aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang14/lib/Sema/SemaOverload.cpp
blob: 3fa192cedfa3875e9c81e2d23dac0923eaa8a941 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides Sema routines for C++ overloading.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/ASTContext.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DependenceFlags.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/TypeOrdering.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/DiagnosticOptions.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Overload.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Template.h"
#include "clang/Sema/TemplateDeduction.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include <algorithm>
#include <cstdlib>

using namespace clang;
using namespace sema;

using AllowedExplicit = Sema::AllowedExplicit;

static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
  return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
    return P->hasAttr<PassObjectSizeAttr>();
  });
}

/// A convenience routine for creating a decayed reference to a function.
static ExprResult
CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
                      const Expr *Base, bool HadMultipleCandidates,
                      SourceLocation Loc = SourceLocation(),
                      const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
  if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
    return ExprError();
  // If FoundDecl is different from Fn (such as if one is a template
  // and the other a specialization), make sure DiagnoseUseOfDecl is
  // called on both.
  // FIXME: This would be more comprehensively addressed by modifying
  // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
  // being used.
  if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
    return ExprError();
  DeclRefExpr *DRE = new (S.Context)
      DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
  if (HadMultipleCandidates)
    DRE->setHadMultipleCandidates(true);

  S.MarkDeclRefReferenced(DRE, Base);
  if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) {
    if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
      S.ResolveExceptionSpec(Loc, FPT);
      DRE->setType(Fn->getType());
    }
  }
  return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
                             CK_FunctionToPointerDecay);
}

static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
                                 bool InOverloadResolution,
                                 StandardConversionSequence &SCS,
                                 bool CStyle,
                                 bool AllowObjCWritebackConversion);

static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
                                                 QualType &ToType,
                                                 bool InOverloadResolution,
                                                 StandardConversionSequence &SCS,
                                                 bool CStyle);
static OverloadingResult
IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
                        UserDefinedConversionSequence& User,
                        OverloadCandidateSet& Conversions,
                        AllowedExplicit AllowExplicit,
                        bool AllowObjCConversionOnExplicit);

static ImplicitConversionSequence::CompareKind
CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
                                   const StandardConversionSequence& SCS1,
                                   const StandardConversionSequence& SCS2);

static ImplicitConversionSequence::CompareKind
CompareQualificationConversions(Sema &S,
                                const StandardConversionSequence& SCS1,
                                const StandardConversionSequence& SCS2);

static ImplicitConversionSequence::CompareKind
CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
                                const StandardConversionSequence& SCS1,
                                const StandardConversionSequence& SCS2);

/// GetConversionRank - Retrieve the implicit conversion rank
/// corresponding to the given implicit conversion kind.
ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
  static const ImplicitConversionRank
    Rank[(int)ICK_Num_Conversion_Kinds] = {
    ICR_Exact_Match,
    ICR_Exact_Match,
    ICR_Exact_Match,
    ICR_Exact_Match,
    ICR_Exact_Match,
    ICR_Exact_Match,
    ICR_Promotion,
    ICR_Promotion,
    ICR_Promotion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_OCL_Scalar_Widening,
    ICR_Complex_Real_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Writeback_Conversion,
    ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
                     // it was omitted by the patch that added
                     // ICK_Zero_Event_Conversion
    ICR_C_Conversion,
    ICR_C_Conversion_Extension
  };
  return Rank[(int)Kind];
}

/// GetImplicitConversionName - Return the name of this kind of
/// implicit conversion.
static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
    "No conversion",
    "Lvalue-to-rvalue",
    "Array-to-pointer",
    "Function-to-pointer",
    "Function pointer conversion",
    "Qualification",
    "Integral promotion",
    "Floating point promotion",
    "Complex promotion",
    "Integral conversion",
    "Floating conversion",
    "Complex conversion",
    "Floating-integral conversion",
    "Pointer conversion",
    "Pointer-to-member conversion",
    "Boolean conversion",
    "Compatible-types conversion",
    "Derived-to-base conversion",
    "Vector conversion",
    "SVE Vector conversion",
    "Vector splat",
    "Complex-real conversion",
    "Block Pointer conversion",
    "Transparent Union Conversion",
    "Writeback conversion",
    "OpenCL Zero Event Conversion",
    "C specific type conversion",
    "Incompatible pointer conversion"
  };
  return Name[Kind];
}

/// StandardConversionSequence - Set the standard conversion
/// sequence to the identity conversion.
void StandardConversionSequence::setAsIdentityConversion() {
  First = ICK_Identity;
  Second = ICK_Identity;
  Third = ICK_Identity;
  DeprecatedStringLiteralToCharPtr = false;
  QualificationIncludesObjCLifetime = false;
  ReferenceBinding = false;
  DirectBinding = false;
  IsLvalueReference = true;
  BindsToFunctionLvalue = false;
  BindsToRvalue = false;
  BindsImplicitObjectArgumentWithoutRefQualifier = false;
  ObjCLifetimeConversionBinding = false;
  CopyConstructor = nullptr;
}

/// getRank - Retrieve the rank of this standard conversion sequence
/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
/// implicit conversions.
ImplicitConversionRank StandardConversionSequence::getRank() const {
  ImplicitConversionRank Rank = ICR_Exact_Match;
  if  (GetConversionRank(First) > Rank)
    Rank = GetConversionRank(First);
  if  (GetConversionRank(Second) > Rank)
    Rank = GetConversionRank(Second);
  if  (GetConversionRank(Third) > Rank)
    Rank = GetConversionRank(Third);
  return Rank;
}

/// isPointerConversionToBool - Determines whether this conversion is
/// a conversion of a pointer or pointer-to-member to bool. This is
/// used as part of the ranking of standard conversion sequences
/// (C++ 13.3.3.2p4).
bool StandardConversionSequence::isPointerConversionToBool() const {
  // Note that FromType has not necessarily been transformed by the
  // array-to-pointer or function-to-pointer implicit conversions, so
  // check for their presence as well as checking whether FromType is
  // a pointer.
  if (getToType(1)->isBooleanType() &&
      (getFromType()->isPointerType() ||
       getFromType()->isMemberPointerType() ||
       getFromType()->isObjCObjectPointerType() ||
       getFromType()->isBlockPointerType() ||
       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
    return true;

  return false;
}

/// isPointerConversionToVoidPointer - Determines whether this
/// conversion is a conversion of a pointer to a void pointer. This is
/// used as part of the ranking of standard conversion sequences (C++
/// 13.3.3.2p4).
bool
StandardConversionSequence::
isPointerConversionToVoidPointer(ASTContext& Context) const {
  QualType FromType = getFromType();
  QualType ToType = getToType(1);

  // Note that FromType has not necessarily been transformed by the
  // array-to-pointer implicit conversion, so check for its presence
  // and redo the conversion to get a pointer.
  if (First == ICK_Array_To_Pointer)
    FromType = Context.getArrayDecayedType(FromType);

  if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
      return ToPtrType->getPointeeType()->isVoidType();

  return false;
}

/// Skip any implicit casts which could be either part of a narrowing conversion
/// or after one in an implicit conversion.
static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx,
                                             const Expr *Converted) {
  // We can have cleanups wrapping the converted expression; these need to be
  // preserved so that destructors run if necessary.
  if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) {
    Expr *Inner =
        const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr()));
    return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(),
                                    EWC->getObjects());
  }

  while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
    switch (ICE->getCastKind()) {
    case CK_NoOp:
    case CK_IntegralCast:
    case CK_IntegralToBoolean:
    case CK_IntegralToFloating:
    case CK_BooleanToSignedIntegral:
    case CK_FloatingToIntegral:
    case CK_FloatingToBoolean:
    case CK_FloatingCast:
      Converted = ICE->getSubExpr();
      continue;

    default:
      return Converted;
    }
  }

  return Converted;
}

/// Check if this standard conversion sequence represents a narrowing
/// conversion, according to C++11 [dcl.init.list]p7.
///
/// \param Ctx  The AST context.
/// \param Converted  The result of applying this standard conversion sequence.
/// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
///        value of the expression prior to the narrowing conversion.
/// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
///        type of the expression prior to the narrowing conversion.
/// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
///        from floating point types to integral types should be ignored.
NarrowingKind StandardConversionSequence::getNarrowingKind(
    ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
    QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
  assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");

  // C++11 [dcl.init.list]p7:
  //   A narrowing conversion is an implicit conversion ...
  QualType FromType = getToType(0);
  QualType ToType = getToType(1);

  // A conversion to an enumeration type is narrowing if the conversion to
  // the underlying type is narrowing. This only arises for expressions of
  // the form 'Enum{init}'.
  if (auto *ET = ToType->getAs<EnumType>())
    ToType = ET->getDecl()->getIntegerType();

  switch (Second) {
  // 'bool' is an integral type; dispatch to the right place to handle it.
  case ICK_Boolean_Conversion:
    if (FromType->isRealFloatingType())
      goto FloatingIntegralConversion;
    if (FromType->isIntegralOrUnscopedEnumerationType())
      goto IntegralConversion;
    // -- from a pointer type or pointer-to-member type to bool, or
    return NK_Type_Narrowing;

  // -- from a floating-point type to an integer type, or
  //
  // -- from an integer type or unscoped enumeration type to a floating-point
  //    type, except where the source is a constant expression and the actual
  //    value after conversion will fit into the target type and will produce
  //    the original value when converted back to the original type, or
  case ICK_Floating_Integral:
  FloatingIntegralConversion:
    if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
      return NK_Type_Narrowing;
    } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
               ToType->isRealFloatingType()) {
      if (IgnoreFloatToIntegralConversion)
        return NK_Not_Narrowing;
      const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
      assert(Initializer && "Unknown conversion expression");

      // If it's value-dependent, we can't tell whether it's narrowing.
      if (Initializer->isValueDependent())
        return NK_Dependent_Narrowing;

      if (Optional<llvm::APSInt> IntConstantValue =
              Initializer->getIntegerConstantExpr(Ctx)) {
        // Convert the integer to the floating type.
        llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
        Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(),
                                llvm::APFloat::rmNearestTiesToEven);
        // And back.
        llvm::APSInt ConvertedValue = *IntConstantValue;
        bool ignored;
        Result.convertToInteger(ConvertedValue,
                                llvm::APFloat::rmTowardZero, &ignored);
        // If the resulting value is different, this was a narrowing conversion.
        if (*IntConstantValue != ConvertedValue) {
          ConstantValue = APValue(*IntConstantValue);
          ConstantType = Initializer->getType();
          return NK_Constant_Narrowing;
        }
      } else {
        // Variables are always narrowings.
        return NK_Variable_Narrowing;
      }
    }
    return NK_Not_Narrowing;

  // -- from long double to double or float, or from double to float, except
  //    where the source is a constant expression and the actual value after
  //    conversion is within the range of values that can be represented (even
  //    if it cannot be represented exactly), or
  case ICK_Floating_Conversion:
    if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
        Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
      // FromType is larger than ToType.
      const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);

      // If it's value-dependent, we can't tell whether it's narrowing.
      if (Initializer->isValueDependent())
        return NK_Dependent_Narrowing;

      if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
        // Constant!
        assert(ConstantValue.isFloat());
        llvm::APFloat FloatVal = ConstantValue.getFloat();
        // Convert the source value into the target type.
        bool ignored;
        llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
          Ctx.getFloatTypeSemantics(ToType),
          llvm::APFloat::rmNearestTiesToEven, &ignored);
        // If there was no overflow, the source value is within the range of
        // values that can be represented.
        if (ConvertStatus & llvm::APFloat::opOverflow) {
          ConstantType = Initializer->getType();
          return NK_Constant_Narrowing;
        }
      } else {
        return NK_Variable_Narrowing;
      }
    }
    return NK_Not_Narrowing;

  // -- from an integer type or unscoped enumeration type to an integer type
  //    that cannot represent all the values of the original type, except where
  //    the source is a constant expression and the actual value after
  //    conversion will fit into the target type and will produce the original
  //    value when converted back to the original type.
  case ICK_Integral_Conversion:
  IntegralConversion: {
    assert(FromType->isIntegralOrUnscopedEnumerationType());
    assert(ToType->isIntegralOrUnscopedEnumerationType());
    const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
    const unsigned FromWidth = Ctx.getIntWidth(FromType);
    const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
    const unsigned ToWidth = Ctx.getIntWidth(ToType);

    if (FromWidth > ToWidth ||
        (FromWidth == ToWidth && FromSigned != ToSigned) ||
        (FromSigned && !ToSigned)) {
      // Not all values of FromType can be represented in ToType.
      const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);

