return;

  // When 0 is converted to nonnull mark it as contradicted.
  if (DestNullability == Nullability::Nonnull) {
    NullConstraint Nullness = getNullConstraint(*RegionSVal, State);
    if (Nullness == NullConstraint::IsNull) {
      State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
      C.addTransition(State);
      return;
    }
  }

  const NullabilityState *TrackedNullability =
      State->get<NullabilityMap>(Region);

  if (!TrackedNullability) {
    if (DestNullability != Nullability::Nullable)
      return;
    State = State->set<NullabilityMap>(Region,
                                       NullabilityState(DestNullability, CE));
    C.addTransition(State);
    return;
  }

  if (TrackedNullability->getValue() != DestNullability &&
      TrackedNullability->getValue() != Nullability::Contradicted) {
    State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
    C.addTransition(State);
  }
}

/// For a given statement performing a bind, attempt to syntactically
/// match the expression resulting in the bound value.
static const Expr * matchValueExprForBind(const Stmt *S) {
  // For `x = e` the value expression is the right-hand side.
  if (auto *BinOp = dyn_cast<BinaryOperator>(S)) {
    if (BinOp->getOpcode() == BO_Assign)
      return BinOp->getRHS();
  }

  // For `int x = e` the value expression is the initializer.
  if (auto *DS = dyn_cast<DeclStmt>(S))  {
    if (DS->isSingleDecl()) {
      auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
      if (!VD)
        return nullptr;

      if (const Expr *Init = VD->getInit())
        return Init;
    }
  }

  return nullptr;
}

/// Returns true if \param S is a DeclStmt for a local variable that
/// ObjC automated reference counting initialized with zero.
static bool isARCNilInitializedLocal(CheckerContext &C, const Stmt *S) {
  // We suppress diagnostics for ARC zero-initialized _Nonnull locals. This
  // prevents false positives when a _Nonnull local variable cannot be
  // initialized with an initialization expression:
  //    NSString * _Nonnull s; // no-warning
  //    @autoreleasepool {
  //      s = ...
  //    }
  //
  // FIXME: We should treat implicitly zero-initialized _Nonnull locals as
  // uninitialized in Sema's UninitializedValues analysis to warn when a use of
  // the zero-initialized definition will unexpectedly yield nil.

  // Locals are only zero-initialized when automated reference counting
  // is turned on.
  if (!C.getASTContext().getLangOpts().ObjCAutoRefCount)
    return false;

  auto *DS = dyn_cast<DeclStmt>(S);
  if (!DS || !DS->isSingleDecl())
    return false;

  auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
  if (!VD)
    return false;

  // Sema only zero-initializes locals with ObjCLifetimes.
  if(!VD->getType().getQualifiers().hasObjCLifetime())
    return false;

  const Expr *Init = VD->getInit();
  assert(Init && "ObjC local under ARC without initializer");

  // Return false if the local is explicitly initialized (e.g., with '= nil').
  if (!isa<ImplicitValueInitExpr>(Init))
    return false;

  return true;
}

/// Propagate the nullability information through binds and warn when nullable
/// pointer or null symbol is assigned to a pointer with a nonnull type.
void NullabilityChecker::checkBind(SVal L, SVal V, const Stmt *S,
                                   CheckerContext &C) const {
  const TypedValueRegion *TVR =
      dyn_cast_or_null<TypedValueRegion>(L.getAsRegion());
  if (!TVR)
    return;

  QualType LocType = TVR->getValueType();
  if (!LocType->isAnyPointerType())
    return;

  ProgramStateRef State = C.getState();
  if (State->get<InvariantViolated>())
    return;

  auto ValDefOrUnknown = V.getAs<DefinedOrUnknownSVal>();
  if (!ValDefOrUnknown)
    return;

  NullConstraint RhsNullness = getNullConstraint(*ValDefOrUnknown, State);

  Nullability ValNullability = Nullability::Unspecified;
  if (SymbolRef Sym = ValDefOrUnknown->getAsSymbol())
    ValNullability = getNullabilityAnnotation(Sym->getType());

  Nullability LocNullability = getNullabilityAnnotation(LocType);

  // If the type of the RHS expression is nonnull, don't warn. This
  // enables explicit suppression with a cast to nonnull.
  Nullability ValueExprTypeLevelNullability = Nullability::Unspecified;
  const Expr *ValueExpr = matchValueExprForBind(S);
  if (ValueExpr) {
    ValueExprTypeLevelNullability =
      getNullabilityAnnotation(lookThroughImplicitCasts(ValueExpr)->getType());
  }

  bool NullAssignedToNonNull = (LocNullability == Nullability::Nonnull &&
                                RhsNullness == NullConstraint::IsNull);
  if (ChecksEnabled[CK_NullPassedToNonnull] && NullAssignedToNonNull &&
      ValNullability != Nullability::Nonnull &&
      ValueExprTypeLevelNullability != Nullability::Nonnull &&
      !isARCNilInitializedLocal(C, S)) {
    static CheckerProgramPointTag Tag(this, "NullPassedToNonnull");
    ExplodedNode *N = C.generateErrorNode(State, &Tag);
    if (!N)
      return;


    const Stmt *ValueStmt = S;
    if (ValueExpr)
      ValueStmt = ValueExpr;