      // If it's value-dependent, we can't tell whether it's narrowing.
      if (Initializer->isValueDependent())
        return NK_Dependent_Narrowing;

      Optional<llvm::APSInt> OptInitializerValue;
      if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) {
        // Such conversions on variables are always narrowing.
        return NK_Variable_Narrowing;
      }
      llvm::APSInt &InitializerValue = *OptInitializerValue;
      bool Narrowing = false;
      if (FromWidth < ToWidth) {
        // Negative -> unsigned is narrowing. Otherwise, more bits is never
        // narrowing.
        if (InitializerValue.isSigned() && InitializerValue.isNegative())
          Narrowing = true;
      } else {
        // Add a bit to the InitializerValue so we don't have to worry about
        // signed vs. unsigned comparisons.
        InitializerValue = InitializerValue.extend(
          InitializerValue.getBitWidth() + 1);
        // Convert the initializer to and from the target width and signed-ness.
        llvm::APSInt ConvertedValue = InitializerValue;
        ConvertedValue = ConvertedValue.trunc(ToWidth);
        ConvertedValue.setIsSigned(ToSigned);
        ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
        ConvertedValue.setIsSigned(InitializerValue.isSigned());
        // If the result is different, this was a narrowing conversion.
        if (ConvertedValue != InitializerValue)
          Narrowing = true;
      }
      if (Narrowing) {
        ConstantType = Initializer->getType();
        ConstantValue = APValue(InitializerValue);
        return NK_Constant_Narrowing;
      }
    }
    return NK_Not_Narrowing;
  }

  default:
    // Other kinds of conversions are not narrowings.
    return NK_Not_Narrowing;
  }
}

/// dump - Print this standard conversion sequence to standard
/// error. Useful for debugging overloading issues.
LLVM_DUMP_METHOD void StandardConversionSequence::dump() const {
  raw_ostream &OS = llvm::errs();
  bool PrintedSomething = false;
  if (First != ICK_Identity) {
    OS << GetImplicitConversionName(First);
    PrintedSomething = true;
  }

  if (Second != ICK_Identity) {
    if (PrintedSomething) {
      OS << " -> ";
    }
    OS << GetImplicitConversionName(Second);

    if (CopyConstructor) {
      OS << " (by copy constructor)";
    } else if (DirectBinding) {
      OS << " (direct reference binding)";
    } else if (ReferenceBinding) {
      OS << " (reference binding)";
    }
    PrintedSomething = true;
  }

  if (Third != ICK_Identity) {
    if (PrintedSomething) {
      OS << " -> ";
    }
    OS << GetImplicitConversionName(Third);
    PrintedSomething = true;
  }

  if (!PrintedSomething) {
    OS << "No conversions required";
  }
}

/// dump - Print this user-defined conversion sequence to standard
/// error. Useful for debugging overloading issues.
void UserDefinedConversionSequence::dump() const {
  raw_ostream &OS = llvm::errs();
  if (Before.First || Before.Second || Before.Third) {
    Before.dump();
    OS << " -> ";
  }
  if (ConversionFunction)
    OS << '\'' << *ConversionFunction << '\'';
  else
    OS << "aggregate initialization";
  if (After.First || After.Second || After.Third) {
    OS << " -> ";
    After.dump();
  }
}

/// dump - Print this implicit conversion sequence to standard
/// error. Useful for debugging overloading issues.
void ImplicitConversionSequence::dump() const {
  raw_ostream &OS = llvm::errs();
  if (hasInitializerListContainerType())
    OS << "Worst list element conversion: ";
  switch (ConversionKind) {
  case StandardConversion:
    OS << "Standard conversion: ";
    Standard.dump();
    break;
  case UserDefinedConversion:
    OS << "User-defined conversion: ";
    UserDefined.dump();
    break;
  case EllipsisConversion:
    OS << "Ellipsis conversion";
    break;
  case AmbiguousConversion:
    OS << "Ambiguous conversion";
    break;
  case BadConversion:
    OS << "Bad conversion";
    break;
  }

  OS << "\n";
}

void AmbiguousConversionSequence::construct() {
  new (&conversions()) ConversionSet();
}

void AmbiguousConversionSequence::destruct() {
  conversions().~ConversionSet();
}

void
AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
  FromTypePtr = O.FromTypePtr;
  ToTypePtr = O.ToTypePtr;
  new (&conversions()) ConversionSet(O.conversions());
}

namespace {
  // Structure used by DeductionFailureInfo to store
  // template argument information.
  struct DFIArguments {
    TemplateArgument FirstArg;
    TemplateArgument SecondArg;
  };
  // Structure used by DeductionFailureInfo to store
  // template parameter and template argument information.
  struct DFIParamWithArguments : DFIArguments {
    TemplateParameter Param;
  };
  // Structure used by DeductionFailureInfo to store template argument
  // information and the index of the problematic call argument.
  struct DFIDeducedMismatchArgs : DFIArguments {
    TemplateArgumentList *TemplateArgs;
    unsigned CallArgIndex;
  };
  // Structure used by DeductionFailureInfo to store information about
  // unsatisfied constraints.
  struct CNSInfo {
    TemplateArgumentList *TemplateArgs;
    ConstraintSatisfaction Satisfaction;
  };
}

/// Convert from Sema's representation of template deduction information
/// to the form used in overload-candidate information.
DeductionFailureInfo
clang::MakeDeductionFailureInfo(ASTContext &Context,
                                Sema::TemplateDeductionResult TDK,
                                TemplateDeductionInfo &Info) {
  DeductionFailureInfo Result;
  Result.Result = static_cast<unsigned>(TDK);
  Result.HasDiagnostic = false;
  switch (TDK) {
  case Sema::TDK_Invalid:
  case Sema::TDK_InstantiationDepth:
  case Sema::TDK_TooManyArguments:
  case Sema::TDK_TooFewArguments:
  case Sema::TDK_MiscellaneousDeductionFailure:
  case Sema::TDK_CUDATargetMismatch:
    Result.Data = nullptr;
    break;

  case Sema::TDK_Incomplete:
  case Sema::TDK_InvalidExplicitArguments:
    Result.Data = Info.Param.getOpaqueValue();
    break;

  case Sema::TDK_DeducedMismatch:
  case Sema::TDK_DeducedMismatchNested: {
    // FIXME: Should allocate from normal heap so that we can free this later.
    auto *Saved = new (Context) DFIDeducedMismatchArgs;
    Saved->FirstArg = Info.FirstArg;
    Saved->SecondArg = Info.SecondArg;
    Saved->TemplateArgs = Info.take();
    Saved->CallArgIndex = Info.CallArgIndex;
    Result.Data = Saved;
    break;
  }

  case Sema::TDK_NonDeducedMismatch: {
    // FIXME: Should allocate from normal heap so that we can free this later.
    DFIArguments *Saved = new (Context) DFIArguments;
    Saved->FirstArg = Info.FirstArg;
    Saved->SecondArg = Info.SecondArg;
    Result.Data = Saved;
    break;
  }

  case Sema::TDK_IncompletePack:
    // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
  case Sema::TDK_Inconsistent:
  case Sema::TDK_Underqualified: {
    // FIXME: Should allocate from normal heap so that we can free this later.
    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
    Saved->Param = Info.Param;
    Saved->FirstArg = Info.FirstArg;
    Saved->SecondArg = Info.SecondArg;
    Result.Data = Saved;
    break;
  }

  case Sema::TDK_SubstitutionFailure:
    Result.Data = Info.take();
    if (Info.hasSFINAEDiagnostic()) {
      PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
          SourceLocation(), PartialDiagnostic::NullDiagnostic());
      Info.takeSFINAEDiagnostic(*Diag);
      Result.HasDiagnostic = true;
    }
    break;

  case Sema::TDK_ConstraintsNotSatisfied: {
    CNSInfo *Saved = new (Context) CNSInfo;
    Saved->TemplateArgs = Info.take();
    Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction;
    Result.Data = Saved;
    break;
  }

  case Sema::TDK_Success:
  case Sema::TDK_NonDependentConversionFailure:
    llvm_unreachable("not a deduction failure");
  }

  return Result;
}

void DeductionFailureInfo::Destroy() {
  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
  case Sema::TDK_Success:
  case Sema::TDK_Invalid:
  case Sema::TDK_InstantiationDepth:
  case Sema::TDK_Incomplete:
  case Sema::TDK_TooManyArguments:
  case Sema::TDK_TooFewArguments:
  case Sema::TDK_InvalidExplicitArguments:
  case Sema::TDK_CUDATargetMismatch:
  case Sema::TDK_NonDependentConversionFailure:
    break;

  case Sema::TDK_IncompletePack:
  case Sema::TDK_Inconsistent:
  case Sema::TDK_Underqualified:
  case Sema::TDK_DeducedMismatch:
  case Sema::TDK_DeducedMismatchNested:
  case Sema::TDK_NonDeducedMismatch:
    // FIXME: Destroy the data?
    Data = nullptr;
    break;

  case Sema::TDK_SubstitutionFailure:
    // FIXME: Destroy the template argument list?
    Data = nullptr;
    if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
      Diag->~PartialDiagnosticAt();
      HasDiagnostic = false;
    }
    break;

  case Sema::TDK_ConstraintsNotSatisfied:
    // FIXME: Destroy the template argument list?
    Data = nullptr;
    if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
      Diag->~PartialDiagnosticAt();
      HasDiagnostic = false;
    }
    break;

  // Unhandled
  case Sema::TDK_MiscellaneousDeductionFailure:
    break;
  }
}

PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
  if (HasDiagnostic)
    return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
  return nullptr;
}

TemplateParameter DeductionFailureInfo::getTemplateParameter() {
  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
  case Sema::TDK_Success:
  case Sema::TDK_Invalid:
  case Sema::TDK_InstantiationDepth:
  case Sema::TDK_TooManyArguments:
  case Sema::TDK_TooFewArguments:
  case Sema::TDK_SubstitutionFailure:
  case Sema::TDK_DeducedMismatch:
  case Sema::TDK_DeducedMismatchNested:
  case Sema::TDK_NonDeducedMismatch:
  case Sema::TDK_CUDATargetMismatch:
  case Sema::TDK_NonDependentConversionFailure:
  case Sema::TDK_ConstraintsNotSatisfied:
    return TemplateParameter();

  case Sema::TDK_Incomplete:
  case Sema::TDK_InvalidExplicitArguments:
    return TemplateParameter::getFromOpaqueValue(Data);

  case Sema::TDK_IncompletePack:
  case Sema::TDK_Inconsistent:
  case Sema::TDK_Underqualified:
    return static_cast<DFIParamWithArguments*>(Data)->Param;

  // Unhandled
  case Sema::TDK_MiscellaneousDeductionFailure:
    break;
  }

  return TemplateParameter();
}

TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
  case Sema::TDK_Success:
  case Sema::TDK_Invalid:
  case Sema::TDK_InstantiationDepth:
  case Sema::TDK_TooManyArguments:
  case Sema::TDK_TooFewArguments:
  case Sema::TDK_Incomplete:
  case Sema::TDK_IncompletePack:
  case Sema::TDK_InvalidExplicitArguments:
  case Sema::TDK_Inconsistent:
  case Sema::TDK_Underqualified:
  case Sema::TDK_NonDeducedMismatch:
  case Sema::TDK_CUDATargetMismatch:
  case Sema::TDK_NonDependentConversionFailure:
    return nullptr;

  case Sema::TDK_DeducedMismatch:
  case Sema::TDK_DeducedMismatchNested:
    return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;

  case Sema::TDK_SubstitutionFailure:
    return static_cast<TemplateArgumentList*>(Data);

  case Sema::TDK_ConstraintsNotSatisfied:
    return static_cast<CNSInfo*>(Data)->TemplateArgs;

  // Unhandled
  case Sema::TDK_MiscellaneousDeductionFailure:
    break;
  }

  return nullptr;
}

const TemplateArgument *DeductionFailureInfo::getFirstArg() {
  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
  case Sema::TDK_Success:
  case Sema::TDK_Invalid:
  case Sema::TDK_InstantiationDepth:
  case Sema::TDK_Incomplete:
  case Sema::TDK_TooManyArguments:
  case Sema::TDK_TooFewArguments:
  case Sema::TDK_InvalidExplicitArguments:
  case Sema::TDK_SubstitutionFailure:
  case Sema::TDK_CUDATargetMismatch:
  case Sema::TDK_NonDependentConversionFailure:
  case Sema::TDK_ConstraintsNotSatisfied:
    return nullptr;

  case Sema::TDK_IncompletePack:
  case Sema::TDK_Inconsistent:
  case Sema::TDK_Underqualified:
  case Sema::TDK_DeducedMismatch:
  case Sema::TDK_DeducedMismatchNested:
  case Sema::TDK_NonDeducedMismatch:
    return &static_cast<DFIArguments*>(Data)->FirstArg;

  // Unhandled
  case Sema::TDK_MiscellaneousDeductionFailure:
    break;
  }

  return nullptr;
}

const TemplateArgument *DeductionFailureInfo::getSecondArg() {
  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
  case Sema::TDK_Success:
  case Sema::TDK_Invalid:
  case Sema::TDK_InstantiationDepth:
  case Sema::TDK_Incomplete:
  case Sema::TDK_IncompletePack:
  case Sema::TDK_TooManyArguments:
  case Sema::TDK_TooFewArguments:
  case Sema::TDK_InvalidExplicitArguments:
  case Sema::TDK_SubstitutionFailure:
  case Sema::TDK_CUDATargetMismatch:
  case Sema::TDK_NonDependentConversionFailure:
  case Sema::TDK_ConstraintsNotSatisfied:
    return nullptr;

  case Sema::TDK_Inconsistent:
  case Sema::TDK_Underqualified:
  case Sema::TDK_DeducedMismatch:
  case Sema::TDK_DeducedMismatchNested:
  case Sema::TDK_NonDeducedMismatch:
    return &static_cast<DFIArguments*>(Data)->SecondArg;

  // Unhandled
  case Sema::TDK_MiscellaneousDeductionFailure:
    break;
  }

  return nullptr;
}

llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
  case Sema::TDK_DeducedMismatch:
  case Sema::TDK_DeducedMismatchNested:
    return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;

  default:
    return llvm::None;
  }
}

bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
    OverloadedOperatorKind Op) {
  if (!AllowRewrittenCandidates)
    return false;
  return Op == OO_EqualEqual || Op == OO_Spaceship;
}

bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
    ASTContext &Ctx, const FunctionDecl *FD) {
  if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator()))
    return false;
  // Don't bother adding a reversed candidate that can never be a better
  // match than the non-reversed version.
  return FD->getNumParams() != 2 ||
         !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(),
                                     FD->getParamDecl(1)->getType()) ||
         FD->hasAttr<EnableIfAttr>();
}

void OverloadCandidateSet::destroyCandidates() {
  for (iterator i = begin(), e = end(); i != e; ++i) {
    for (auto &C : i->Conversions)
      C.~ImplicitConversionSequence();
    if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
      i->DeductionFailure.Destroy();
  }
}

void OverloadCandidateSet::clear(CandidateSetKind CSK) {
  destroyCandidates();
  SlabAllocator.Reset();
  NumInlineBytesUsed = 0;
  Candidates.clear();
  Functions.clear();
  Kind = CSK;
}

namespace {
  class UnbridgedCastsSet {
    struct Entry {
      Expr **Addr;
      Expr *Saved;
    };
    SmallVector<Entry, 2> Entries;

  public:
    void save(Sema &S, Expr *&E) {
      assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
      Entry entry = { &E, E };
      Entries.push_back(entry);
      E = S.stripARCUnbridgedCast(E);
    }

    void restore() {
      for (SmallVectorImpl<Entry>::iterator
             i = Entries.begin(), e = Entries.end(); i != e; ++i)
        *i->Addr = i->Saved;
    }
  };
}

/// checkPlaceholderForOverload - Do any interesting placeholder-like
/// preprocessing on the given expression.
///
/// \param unbridgedCasts a collection to which to add unbridged casts;
///   without this, they will be immediately diagnosed as errors
///
/// Return true on unrecoverable error.
static bool
checkPlaceholderForOverload(Sema &S, Expr *&E,
                            UnbridgedCastsSet *unbridgedCasts = nullptr) {
  if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
    // We can't handle overloaded expressions here because overload
    // resolution might reasonably tweak them.
    if (placeholder->getKind() == BuiltinType::Overload) return false;

    // If the context potentially accepts unbridged ARC casts, strip
    // the unbridged cast and add it to the collection for later restoration.
    if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
        unbridgedCasts) {
      unbridgedCasts->save(S, E);
      return false;
    }

    // Go ahead and check everything else.
    ExprResult result = S.CheckPlaceholderExpr(E);
    if (result.isInvalid())
      return true;

    E = result.get();
    return false;
  }

  // Nothing to do.
  return false;
}

/// checkArgPlaceholdersForOverload - Check a set of call operands for
/// placeholders.
static bool checkArgPlaceholdersForOverload(Sema &S,
                                            MultiExprArg Args,
                                            UnbridgedCastsSet &unbridged) {
  for (unsigned i = 0, e = Args.size(); i != e; ++i)
    if (checkPlaceholderForOverload(S, Args[i], &unbridged))
      return true;

  return false;
}

/// Determine whether the given New declaration is an overload of the
/// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
/// New and Old cannot be overloaded, e.g., if New has the same signature as
/// some function in Old (C++ 1.3.10) or if the Old declarations aren't
/// functions (or function templates) at all. When it does return Ovl_Match or
/// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
/// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
/// declaration.
///
/// Example: Given the following input:
///
///   void f(int, float); // #1
///   void f(int, int); // #2
///   int f(int, int); // #3
///
/// When we process #1, there is no previous declaration of "f", so IsOverload
/// will not be used.
///
/// When we process #2, Old contains only the FunctionDecl for #1. By comparing
/// the parameter types, we see that #1 and #2 are overloaded (since they have
/// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
/// unchanged.
///
/// When we process #3, Old is an overload set containing #1 and #2. We compare
/// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
/// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
/// functions are not part of the signature), IsOverload returns Ovl_Match and
/// MatchedDecl will be set to point to the FunctionDecl for #2.
///
/// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
/// by a using declaration. The rules for whether to hide shadow declarations
/// ignore some properties which otherwise figure into a function template's
/// signature.
Sema::OverloadKind
Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
                    NamedDecl *&Match, bool NewIsUsingDecl) {
  for (LookupResult::iterator I = Old.begin(), E = Old.end();
         I != E; ++I) {
    NamedDecl *OldD = *I;

    bool OldIsUsingDecl = false;
    if (isa<UsingShadowDecl>(OldD)) {
      OldIsUsingDecl = true;

      // We can always introduce two using declarations into the same
      // context, even if they have identical signatures.
      if (NewIsUsingDecl) continue;

      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
    }

    // A using-declaration does not conflict with another declaration
    // if one of them is hidden.
    if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
      continue;

    // If either declaration was introduced by a using declaration,
    // we'll need to use slightly different rules for matching.
    // Essentially, these rules are the normal rules, except that
    // function templates hide function templates with different
    // return types or template parameter lists.
    bool UseMemberUsingDeclRules =
      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
      !New->getFriendObjectKind();

    if (FunctionDecl *OldF = OldD->getAsFunction()) {
      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
          continue;
        }

        if (!isa<FunctionTemplateDecl>(OldD) &&
            !shouldLinkPossiblyHiddenDecl(*I, New))
          continue;

        Match = *I;
        return Ovl_Match;
      }

      // Builtins that have custom typechecking or have a reference should
      // not be overloadable or redeclarable.
      if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
        Match = *I;
        return Ovl_NonFunction;
      }
    } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
      // We can overload with these, which can show up when doing
      // redeclaration checks for UsingDecls.
      assert(Old.getLookupKind() == LookupUsingDeclName);
    } else if (isa<TagDecl>(OldD)) {
      // We can always overload with tags by hiding them.
    } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
      // Optimistically assume that an unresolved using decl will
      // overload; if it doesn't, we'll have to diagnose during
      // template instantiation.
      //
      // Exception: if the scope is dependent and this is not a class
      // member, the using declaration can only introduce an enumerator.
      if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
        Match = *I;
        return Ovl_NonFunction;
      }
    } else {
      // (C++ 13p1):
      //   Only function declarations can be overloaded; object and type
      //   declarations cannot be overloaded.
      Match = *I;
      return Ovl_NonFunction;
    }
  }

  // C++ [temp.friend]p1:
  //   For a friend function declaration that is not a template declaration:
  //    -- if the name of the friend is a qualified or unqualified template-id,
  //       [...], otherwise
  //    -- if the name of the friend is a qualified-id and a matching
  //       non-template function is found in the specified class or namespace,
  //       the friend declaration refers to that function, otherwise,
  //    -- if the name of the friend is a qualified-id and a matching function
  //       template is found in the specified class or namespace, the friend
  //       declaration refers to the deduced specialization of that function
  //       template, otherwise
  //    -- the name shall be an unqualified-id [...]
  // If we get here for a qualified friend declaration, we've just reached the
  // third bullet. If the type of the friend is dependent, skip this lookup
  // until instantiation.
  if (New->getFriendObjectKind() && New->getQualifier() &&
      !New->getDescribedFunctionTemplate() &&
      !New->getDependentSpecializationInfo() &&
      !New->getType()->isDependentType()) {
    LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
    TemplateSpecResult.addAllDecls(Old);
    if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
                                            /*QualifiedFriend*/true)) {
      New->setInvalidDecl();
      return Ovl_Overload;
    }

    Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
    return Ovl_Match;
  }

  return Ovl_Overload;
}

bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
                      bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs,
                      bool ConsiderRequiresClauses) {
  // C++ [basic.start.main]p2: This function shall not be overloaded.
  if (New->isMain())
    return false;

  // MSVCRT user defined entry points cannot be overloaded.
  if (New->isMSVCRTEntryPoint())
    return false;

  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();

  // C++ [temp.fct]p2:
  //   A function template can be overloaded with other function templates
  //   and with normal (non-template) functions.
  if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
    return true;

  // Is the function New an overload of the function Old?
  QualType OldQType = Context.getCanonicalType(Old->getType());
  QualType NewQType = Context.getCanonicalType(New->getType());

  // Compare the signatures (C++ 1.3.10) of the two functions to
  // determine whether they are overloads. If we find any mismatch
  // in the signature, they are overloads.