    SmallString<256> SBuf;
    llvm::raw_svector_ostream OS(SBuf);
    OS << (LocType->isObjCObjectPointerType() ? "nil" : "Null");
    OS << " assigned to a pointer which is expected to have non-null value";
    reportBugIfInvariantHolds(OS.str(), ErrorKind::NilAssignedToNonnull,
                              CK_NullPassedToNonnull, N, nullptr, C, ValueStmt);
    return;
  }

  // If null was returned from a non-null function, mark the nullability
  // invariant as violated even if the diagnostic was suppressed.
  if (NullAssignedToNonNull) {
    State = State->set<InvariantViolated>(true);
    C.addTransition(State);
    return;
  }

  // Intentionally missing case: '0' is bound to a reference. It is handled by
  // the DereferenceChecker.

  const MemRegion *ValueRegion = getTrackRegion(*ValDefOrUnknown);
  if (!ValueRegion)
    return;

  const NullabilityState *TrackedNullability =
      State->get<NullabilityMap>(ValueRegion);

  if (TrackedNullability) {
    if (RhsNullness == NullConstraint::IsNotNull ||
        TrackedNullability->getValue() != Nullability::Nullable)
      return;
    if (ChecksEnabled[CK_NullablePassedToNonnull] &&
        LocNullability == Nullability::Nonnull) {
      static CheckerProgramPointTag Tag(this, "NullablePassedToNonnull");
      ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);
      reportBugIfInvariantHolds("Nullable pointer is assigned to a pointer "
                                "which is expected to have non-null value",
                                ErrorKind::NullableAssignedToNonnull,
                                CK_NullablePassedToNonnull, N, ValueRegion, C);
    }
    return;
  }

  const auto *BinOp = dyn_cast<BinaryOperator>(S);

  if (ValNullability == Nullability::Nullable) {
    // Trust the static information of the value more than the static
    // information on the location.
    const Stmt *NullabilitySource = BinOp ? BinOp->getRHS() : S;
    State = State->set<NullabilityMap>(
        ValueRegion, NullabilityState(ValNullability, NullabilitySource));
    C.addTransition(State);
    return;
  }

  if (LocNullability == Nullability::Nullable) {
    const Stmt *NullabilitySource = BinOp ? BinOp->getLHS() : S;
    State = State->set<NullabilityMap>(
        ValueRegion, NullabilityState(LocNullability, NullabilitySource));
    C.addTransition(State);
  }
}

void NullabilityChecker::printState(raw_ostream &Out, ProgramStateRef State,
                                    const char *NL, const char *Sep) const {

  NullabilityMapTy B = State->get<NullabilityMap>();

  if (State->get<InvariantViolated>())
    Out << Sep << NL
        << "Nullability invariant was violated, warnings suppressed." << NL;

  if (B.isEmpty())
    return;

  if (!State->get<InvariantViolated>())
    Out << Sep << NL;

  for (NullabilityMapTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
    Out << I->first << " : ";
    I->second.print(Out);
    Out << NL;
  }
}

void ento::registerNullabilityBase(CheckerManager &mgr) {
  mgr.registerChecker<NullabilityChecker>();
}

bool ento::shouldRegisterNullabilityBase(const CheckerManager &mgr) {
  return true;
}

#define REGISTER_CHECKER(name, trackingRequired)                               \
  void ento::register##name##Checker(CheckerManager &mgr) {                    \
    NullabilityChecker *checker = mgr.getChecker<NullabilityChecker>();        \
    checker->ChecksEnabled[NullabilityChecker::CK_##name] = true;              \
    checker->CheckNames[NullabilityChecker::CK_##name] =                       \
        mgr.getCurrentCheckerName();                                           \
    checker->NeedTracking = checker->NeedTracking || trackingRequired;         \
    checker->NoDiagnoseCallsToSystemHeaders =                                  \
        checker->NoDiagnoseCallsToSystemHeaders ||                             \
        mgr.getAnalyzerOptions().getCheckerBooleanOption(                      \
            checker, "NoDiagnoseCallsToSystemHeaders", true);                  \
  }                                                                            \
                                                                               \
  bool ento::shouldRegister##name##Checker(const CheckerManager &mgr) {        \
    return true;                                                               \
  }

// The checks are likely to be turned on by default and it is possible to do
// them without tracking any nullability related information. As an optimization
// no nullability information will be tracked when only these two checks are
// enables.
REGISTER_CHECKER(NullPassedToNonnull, false)
REGISTER_CHECKER(NullReturnedFromNonnull, false)

REGISTER_CHECKER(NullableDereferenced, true)
REGISTER_CHECKER(NullablePassedToNonnull, true)
REGISTER_CHECKER(NullableReturnedFromNonnull, true)