  // If either of these functions is a K&R-style function (no
  // prototype), then we consider them to have matching signatures.
  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
    return false;

  const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
  const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);

  // The signature of a function includes the types of its
  // parameters (C++ 1.3.10), which includes the presence or absence
  // of the ellipsis; see C++ DR 357).
  if (OldQType != NewQType &&
      (OldType->getNumParams() != NewType->getNumParams() ||
       OldType->isVariadic() != NewType->isVariadic() ||
       !FunctionParamTypesAreEqual(OldType, NewType)))
    return true;

  // C++ [temp.over.link]p4:
  //   The signature of a function template consists of its function
  //   signature, its return type and its template parameter list. The names
  //   of the template parameters are significant only for establishing the
  //   relationship between the template parameters and the rest of the
  //   signature.
  //
  // We check the return type and template parameter lists for function
  // templates first; the remaining checks follow.
  //
  // However, we don't consider either of these when deciding whether
  // a member introduced by a shadow declaration is hidden.
  if (!UseMemberUsingDeclRules && NewTemplate &&
      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
                                       OldTemplate->getTemplateParameters(),
                                       false, TPL_TemplateMatch) ||
       !Context.hasSameType(Old->getDeclaredReturnType(),
                            New->getDeclaredReturnType())))
    return true;

  // If the function is a class member, its signature includes the
  // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
  //
  // As part of this, also check whether one of the member functions
  // is static, in which case they are not overloads (C++
  // 13.1p2). While not part of the definition of the signature,
  // this check is important to determine whether these functions
  // can be overloaded.
  CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
  CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
  if (OldMethod && NewMethod &&
      !OldMethod->isStatic() && !NewMethod->isStatic()) {
    if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
      if (!UseMemberUsingDeclRules &&
          (OldMethod->getRefQualifier() == RQ_None ||
           NewMethod->getRefQualifier() == RQ_None)) {
        // C++0x [over.load]p2:
        //   - Member function declarations with the same name and the same
        //     parameter-type-list as well as member function template
        //     declarations with the same name, the same parameter-type-list, and
        //     the same template parameter lists cannot be overloaded if any of
        //     them, but not all, have a ref-qualifier (8.3.5).
        Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
          << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
        Diag(OldMethod->getLocation(), diag::note_previous_declaration);
      }
      return true;
    }

    // We may not have applied the implicit const for a constexpr member
    // function yet (because we haven't yet resolved whether this is a static
    // or non-static member function). Add it now, on the assumption that this
    // is a redeclaration of OldMethod.
    auto OldQuals = OldMethod->getMethodQualifiers();
    auto NewQuals = NewMethod->getMethodQualifiers();
    if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
        !isa<CXXConstructorDecl>(NewMethod))
      NewQuals.addConst();
    // We do not allow overloading based off of '__restrict'.
    OldQuals.removeRestrict();
    NewQuals.removeRestrict();
    if (OldQuals != NewQuals)
      return true;
  }

  // Though pass_object_size is placed on parameters and takes an argument, we
  // consider it to be a function-level modifier for the sake of function
  // identity. Either the function has one or more parameters with
  // pass_object_size or it doesn't.
  if (functionHasPassObjectSizeParams(New) !=
      functionHasPassObjectSizeParams(Old))
    return true;

  // enable_if attributes are an order-sensitive part of the signature.
  for (specific_attr_iterator<EnableIfAttr>
         NewI = New->specific_attr_begin<EnableIfAttr>(),
         NewE = New->specific_attr_end<EnableIfAttr>(),
         OldI = Old->specific_attr_begin<EnableIfAttr>(),
         OldE = Old->specific_attr_end<EnableIfAttr>();
       NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
    if (NewI == NewE || OldI == OldE)
      return true;
    llvm::FoldingSetNodeID NewID, OldID;
    NewI->getCond()->Profile(NewID, Context, true);
    OldI->getCond()->Profile(OldID, Context, true);
    if (NewID != OldID)
      return true;
  }

  if (getLangOpts().CUDA && ConsiderCudaAttrs) {
    // Don't allow overloading of destructors.  (In theory we could, but it
    // would be a giant change to clang.)
    if (!isa<CXXDestructorDecl>(New)) {
      CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
                         OldTarget = IdentifyCUDATarget(Old);
      if (NewTarget != CFT_InvalidTarget) {
        assert((OldTarget != CFT_InvalidTarget) &&
               "Unexpected invalid target.");

        // Allow overloading of functions with same signature and different CUDA
        // target attributes.
        if (NewTarget != OldTarget)
          return true;
      }
    }
  }

  if (ConsiderRequiresClauses) {
    Expr *NewRC = New->getTrailingRequiresClause(),
         *OldRC = Old->getTrailingRequiresClause();
    if ((NewRC != nullptr) != (OldRC != nullptr))
      // RC are most certainly different - these are overloads.
      return true;

    if (NewRC) {
      llvm::FoldingSetNodeID NewID, OldID;
      NewRC->Profile(NewID, Context, /*Canonical=*/true);
      OldRC->Profile(OldID, Context, /*Canonical=*/true);
      if (NewID != OldID)
        // RCs are not equivalent - these are overloads.
        return true;
    }
  }

  // The signatures match; this is not an overload.
  return false;
}

/// Tries a user-defined conversion from From to ToType.
///
/// Produces an implicit conversion sequence for when a standard conversion
/// is not an option. See TryImplicitConversion for more information.
static ImplicitConversionSequence
TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
                         bool SuppressUserConversions,
                         AllowedExplicit AllowExplicit,
                         bool InOverloadResolution,
                         bool CStyle,
                         bool AllowObjCWritebackConversion,
                         bool AllowObjCConversionOnExplicit) {
  ImplicitConversionSequence ICS;

  if (SuppressUserConversions) {
    // We're not in the case above, so there is no conversion that
    // we can perform.
    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
    return ICS;
  }

  // Attempt user-defined conversion.
  OverloadCandidateSet Conversions(From->getExprLoc(),
                                   OverloadCandidateSet::CSK_Normal);
  switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
                                  Conversions, AllowExplicit,
                                  AllowObjCConversionOnExplicit)) {
  case OR_Success:
  case OR_Deleted:
    ICS.setUserDefined();
    // C++ [over.ics.user]p4:
    //   A conversion of an expression of class type to the same class
    //   type is given Exact Match rank, and a conversion of an
    //   expression of class type to a base class of that type is
    //   given Conversion rank, in spite of the fact that a copy
    //   constructor (i.e., a user-defined conversion function) is
    //   called for those cases.
    if (CXXConstructorDecl *Constructor
          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
      QualType FromCanon
        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
      QualType ToCanon
        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
      if (Constructor->isCopyConstructor() &&
          (FromCanon == ToCanon ||
           S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
        // Turn this into a "standard" conversion sequence, so that it
        // gets ranked with standard conversion sequences.
        DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
        ICS.setStandard();
        ICS.Standard.setAsIdentityConversion();
        ICS.Standard.setFromType(From->getType());
        ICS.Standard.setAllToTypes(ToType);
        ICS.Standard.CopyConstructor = Constructor;
        ICS.Standard.FoundCopyConstructor = Found;
        if (ToCanon != FromCanon)
          ICS.Standard.Second = ICK_Derived_To_Base;
      }
    }
    break;

  case OR_Ambiguous:
    ICS.setAmbiguous();
    ICS.Ambiguous.setFromType(From->getType());
    ICS.Ambiguous.setToType(ToType);
    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
         Cand != Conversions.end(); ++Cand)
      if (Cand->Best)
        ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
    break;

    // Fall through.
  case OR_No_Viable_Function:
    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
    break;
  }

  return ICS;
}

/// TryImplicitConversion - Attempt to perform an implicit conversion
/// from the given expression (Expr) to the given type (ToType). This
/// function returns an implicit conversion sequence that can be used
/// to perform the initialization. Given
///
///   void f(float f);
///   void g(int i) { f(i); }
///
/// this routine would produce an implicit conversion sequence to
/// describe the initialization of f from i, which will be a standard
/// conversion sequence containing an lvalue-to-rvalue conversion (C++
/// 4.1) followed by a floating-integral conversion (C++ 4.9).
//
/// Note that this routine only determines how the conversion can be
/// performed; it does not actually perform the conversion. As such,
/// it will not produce any diagnostics if no conversion is available,
/// but will instead return an implicit conversion sequence of kind
/// "BadConversion".
///
/// If @p SuppressUserConversions, then user-defined conversions are
/// not permitted.
/// If @p AllowExplicit, then explicit user-defined conversions are
/// permitted.
///
/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
/// writeback conversion, which allows __autoreleasing id* parameters to
/// be initialized with __strong id* or __weak id* arguments.
static ImplicitConversionSequence
TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
                      bool SuppressUserConversions,
                      AllowedExplicit AllowExplicit,
                      bool InOverloadResolution,
                      bool CStyle,
                      bool AllowObjCWritebackConversion,
                      bool AllowObjCConversionOnExplicit) {
  ImplicitConversionSequence ICS;
  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
                           ICS.Standard, CStyle, AllowObjCWritebackConversion)){
    ICS.setStandard();
    return ICS;
  }

  if (!S.getLangOpts().CPlusPlus) {
    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
    return ICS;
  }

  // C++ [over.ics.user]p4:
  //   A conversion of an expression of class type to the same class
  //   type is given Exact Match rank, and a conversion of an
  //   expression of class type to a base class of that type is
  //   given Conversion rank, in spite of the fact that a copy/move
  //   constructor (i.e., a user-defined conversion function) is
  //   called for those cases.
  QualType FromType = From->getType();
  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
       S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
    ICS.setStandard();
    ICS.Standard.setAsIdentityConversion();
    ICS.Standard.setFromType(FromType);
    ICS.Standard.setAllToTypes(ToType);

    // We don't actually check at this point whether there is a valid
    // copy/move constructor, since overloading just assumes that it
    // exists. When we actually perform initialization, we'll find the
    // appropriate constructor to copy the returned object, if needed.
    ICS.Standard.CopyConstructor = nullptr;

    // Determine whether this is considered a derived-to-base conversion.
    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
      ICS.Standard.Second = ICK_Derived_To_Base;

    return ICS;
  }

  return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
                                  AllowExplicit, InOverloadResolution, CStyle,
                                  AllowObjCWritebackConversion,
                                  AllowObjCConversionOnExplicit);
}

ImplicitConversionSequence
Sema::TryImplicitConversion(Expr *From, QualType ToType,
                            bool SuppressUserConversions,
                            AllowedExplicit AllowExplicit,
                            bool InOverloadResolution,
                            bool CStyle,
                            bool AllowObjCWritebackConversion) {
  return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions,
                                 AllowExplicit, InOverloadResolution, CStyle,
                                 AllowObjCWritebackConversion,
                                 /*AllowObjCConversionOnExplicit=*/false);
}

/// PerformImplicitConversion - Perform an implicit conversion of the
/// expression From to the type ToType. Returns the
/// converted expression. Flavor is the kind of conversion we're
/// performing, used in the error message. If @p AllowExplicit,
/// explicit user-defined conversions are permitted.
ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType,
                                           AssignmentAction Action,
                                           bool AllowExplicit) {
  if (checkPlaceholderForOverload(*this, From))
    return ExprError();

  // Objective-C ARC: Determine whether we will allow the writeback conversion.
  bool AllowObjCWritebackConversion
    = getLangOpts().ObjCAutoRefCount &&
      (Action == AA_Passing || Action == AA_Sending);
  if (getLangOpts().ObjC)
    CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
                                      From->getType(), From);
  ImplicitConversionSequence ICS = ::TryImplicitConversion(
      *this, From, ToType,
      /*SuppressUserConversions=*/false,
      AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None,
      /*InOverloadResolution=*/false,
      /*CStyle=*/false, AllowObjCWritebackConversion,
      /*AllowObjCConversionOnExplicit=*/false);
  return PerformImplicitConversion(From, ToType, ICS, Action);
}

/// Determine whether the conversion from FromType to ToType is a valid
/// conversion that strips "noexcept" or "noreturn" off the nested function
/// type.
bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
                                QualType &ResultTy) {
  if (Context.hasSameUnqualifiedType(FromType, ToType))
    return false;

  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
  //                    or F(t noexcept) -> F(t)
  // where F adds one of the following at most once:
  //   - a pointer
  //   - a member pointer
  //   - a block pointer
  // Changes here need matching changes in FindCompositePointerType.
  CanQualType CanTo = Context.getCanonicalType(ToType);
  CanQualType CanFrom = Context.getCanonicalType(FromType);
  Type::TypeClass TyClass = CanTo->getTypeClass();
  if (TyClass != CanFrom->getTypeClass()) return false;
  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
    if (TyClass == Type::Pointer) {
      CanTo = CanTo.castAs<PointerType>()->getPointeeType();
      CanFrom = CanFrom.castAs<PointerType>()->getPointeeType();
    } else if (TyClass == Type::BlockPointer) {
      CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType();
      CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType();
    } else if (TyClass == Type::MemberPointer) {
      auto ToMPT = CanTo.castAs<MemberPointerType>();
      auto FromMPT = CanFrom.castAs<MemberPointerType>();
      // A function pointer conversion cannot change the class of the function.
      if (ToMPT->getClass() != FromMPT->getClass())
        return false;
      CanTo = ToMPT->getPointeeType();
      CanFrom = FromMPT->getPointeeType();
    } else {
      return false;
    }

    TyClass = CanTo->getTypeClass();
    if (TyClass != CanFrom->getTypeClass()) return false;
    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
      return false;
  }

  const auto *FromFn = cast<FunctionType>(CanFrom);
  FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();

  const auto *ToFn = cast<FunctionType>(CanTo);
  FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();

  bool Changed = false;

  // Drop 'noreturn' if not present in target type.
  if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
    FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
    Changed = true;
  }

  // Drop 'noexcept' if not present in target type.
  if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
    const auto *ToFPT = cast<FunctionProtoType>(ToFn);
    if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
      FromFn = cast<FunctionType>(
          Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
                                                   EST_None)
                 .getTypePtr());
      Changed = true;
    }

    // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
    // only if the ExtParameterInfo lists of the two function prototypes can be
    // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
    SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
    bool CanUseToFPT, CanUseFromFPT;
    if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
                                      CanUseFromFPT, NewParamInfos) &&
        CanUseToFPT && !CanUseFromFPT) {
      FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
      ExtInfo.ExtParameterInfos =
          NewParamInfos.empty() ? nullptr : NewParamInfos.data();
      QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
                                            FromFPT->getParamTypes(), ExtInfo);
      FromFn = QT->getAs<FunctionType>();
      Changed = true;
    }
  }

  if (!Changed)
    return false;

  assert(QualType(FromFn, 0).isCanonical());
  if (QualType(FromFn, 0) != CanTo) return false;

  ResultTy = ToType;
  return true;
}

/// Determine whether the conversion from FromType to ToType is a valid
/// vector conversion.
///
/// \param ICK Will be set to the vector conversion kind, if this is a vector
/// conversion.
static bool IsVectorConversion(Sema &S, QualType FromType,
                               QualType ToType, ImplicitConversionKind &ICK) {
  // We need at least one of these types to be a vector type to have a vector
  // conversion.
  if (!ToType->isVectorType() && !FromType->isVectorType())
    return false;

  // Identical types require no conversions.
  if (S.Context.hasSameUnqualifiedType(FromType, ToType))
    return false;

  // There are no conversions between extended vector types, only identity.
  if (ToType->isExtVectorType()) {
    // There are no conversions between extended vector types other than the
    // identity conversion.
    if (FromType->isExtVectorType())
      return false;

    // Vector splat from any arithmetic type to a vector.
    if (FromType->isArithmeticType()) {
      ICK = ICK_Vector_Splat;
      return true;
    }
  }

  if (ToType->isSizelessBuiltinType() || FromType->isSizelessBuiltinType())
    if (S.Context.areCompatibleSveTypes(FromType, ToType) ||
        S.Context.areLaxCompatibleSveTypes(FromType, ToType)) {
      ICK = ICK_SVE_Vector_Conversion;
      return true;
    }

  // We can perform the conversion between vector types in the following cases:
  // 1)vector types are equivalent AltiVec and GCC vector types
  // 2)lax vector conversions are permitted and the vector types are of the
  //   same size
  // 3)the destination type does not have the ARM MVE strict-polymorphism
  //   attribute, which inhibits lax vector conversion for overload resolution
  //   only
  if (ToType->isVectorType() && FromType->isVectorType()) {
    if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
        (S.isLaxVectorConversion(FromType, ToType) &&
         !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) {
      ICK = ICK_Vector_Conversion;
      return true;
    }
  }

  return false;
}

static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
                                bool InOverloadResolution,
                                StandardConversionSequence &SCS,
                                bool CStyle);

/// IsStandardConversion - Determines whether there is a standard
/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
/// expression From to the type ToType. Standard conversion sequences
/// only consider non-class types; for conversions that involve class
/// types, use TryImplicitConversion. If a conversion exists, SCS will
/// contain the standard conversion sequence required to perform this
/// conversion and this routine will return true. Otherwise, this
/// routine will return false and the value of SCS is unspecified.
static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
                                 bool InOverloadResolution,
                                 StandardConversionSequence &SCS,
                                 bool CStyle,
                                 bool AllowObjCWritebackConversion) {
  QualType FromType = From->getType();

  // Standard conversions (C++ [conv])
  SCS.setAsIdentityConversion();
  SCS.IncompatibleObjC = false;
  SCS.setFromType(FromType);
  SCS.CopyConstructor = nullptr;

  // There are no standard conversions for class types in C++, so
  // abort early. When overloading in C, however, we do permit them.
  if (S.getLangOpts().CPlusPlus &&
      (FromType->isRecordType() || ToType->isRecordType()))
    return false;

  // The first conversion can be an lvalue-to-rvalue conversion,
  // array-to-pointer conversion, or function-to-pointer conversion
  // (C++ 4p1).

  if (FromType == S.Context.OverloadTy) {
    DeclAccessPair AccessPair;
    if (FunctionDecl *Fn
          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
                                                 AccessPair)) {
      // We were able to resolve the address of the overloaded function,
      // so we can convert to the type of that function.
      FromType = Fn->getType();
      SCS.setFromType(FromType);

      // we can sometimes resolve &foo<int> regardless of ToType, so check
      // if the type matches (identity) or we are converting to bool
      if (!S.Context.hasSameUnqualifiedType(
                      S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
        QualType resultTy;
        // if the function type matches except for [[noreturn]], it's ok
        if (!S.IsFunctionConversion(FromType,
              S.ExtractUnqualifiedFunctionType(ToType), resultTy))
          // otherwise, only a boolean conversion is standard
          if (!ToType->isBooleanType())
            return false;
      }

      // Check if the "from" expression is taking the address of an overloaded
      // function and recompute the FromType accordingly. Take advantage of the
      // fact that non-static member functions *must* have such an address-of
      // expression.
      CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
      if (Method && !Method->isStatic()) {
        assert(isa<UnaryOperator>(From->IgnoreParens()) &&
               "Non-unary operator on non-static member address");
        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
               == UO_AddrOf &&
               "Non-address-of operator on non-static member address");
        const Type *ClassType
          = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
        FromType = S.Context.getMemberPointerType(FromType, ClassType);
      } else if (isa<UnaryOperator>(From->IgnoreParens())) {
        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
               UO_AddrOf &&
               "Non-address-of operator for overloaded function expression");
        FromType = S.Context.getPointerType(FromType);
      }

      // Check that we've computed the proper type after overload resolution.
      // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
      // be calling it from within an NDEBUG block.
      assert(S.Context.hasSameType(
        FromType,
        S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
    } else {
      return false;
    }
  }
  // Lvalue-to-rvalue conversion (C++11 4.1):
  //   A glvalue (3.10) of a non-function, non-array type T can
  //   be converted to a prvalue.
  bool argIsLValue = From->isGLValue();
  if (argIsLValue &&
      !FromType->isFunctionType() && !FromType->isArrayType() &&
      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
    SCS.First = ICK_Lvalue_To_Rvalue;

    // C11 6.3.2.1p2:
    //   ... if the lvalue has atomic type, the value has the non-atomic version
    //   of the type of the lvalue ...
    if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
      FromType = Atomic->getValueType();

    // If T is a non-class type, the type of the rvalue is the
    // cv-unqualified version of T. Otherwise, the type of the rvalue
    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
    // just strip the qualifiers because they don't matter.
    FromType = FromType.getUnqualifiedType();
  } else if (FromType->isArrayType()) {
    // Array-to-pointer conversion (C++ 4.2)
    SCS.First = ICK_Array_To_Pointer;

    // An lvalue or rvalue of type "array of N T" or "array of unknown
    // bound of T" can be converted to an rvalue of type "pointer to
    // T" (C++ 4.2p1).
    FromType = S.Context.getArrayDecayedType(FromType);

    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
      // This conversion is deprecated in C++03 (D.4)
      SCS.DeprecatedStringLiteralToCharPtr = true;

      // For the purpose of ranking in overload resolution
      // (13.3.3.1.1), this conversion is considered an
      // array-to-pointer conversion followed by a qualification
      // conversion (4.4). (C++ 4.2p2)
      SCS.Second = ICK_Identity;
      SCS.Third = ICK_Qualification;
      SCS.QualificationIncludesObjCLifetime = false;
      SCS.setAllToTypes(FromType);
      return true;
    }
  } else if (FromType->isFunctionType() && argIsLValue) {
    // Function-to-pointer conversion (C++ 4.3).
    SCS.First = ICK_Function_To_Pointer;

    if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
      if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
        if (!S.checkAddressOfFunctionIsAvailable(FD))
          return false;

    // An lvalue of function type T can be converted to an rvalue of
    // type "pointer to T." The result is a pointer to the
    // function. (C++ 4.3p1).
    FromType = S.Context.getPointerType(FromType);
  } else {
    // We don't require any conversions for the first step.
    SCS.First = ICK_Identity;
  }
  SCS.setToType(0, FromType);

  // The second conversion can be an integral promotion, floating
  // point promotion, integral conversion, floating point conversion,
  // floating-integral conversion, pointer conversion,
  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
  // For overloading in C, this can also be a "compatible-type"
  // conversion.
  bool IncompatibleObjC = false;
  ImplicitConversionKind SecondICK = ICK_Identity;
  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
    // The unqualified versions of the types are the same: there's no
    // conversion to do.
    SCS.Second = ICK_Identity;
  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
    // Integral promotion (C++ 4.5).
    SCS.Second = ICK_Integral_Promotion;
    FromType = ToType.getUnqualifiedType();
  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
    // Floating point promotion (C++ 4.6).
    SCS.Second = ICK_Floating_Promotion;
    FromType = ToType.getUnqualifiedType();
  } else if (S.IsComplexPromotion(FromType, ToType)) {
    // Complex promotion (Clang extension)
    SCS.Second = ICK_Complex_Promotion;
    FromType = ToType.getUnqualifiedType();
  } else if (ToType->isBooleanType() &&
             (FromType->isArithmeticType() ||
              FromType->isAnyPointerType() ||
              FromType->isBlockPointerType() ||
              FromType->isMemberPointerType())) {
    // Boolean conversions (C++ 4.12).
    SCS.Second = ICK_Boolean_Conversion;
    FromType = S.Context.BoolTy;
  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
             ToType->isIntegralType(S.Context)) {
    // Integral conversions (C++ 4.7).
    SCS.Second = ICK_Integral_Conversion;
    FromType = ToType.getUnqualifiedType();
  } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
    // Complex conversions (C99 6.3.1.6)
    SCS.Second = ICK_Complex_Conversion;
    FromType = ToType.getUnqualifiedType();
  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
    // Complex-real conversions (C99 6.3.1.7)
    SCS.Second = ICK_Complex_Real;
    FromType = ToType.getUnqualifiedType();
  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
    // FIXME: disable conversions between long double, __ibm128 and __float128
    // if their representation is different until there is back end support
    // We of course allow this conversion if long double is really double.

    // Conversions between bfloat and other floats are not permitted.
    if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty)
      return false;

    // Conversions between IEEE-quad and IBM-extended semantics are not
    // permitted.
    const llvm::fltSemantics &FromSem =
        S.Context.getFloatTypeSemantics(FromType);
    const llvm::fltSemantics &ToSem = S.Context.getFloatTypeSemantics(ToType);
    if ((&FromSem == &llvm::APFloat::PPCDoubleDouble() &&
         &ToSem == &llvm::APFloat::IEEEquad()) ||
        (&FromSem == &llvm::APFloat::IEEEquad() &&
         &ToSem == &llvm::APFloat::PPCDoubleDouble()))
      return false;

    // Floating point conversions (C++ 4.8).
    SCS.Second = ICK_Floating_Conversion;
    FromType = ToType.getUnqualifiedType();
  } else if ((FromType->isRealFloatingType() &&
              ToType->isIntegralType(S.Context)) ||
             (FromType->isIntegralOrUnscopedEnumerationType() &&
              ToType->isRealFloatingType())) {
    // Conversions between bfloat and int are not permitted.
    if (FromType->isBFloat16Type() || ToType->isBFloat16Type())
      return false;

    // Floating-integral conversions (C++ 4.9).
    SCS.Second = ICK_Floating_Integral;
    FromType = ToType.getUnqualifiedType();
  } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
    SCS.Second = ICK_Block_Pointer_Conversion;
  } else if (AllowObjCWritebackConversion &&
             S.isObjCWritebackConversion(FromType, ToType, FromType)) {
    SCS.Second = ICK_Writeback_Conversion;
  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
                                   FromType, IncompatibleObjC)) {
    // Pointer conversions (C++ 4.10).
    SCS.Second = ICK_Pointer_Conversion;
    SCS.IncompatibleObjC = IncompatibleObjC;
    FromType = FromType.getUnqualifiedType();
  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
                                         InOverloadResolution, FromType)) {
    // Pointer to member conversions (4.11).
    SCS.Second = ICK_Pointer_Member;
  } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
    SCS.Second = SecondICK;
    FromType = ToType.getUnqualifiedType();
  } else if (!S.getLangOpts().CPlusPlus &&
             S.Context.typesAreCompatible(ToType, FromType)) {
    // Compatible conversions (Clang extension for C function overloading)
    SCS.Second = ICK_Compatible_Conversion;
    FromType = ToType.getUnqualifiedType();
  } else if (IsTransparentUnionStandardConversion(S, From, ToType,
                                             InOverloadResolution,
                                             SCS, CStyle)) {
    SCS.Second = ICK_TransparentUnionConversion;
    FromType = ToType;
  } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
                                 CStyle)) {
    // tryAtomicConversion has updated the standard conversion sequence
    // appropriately.
    return true;
  } else if (ToType->isEventT() &&
             From->isIntegerConstantExpr(S.getASTContext()) &&
             From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
    SCS.Second = ICK_Zero_Event_Conversion;
    FromType = ToType;
  } else if (ToType->isQueueT() &&
             From->isIntegerConstantExpr(S.getASTContext()) &&
             (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
    SCS.Second = ICK_Zero_Queue_Conversion;
    FromType = ToType;
  } else if (ToType->isSamplerT() &&
             From->isIntegerConstantExpr(S.getASTContext())) {
    SCS.Second = ICK_Compatible_Conversion;
    FromType = ToType;
  } else {
    // No second conversion required.
    SCS.Second = ICK_Identity;
  }
  SCS.setToType(1, FromType);

  // The third conversion can be a function pointer conversion or a
  // qualification conversion (C++ [conv.fctptr], [conv.qual]).
  bool ObjCLifetimeConversion;
  if (S.IsFunctionConversion(FromType, ToType, FromType)) {
    // Function pointer conversions (removing 'noexcept') including removal of
    // 'noreturn' (Clang extension).
    SCS.Third = ICK_Function_Conversion;
  } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
                                         ObjCLifetimeConversion)) {
    SCS.Third = ICK_Qualification;
    SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
    FromType = ToType;
  } else {
    // No conversion required
    SCS.Third = ICK_Identity;
  }

  // C++ [over.best.ics]p6:
  //   [...] Any difference in top-level cv-qualification is
  //   subsumed by the initialization itself and does not constitute
  //   a conversion. [...]
  QualType CanonFrom = S.Context.getCanonicalType(FromType);
  QualType CanonTo = S.Context.getCanonicalType(ToType);
  if (CanonFrom.getLocalUnqualifiedType()
                                     == CanonTo.getLocalUnqualifiedType() &&
      CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
    FromType = ToType;
    CanonFrom = CanonTo;
  }

  SCS.setToType(2, FromType);

  if (CanonFrom == CanonTo)
    return true;

  // If we have not converted the argument type to the parameter type,
  // this is a bad conversion sequence, unless we're resolving an overload in C.
  if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
    return false;

  ExprResult ER = ExprResult{From};
  Sema::AssignConvertType Conv =
      S.CheckSingleAssignmentConstraints(ToType, ER,
                                         /*Diagnose=*/false,
                                         /*DiagnoseCFAudited=*/false,
                                         /*ConvertRHS=*/false);
  ImplicitConversionKind SecondConv;
  switch (Conv) {
  case Sema::Compatible:
    SecondConv = ICK_C_Only_Conversion;
    break;
  // For our purposes, discarding qualifiers is just as bad as using an
  // incompatible pointer. Note that an IncompatiblePointer conversion can drop
  // qualifiers, as well.
  case Sema::CompatiblePointerDiscardsQualifiers:
  case Sema::IncompatiblePointer:
  case Sema::IncompatiblePointerSign:
    SecondConv = ICK_Incompatible_Pointer_Conversion;
    break;
  default:
    return false;
  }

  // First can only be an lvalue conversion, so we pretend that this was the
  // second conversion. First should already be valid from earlier in the
  // function.
  SCS.Second = SecondConv;
  SCS.setToType(1, ToType);

  // Third is Identity, because Second should rank us worse than any other
  // conversion. This could also be ICK_Qualification, but it's simpler to just
  // lump everything in with the second conversion, and we don't gain anything
  // from making this ICK_Qualification.
  SCS.Third = ICK_Identity;
  SCS.setToType(2, ToType);
  return true;
}

static bool
IsTransparentUnionStandardConversion(Sema &S, Expr* From,
                                     QualType &ToType,
                                     bool InOverloadResolution,
                                     StandardConversionSequence &SCS,
                                     bool CStyle) {

  const RecordType *UT = ToType->getAsUnionType();
  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
    return false;
  // The field to initialize within the transparent union.
  RecordDecl *UD = UT->getDecl();
  // It's compatible if the expression matches any of the fields.
  for (const auto *it : UD->fields()) {
    if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
                             CStyle, /*AllowObjCWritebackConversion=*/false)) {
      ToType = it->getType();
      return true;
    }
  }
  return false;
}

/// IsIntegralPromotion - Determines whether the conversion from the
/// expression From (whose potentially-adjusted type is FromType) to
/// ToType is an integral promotion (C++ 4.5). If so, returns true and
/// sets PromotedType to the promoted type.
bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
  const BuiltinType *To = ToType->getAs<BuiltinType>();
  // All integers are built-in.
  if (!To) {
    return false;
  }

  // An rvalue of type char, signed char, unsigned char, short int, or
  // unsigned short int can be converted to an rvalue of type int if
  // int can represent all the values of the source type; otherwise,
  // the source rvalue can be converted to an rvalue of type unsigned
  // int (C++ 4.5p1).
  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
      !FromType->isEnumeralType()) {
    if (// We can promote any signed, promotable integer type to an int
        (FromType->isSignedIntegerType() ||
         // We can promote any unsigned integer type whose size is
         // less than int to an int.
         Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
      return To->getKind() == BuiltinType::Int;
    }

    return To->getKind() == BuiltinType::UInt;
  }

  // C++11 [conv.prom]p3:
  //   A prvalue of an unscoped enumeration type whose underlying type is not
  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
  //   following types that can represent all the values of the enumeration
  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
  //   unsigned int, long int, unsigned long int, long long int, or unsigned
  //   long long int. If none of the types in that list can represent all the
  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
  //   type can be converted to an rvalue a prvalue of the extended integer type
  //   with lowest integer conversion rank (4.13) greater than the rank of long
  //   long in which all the values of the enumeration can be represented. If
  //   there are two such extended types, the signed one is chosen.
  // C++11 [conv.prom]p4:
  //   A prvalue of an unscoped enumeration type whose underlying type is fixed
  //   can be converted to a prvalue of its underlying type. Moreover, if
  //   integral promotion can be applied to its underlying type, a prvalue of an
  //   unscoped enumeration type whose underlying type is fixed can also be
  //   converted to a prvalue of the promoted underlying type.
  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
    // provided for a scoped enumeration.
    if (FromEnumType->getDecl()->isScoped())
      return false;

    // We can perform an integral promotion to the underlying type of the enum,
    // even if that's not the promoted type. Note that the check for promoting
    // the underlying type is based on the type alone, and does not consider
    // the bitfield-ness of the actual source expression.
    if (FromEnumType->getDecl()->isFixed()) {
      QualType Underlying = FromEnumType->getDecl()->getIntegerType();
      return Context.hasSameUnqualifiedType(Underlying, ToType) ||
             IsIntegralPromotion(nullptr, Underlying, ToType);
    }

    // We have already pre-calculated the promotion type, so this is trivial.
    if (ToType->isIntegerType() &&
        isCompleteType(From->getBeginLoc(), FromType))
      return Context.hasSameUnqualifiedType(
          ToType, FromEnumType->getDecl()->getPromotionType());

    // C++ [conv.prom]p5:
    //   If the bit-field has an enumerated type, it is treated as any other
    //   value of that type for promotion purposes.
    //
    // ... so do not fall through into the bit-field checks below in C++.
    if (getLangOpts().CPlusPlus)
      return false;
  }

  // C++0x [conv.prom]p2:
  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
  //   to an rvalue a prvalue of the first of the following types that can
  //   represent all the values of its underlying type: int, unsigned int,
  //   long int, unsigned long int, long long int, or unsigned long long int.
  //   If none of the types in that list can represent all the values of its
  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
  //   type.
  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
      ToType->isIntegerType()) {
    // Determine whether the type we're converting from is signed or
    // unsigned.
    bool FromIsSigned = FromType->isSignedIntegerType();
    uint64_t FromSize = Context.getTypeSize(FromType);

    // The types we'll try to promote to, in the appropriate
    // order. Try each of these types.
    QualType PromoteTypes[6] = {
      Context.IntTy, Context.UnsignedIntTy,
      Context.LongTy, Context.UnsignedLongTy ,
      Context.LongLongTy, Context.UnsignedLongLongTy
    };
    for (int Idx = 0; Idx < 6; ++Idx) {
      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
      if (FromSize < ToSize ||
          (FromSize == ToSize &&
           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
        // We found the type that we can promote to. If this is the
        // type we wanted, we have a promotion. Otherwise, no
        // promotion.
        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
      }
    }
  }

  // An rvalue for an integral bit-field (9.6) can be converted to an
  // rvalue of type int if int can represent all the values of the
  // bit-field; otherwise, it can be converted to unsigned int if
  // unsigned int can represent all the values of the bit-field. If
  // the bit-field is larger yet, no integral promotion applies to
  // it. If the bit-field has an enumerated type, it is treated as any
  // other value of that type for promotion purposes (C++ 4.5p3).
  // FIXME: We should delay checking of bit-fields until we actually perform the
  // conversion.
  //
  // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
  // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
  // bit-fields and those whose underlying type is larger than int) for GCC
  // compatibility.
  if (From) {
    if (FieldDecl *MemberDecl = From->getSourceBitField()) {
      Optional<llvm::APSInt> BitWidth;
      if (FromType->isIntegralType(Context) &&
          (BitWidth =
               MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) {
        llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned());
        ToSize = Context.getTypeSize(ToType);

        // Are we promoting to an int from a bitfield that fits in an int?
        if (*BitWidth < ToSize ||
            (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) {
          return To->getKind() == BuiltinType::Int;
        }

        // Are we promoting to an unsigned int from an unsigned bitfield
        // that fits into an unsigned int?
        if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) {
          return To->getKind() == BuiltinType::UInt;
        }

        return false;
      }
    }
  }

  // An rvalue of type bool can be converted to an rvalue of type int,
  // with false becoming zero and true becoming one (C++ 4.5p4).
  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
    return true;
  }

  return false;
}

/// IsFloatingPointPromotion - Determines whether the conversion from
/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
/// returns true and sets PromotedType to the promoted type.
bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
      /// An rvalue of type float can be converted to an rvalue of type
      /// double. (C++ 4.6p1).
      if (FromBuiltin->getKind() == BuiltinType::Float &&
          ToBuiltin->getKind() == BuiltinType::Double)
        return true;

      // C99 6.3.1.5p1:
      //   When a float is promoted to double or long double, or a
      //   double is promoted to long double [...].
      if (!getLangOpts().CPlusPlus &&
          (FromBuiltin->getKind() == BuiltinType::Float ||
           FromBuiltin->getKind() == BuiltinType::Double) &&
          (ToBuiltin->getKind() == BuiltinType::LongDouble ||
           ToBuiltin->getKind() == BuiltinType::Float128 ||
           ToBuiltin->getKind() == BuiltinType::Ibm128))
        return true;

      // Half can be promoted to float.
      if (!getLangOpts().NativeHalfType &&
           FromBuiltin->getKind() == BuiltinType::Half &&
          ToBuiltin->getKind() == BuiltinType::Float)
        return true;
    }

  return false;
}

/// Determine if a conversion is a complex promotion.
///
/// A complex promotion is defined as a complex -> complex conversion
/// where the conversion between the underlying real types is a
/// floating-point or integral promotion.
bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
  if (!FromComplex)
    return false;

  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
  if (!ToComplex)
    return false;

  return IsFloatingPointPromotion(FromComplex->getElementType(),
                                  ToComplex->getElementType()) ||
    IsIntegralPromotion(nullptr, FromComplex->getElementType(),
                        ToComplex->getElementType());
}

/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
/// the pointer type FromPtr to a pointer to type ToPointee, with the
/// same type qualifiers as FromPtr has on its pointee type. ToType,
/// if non-empty, will be a pointer to ToType that may or may not have
/// the right set of qualifiers on its pointee.
///
static QualType
BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
                                   QualType ToPointee, QualType ToType,
                                   ASTContext &Context,
                                   bool StripObjCLifetime = false) {
  assert((FromPtr->getTypeClass() == Type::Pointer ||
          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
         "Invalid similarly-qualified pointer type");

  /// Conversions to 'id' subsume cv-qualifier conversions.
  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
    return ToType.getUnqualifiedType();

  QualType CanonFromPointee
    = Context.getCanonicalType(FromPtr->getPointeeType());
  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
  Qualifiers Quals = CanonFromPointee.getQualifiers();

  if (StripObjCLifetime)
    Quals.removeObjCLifetime();

  // Exact qualifier match -> return the pointer type we're converting to.
  if (CanonToPointee.getLocalQualifiers() == Quals) {
    // ToType is exactly what we need. Return it.
    if (!ToType.isNull())
      return ToType.getUnqualifiedType();

    // Build a pointer to ToPointee. It has the right qualifiers
    // already.
    if (isa<ObjCObjectPointerType>(ToType))
      return Context.getObjCObjectPointerType(ToPointee);
    return Context.getPointerType(ToPointee);
  }

  // Just build a canonical type that has the right qualifiers.
  QualType QualifiedCanonToPointee
    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);

  if (isa<ObjCObjectPointerType>(ToType))
    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
  return Context.getPointerType(QualifiedCanonToPointee);
}

static bool isNullPointerConstantForConversion(Expr *Expr,
                                               bool InOverloadResolution,
                                               ASTContext &Context) {
  // Handle value-dependent integral null pointer constants correctly.
  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
    return !InOverloadResolution;

  return Expr->isNullPointerConstant(Context,
                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
                                        : Expr::NPC_ValueDependentIsNull);
}

/// IsPointerConversion - Determines whether the conversion of the
/// expression From, which has the (possibly adjusted) type FromType,
/// can be converted to the type ToType via a pointer conversion (C++
/// 4.10). If so, returns true and places the converted type (that
/// might differ from ToType in its cv-qualifiers at some level) into
/// ConvertedType.
///
/// This routine also supports conversions to and from block pointers
/// and conversions with Objective-C's 'id', 'id<protocols...>', and
/// pointers to interfaces. FIXME: Once we've determined the
/// appropriate overloading rules for Objective-C, we may want to
/// split the Objective-C checks into a different routine; however,
/// GCC seems to consider all of these conversions to be pointer
/// conversions, so for now they live here. IncompatibleObjC will be
/// set if the conversion is an allowed Objective-C conversion that
/// should result in a warning.
bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
                               bool InOverloadResolution,
                               QualType& ConvertedType,
                               bool &IncompatibleObjC) {
  IncompatibleObjC = false;
  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
                              IncompatibleObjC))
    return true;

  // Conversion from a null pointer constant to any Objective-C pointer type.
  if (ToType->isObjCObjectPointerType() &&
      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
    ConvertedType = ToType;
    return true;
  }

  // Blocks: Block pointers can be converted to void*.
  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
      ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
    ConvertedType = ToType;
    return true;
  }
  // Blocks: A null pointer constant can be converted to a block
  // pointer type.
  if (ToType->isBlockPointerType() &&
      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
    ConvertedType = ToType;
    return true;
  }

  // If the left-hand-side is nullptr_t, the right side can be a null
  // pointer constant.
  if (ToType->isNullPtrType() &&
      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
    ConvertedType = ToType;
    return true;
  }

  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
  if (!ToTypePtr)
    return false;

  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
    ConvertedType = ToType;
    return true;
  }

  // Beyond this point, both types need to be pointers
  // , including objective-c pointers.
  QualType ToPointeeType = ToTypePtr->getPointeeType();
  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
      !getLangOpts().ObjCAutoRefCount) {
    ConvertedType = BuildSimilarlyQualifiedPointerType(
        FromType->castAs<ObjCObjectPointerType>(), ToPointeeType, ToType,
        Context);
    return true;
  }
  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
  if (!FromTypePtr)
    return false;

  QualType FromPointeeType = FromTypePtr->getPointeeType();

  // If the unqualified pointee types are the same, this can't be a
  // pointer conversion, so don't do all of the work below.
  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
    return false;

  // An rvalue of type "pointer to cv T," where T is an object type,
  // can be converted to an rvalue of type "pointer to cv void" (C++
  // 4.10p2).
  if (FromPointeeType->isIncompleteOrObjectType() &&
      ToPointeeType->isVoidType()) {
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
                                                       ToPointeeType,
                                                       ToType, Context,
                                                   /*StripObjCLifetime=*/true);
    return true;
  }

  // MSVC allows implicit function to void* type conversion.
  if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
      ToPointeeType->isVoidType()) {
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
                                                       ToPointeeType,
                                                       ToType, Context);
    return true;
  }

  // When we're overloading in C, we allow a special kind of pointer
  // conversion for compatible-but-not-identical pointee types.
  if (!getLangOpts().CPlusPlus &&
      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
                                                       ToPointeeType,
                                                       ToType, Context);
    return true;
  }

  // C++ [conv.ptr]p3:
  //
  //   An rvalue of type "pointer to cv D," where D is a class type,
  //   can be converted to an rvalue of type "pointer to cv B," where
  //   B is a base class (clause 10) of D. If B is an inaccessible
  //   (clause 11) or ambiguous (10.2) base class of D, a program that
  //   necessitates this conversion is ill-formed. The result of the
  //   conversion is a pointer to the base class sub-object of the
  //   derived class object. The null pointer value is converted to
  //   the null pointer value of the destination type.
  //
  // Note that we do not check for ambiguity or inaccessibility
  // here. That is handled by CheckPointerConversion.
  if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
      ToPointeeType->isRecordType() &&
      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
      IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
                                                       ToPointeeType,
                                                       ToType, Context);
    return true;
  }

  if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
      Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
                                                       ToPointeeType,
                                                       ToType, Context);
    return true;
  }

  return false;
}

/// Adopt the given qualifiers for the given type.
static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
  Qualifiers TQs = T.getQualifiers();

  // Check whether qualifiers already match.
  if (TQs == Qs)
    return T;

  if (Qs.compatiblyIncludes(TQs))
    return Context.getQualifiedType(T, Qs);

  return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
}

/// isObjCPointerConversion - Determines whether this is an
/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
/// with the same arguments and return values.
bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
                                   QualType& ConvertedType,
                                   bool &IncompatibleObjC) {
  if (!getLangOpts().ObjC)
    return false;

  // The set of qualifiers on the type we're converting from.
  Qualifiers FromQualifiers = FromType.getQualifiers();

  // First, we handle all conversions on ObjC object pointer types.
  const ObjCObjectPointerType* ToObjCPtr =
    ToType->getAs<ObjCObjectPointerType>();
  const ObjCObjectPointerType *FromObjCPtr =
    FromType->getAs<ObjCObjectPointerType>();

  if (ToObjCPtr && FromObjCPtr) {
    // If the pointee types are the same (ignoring qualifications),
    // then this is not a pointer conversion.
    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
                                       FromObjCPtr->getPointeeType()))
      return false;

    // Conversion between Objective-C pointers.
    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
      if (getLangOpts().CPlusPlus && LHS && RHS &&
          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
                                                FromObjCPtr->getPointeeType()))
        return false;
      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
                                                   ToObjCPtr->getPointeeType(),
                                                         ToType, Context);
      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
      return true;
    }

    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
      // Okay: this is some kind of implicit downcast of Objective-C
      // interfaces, which is permitted. However, we're going to
      // complain about it.
      IncompatibleObjC = true;
      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
                                                   ToObjCPtr->getPointeeType(),
                                                         ToType, Context);
      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
      return true;
    }
  }
  // Beyond this point, both types need to be C pointers or block pointers.
  QualType ToPointeeType;
  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
    ToPointeeType = ToCPtr->getPointeeType();
  else if (const BlockPointerType *ToBlockPtr =
            ToType->getAs<BlockPointerType>()) {
    // Objective C++: We're able to convert from a pointer to any object
    // to a block pointer type.
    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
      return true;
    }
    ToPointeeType = ToBlockPtr->getPointeeType();
  }
  else if (FromType->getAs<BlockPointerType>() &&
           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
    // Objective C++: We're able to convert from a block pointer type to a
    // pointer to any object.
    ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
    return true;
  }
  else
    return false;

  QualType FromPointeeType;
  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
    FromPointeeType = FromCPtr->getPointeeType();
  else if (const BlockPointerType *FromBlockPtr =
           FromType->getAs<BlockPointerType>())
    FromPointeeType = FromBlockPtr->getPointeeType();
  else
    return false;

  // If we have pointers to pointers, recursively check whether this
  // is an Objective-C conversion.
  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
                              IncompatibleObjC)) {
    // We always complain about this conversion.
    IncompatibleObjC = true;
    ConvertedType = Context.getPointerType(ConvertedType);
    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
    return true;
  }
  // Allow conversion of pointee being objective-c pointer to another one;
  // as in I* to id.
  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
      ToPointeeType->getAs<ObjCObjectPointerType>() &&
      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
                              IncompatibleObjC)) {

    ConvertedType = Context.getPointerType(ConvertedType);
    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
    return true;
  }

  // If we have pointers to functions or blocks, check whether the only
  // differences in the argument and result types are in Objective-C
  // pointer conversions. If so, we permit the conversion (but
  // complain about it).
  const FunctionProtoType *FromFunctionType
    = FromPointeeType->getAs<FunctionProtoType>();
  const FunctionProtoType *ToFunctionType
    = ToPointeeType->getAs<FunctionProtoType>();
  if (FromFunctionType && ToFunctionType) {
    // If the function types are exactly the same, this isn't an
    // Objective-C pointer conversion.
    if (Context.getCanonicalType(FromPointeeType)
          == Context.getCanonicalType(ToPointeeType))
      return false;

    // Perform the quick checks that will tell us whether these
    // function types are obviously different.
    if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
        FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
      return false;

    bool HasObjCConversion = false;
    if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
        Context.getCanonicalType(ToFunctionType->getReturnType())) {
      // Okay, the types match exactly. Nothing to do.
    } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
                                       ToFunctionType->getReturnType(),
                                       ConvertedType, IncompatibleObjC)) {
      // Okay, we have an Objective-C pointer conversion.
      HasObjCConversion = true;
    } else {
      // Function types are too different. Abort.
      return false;
    }

    // Check argument types.
    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
         ArgIdx != NumArgs; ++ArgIdx) {
      QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
      QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
      if (Context.getCanonicalType(FromArgType)
            == Context.getCanonicalType(ToArgType)) {
        // Okay, the types match exactly. Nothing to do.
      } else if (isObjCPointerConversion(FromArgType, ToArgType,
                                         ConvertedType, IncompatibleObjC)) {
        // Okay, we have an Objective-C pointer conversion.
        HasObjCConversion = true;
      } else {
        // Argument types are too different. Abort.
        return false;
      }
    }

    if (HasObjCConversion) {
      // We had an Objective-C conversion. Allow this pointer
      // conversion, but complain about it.
      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
      IncompatibleObjC = true;
      return true;
    }
  }

  return false;
}

/// Determine whether this is an Objective-C writeback conversion,
/// used for parameter passing when performing automatic reference counting.
///
/// \param FromType The type we're converting form.
///
/// \param ToType The type we're converting to.
///
/// \param ConvertedType The type that will be produced after applying
/// this conversion.
bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
                                     QualType &ConvertedType) {
  if (!getLangOpts().ObjCAutoRefCount ||
      Context.hasSameUnqualifiedType(FromType, ToType))
    return false;

  // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
  QualType ToPointee;
  if (const PointerType *ToPointer = ToType->getAs<PointerType>())
    ToPointee = ToPointer->getPointeeType();
  else
    return false;

  Qualifiers ToQuals = ToPointee.getQualifiers();
  if (!ToPointee->isObjCLifetimeType() ||
      ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
      !ToQuals.withoutObjCLifetime().empty())
    return false;

  // Argument must be a pointer to __strong to __weak.
  QualType FromPointee;
  if (const PointerType *FromPointer = FromType->getAs<PointerType>())
    FromPointee = FromPointer->getPointeeType();
  else
    return false;

  Qualifiers FromQuals = FromPointee.getQualifiers();
  if (!FromPointee->isObjCLifetimeType() ||
      (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
       FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
    return false;

  // Make sure that we have compatible qualifiers.
  FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
  if (!ToQuals.compatiblyIncludes(FromQuals))
    return false;

  // Remove qualifiers from the pointee type we're converting from; they
  // aren't used in the compatibility check belong, and we'll be adding back
  // qualifiers (with __autoreleasing) if the compatibility check succeeds.
  FromPointee = FromPointee.getUnqualifiedType();

  // The unqualified form of the pointee types must be compatible.
  ToPointee = ToPointee.getUnqualifiedType();
  bool IncompatibleObjC;
  if (Context.typesAreCompatible(FromPointee, ToPointee))
    FromPointee = ToPointee;
  else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
                                    IncompatibleObjC))
    return false;

  /// Construct the type we're converting to, which is a pointer to
  /// __autoreleasing pointee.
  FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
  ConvertedType = Context.getPointerType(FromPointee);
  return true;
}

bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
                                    QualType& ConvertedType) {
  QualType ToPointeeType;
  if (const BlockPointerType *ToBlockPtr =
        ToType->getAs<BlockPointerType>())
    ToPointeeType = ToBlockPtr->getPointeeType();
  else
    return false;

  QualType FromPointeeType;
  if (const BlockPointerType *FromBlockPtr =
      FromType->getAs<BlockPointerType>())
    FromPointeeType = FromBlockPtr->getPointeeType();
  else
    return false;
  // We have pointer to blocks, check whether the only
  // differences in the argument and result types are in Objective-C
  // pointer conversions. If so, we permit the conversion.

  const FunctionProtoType *FromFunctionType
    = FromPointeeType->getAs<FunctionProtoType>();
  const FunctionProtoType *ToFunctionType
    = ToPointeeType->getAs<FunctionProtoType>();

  if (!FromFunctionType || !ToFunctionType)
    return false;

  if (Context.hasSameType(FromPointeeType, ToPointeeType))
    return true;

  // Perform the quick checks that will tell us whether these
  // function types are obviously different.
  if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
      FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
    return false;

  FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
  FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
  if (FromEInfo != ToEInfo)
    return false;

  bool IncompatibleObjC = false;
  if (Context.hasSameType(FromFunctionType->getReturnType(),
                          ToFunctionType->getReturnType())) {
    // Okay, the types match exactly. Nothing to do.
  } else {
    QualType RHS = FromFunctionType->getReturnType();
    QualType LHS = ToFunctionType->getReturnType();
    if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
        !RHS.hasQualifiers() && LHS.hasQualifiers())
       LHS = LHS.getUnqualifiedType();

     if (Context.hasSameType(RHS,LHS)) {
       // OK exact match.
     } else if (isObjCPointerConversion(RHS, LHS,
                                        ConvertedType, IncompatibleObjC)) {
     if (IncompatibleObjC)
       return false;
     // Okay, we have an Objective-C pointer conversion.
     }
     else
       return false;
   }

   // Check argument types.
   for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
        ArgIdx != NumArgs; ++ArgIdx) {
     IncompatibleObjC = false;
     QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
     QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
     if (Context.hasSameType(FromArgType, ToArgType)) {
       // Okay, the types match exactly. Nothing to do.
     } else if (isObjCPointerConversion(ToArgType, FromArgType,
                                        ConvertedType, IncompatibleObjC)) {
       if (IncompatibleObjC)
         return false;
       // Okay, we have an Objective-C pointer conversion.
     } else
       // Argument types are too different. Abort.
       return false;
   }

   SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
   bool CanUseToFPT, CanUseFromFPT;
   if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
                                      CanUseToFPT, CanUseFromFPT,
                                      NewParamInfos))
     return false;

   ConvertedType = ToType;
   return true;
}

enum {
  ft_default,
  ft_different_class,
  ft_parameter_arity,
  ft_parameter_mismatch,
  ft_return_type,
  ft_qualifer_mismatch,
  ft_noexcept
};

/// Attempts to get the FunctionProtoType from a Type. Handles
/// MemberFunctionPointers properly.
static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
  if (auto *FPT = FromType->getAs<FunctionProtoType>())
    return FPT;

  if (auto *MPT = FromType->getAs<MemberPointerType>())
    return MPT->getPointeeType()->getAs<FunctionProtoType>();

  return nullptr;
}

/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
/// function types.  Catches different number of parameter, mismatch in
/// parameter types, and different return types.
void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
                                      QualType FromType, QualType ToType) {
  // If either type is not valid, include no extra info.
  if (FromType.isNull() || ToType.isNull()) {
    PDiag << ft_default;
    return;
  }

  // Get the function type from the pointers.
  if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
    const auto *FromMember = FromType->castAs<MemberPointerType>(),
               *ToMember = ToType->castAs<MemberPointerType>();
    if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
      PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
            << QualType(FromMember->getClass(), 0);
      return;
    }
    FromType = FromMember->getPointeeType();
    ToType = ToMember->getPointeeType();
  }

  if (FromType->isPointerType())
    FromType = FromType->getPointeeType();
  if (ToType->isPointerType())
    ToType = ToType->getPointeeType();

  // Remove references.
  FromType = FromType.getNonReferenceType();
  ToType = ToType.getNonReferenceType();

  // Don't print extra info for non-specialized template functions.
  if (FromType->isInstantiationDependentType() &&
      !FromType->getAs<TemplateSpecializationType>()) {
    PDiag << ft_default;
    return;
  }

  // No extra info for same types.
  if (Context.hasSameType(FromType, ToType)) {
    PDiag << ft_default;
    return;
  }

  const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
                          *ToFunction = tryGetFunctionProtoType(ToType);

  // Both types need to be function types.
  if (!FromFunction || !ToFunction) {
    PDiag << ft_default;
    return;
  }

  if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
    PDiag << ft_parameter_arity << ToFunction->getNumParams()
          << FromFunction->getNumParams();
    return;
  }

  // Handle different parameter types.
  unsigned ArgPos;
  if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
    PDiag << ft_parameter_mismatch << ArgPos + 1
          << ToFunction->getParamType(ArgPos)
          << FromFunction->getParamType(ArgPos);
    return;
  }

  // Handle different return type.
  if (!Context.hasSameType(FromFunction->getReturnType(),
                           ToFunction->getReturnType())) {
    PDiag << ft_return_type << ToFunction->getReturnType()
          << FromFunction->getReturnType();
    return;
  }

  if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
    PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
          << FromFunction->getMethodQuals();
    return;
  }

  // Handle exception specification differences on canonical type (in C++17
  // onwards).
  if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
          ->isNothrow() !=
      cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
          ->isNothrow()) {
    PDiag << ft_noexcept;
    return;
  }

  // Unable to find a difference, so add no extra info.
  PDiag << ft_default;
}

/// FunctionParamTypesAreEqual - This routine checks two function proto types
/// for equality of their argument types. Caller has already checked that
/// they have same number of arguments.  If the parameters are different,
/// ArgPos will have the parameter index of the first different parameter.
bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
                                      const FunctionProtoType *NewType,
                                      unsigned *ArgPos) {
  for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
                                              N = NewType->param_type_begin(),
                                              E = OldType->param_type_end();
       O && (O != E); ++O, ++N) {
    // Ignore address spaces in pointee type. This is to disallow overloading
    // on __ptr32/__ptr64 address spaces.
    QualType Old = Context.removePtrSizeAddrSpace(O->getUnqualifiedType());
    QualType New = Context.removePtrSizeAddrSpace(N->getUnqualifiedType());

    if (!Context.hasSameType(Old, New)) {
      if (ArgPos)
        *ArgPos = O - OldType->param_type_begin();
      return false;
    }
  }
  return true;
}

/// CheckPointerConversion - Check the pointer conversion from the
/// expression From to the type ToType. This routine checks for
/// ambiguous or inaccessible derived-to-base pointer
/// conversions for which IsPointerConversion has already returned
/// true. It returns true and produces a diagnostic if there was an
/// error, or returns false otherwise.
bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
                                  CastKind &Kind,
                                  CXXCastPath& BasePath,
                                  bool IgnoreBaseAccess,
                                  bool Diagnose) {
  QualType FromType = From->getType();
  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;

  Kind = CK_BitCast;

  if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
      From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
          Expr::NPCK_ZeroExpression) {
    if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
      DiagRuntimeBehavior(From->getExprLoc(), From,
                          PDiag(diag::warn_impcast_bool_to_null_pointer)
                            << ToType << From->getSourceRange());
    else if (!isUnevaluatedContext())
      Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
        << ToType << From->getSourceRange();
  }
  if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
    if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
      QualType FromPointeeType = FromPtrType->getPointeeType(),
               ToPointeeType   = ToPtrType->getPointeeType();

      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
        // We must have a derived-to-base conversion. Check an
        // ambiguous or inaccessible conversion.
        unsigned InaccessibleID = 0;
        unsigned AmbiguousID = 0;
        if (Diagnose) {
          InaccessibleID = diag::err_upcast_to_inaccessible_base;
          AmbiguousID = diag::err_ambiguous_derived_to_base_conv;
        }
        if (CheckDerivedToBaseConversion(
                FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID,
                From->getExprLoc(), From->getSourceRange(), DeclarationName(),
                &BasePath, IgnoreBaseAccess))
          return true;

        // The conversion was successful.
        Kind = CK_DerivedToBase;
      }

      if (Diagnose && !IsCStyleOrFunctionalCast &&
          FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
        assert(getLangOpts().MSVCCompat &&
               "this should only be possible with MSVCCompat!");
        Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
            << From->getSourceRange();
      }
    }
  } else if (const ObjCObjectPointerType *ToPtrType =
               ToType->getAs<ObjCObjectPointerType>()) {
    if (const ObjCObjectPointerType *FromPtrType =
          FromType->getAs<ObjCObjectPointerType>()) {
      // Objective-C++ conversions are always okay.
      // FIXME: We should have a different class of conversions for the
      // Objective-C++ implicit conversions.
      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
        return false;
    } else if (FromType->isBlockPointerType()) {
      Kind = CK_BlockPointerToObjCPointerCast;
    } else {
      Kind = CK_CPointerToObjCPointerCast;
    }
  } else if (ToType->isBlockPointerType()) {
    if (!FromType->isBlockPointerType())
      Kind = CK_AnyPointerToBlockPointerCast;
  }

  // We shouldn't fall into this case unless it's valid for other
  // reasons.
  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
    Kind = CK_NullToPointer;

  return false;
}

/// IsMemberPointerConversion - Determines whether the conversion of the
/// expression From, which has the (possibly adjusted) type FromType, can be
/// converted to the type ToType via a member pointer conversion (C++ 4.11).
/// If so, returns true and places the converted type (that might differ from
/// ToType in its cv-qualifiers at some level) into ConvertedType.
bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
                                     QualType ToType,
                                     bool InOverloadResolution,
                                     QualType &ConvertedType) {
  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
  if (!ToTypePtr)
    return false;

  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
  if (From->isNullPointerConstant(Context,
                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
                                        : Expr::NPC_ValueDependentIsNull)) {
    ConvertedType = ToType;
    return true;
  }

  // Otherwise, both types have to be member pointers.
  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
  if (!FromTypePtr)
    return false;

  // A pointer to member of B can be converted to a pointer to member of D,
  // where D is derived from B (C++ 4.11p2).
  QualType FromClass(FromTypePtr->getClass(), 0);
  QualType ToClass(ToTypePtr->getClass(), 0);

  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
      IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
                                                 ToClass.getTypePtr());
    return true;
  }

  return false;
}

/// CheckMemberPointerConversion - Check the member pointer conversion from the
/// expression From to the type ToType. This routine checks for ambiguous or
/// virtual or inaccessible base-to-derived member pointer conversions
/// for which IsMemberPointerConversion has already returned true. It returns
/// true and produces a diagnostic if there was an error, or returns false
/// otherwise.
bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
                                        CastKind &Kind,
                                        CXXCastPath &BasePath,
                                        bool IgnoreBaseAccess) {
  QualType FromType = From->getType();
  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
  if (!FromPtrType) {
    // This must be a null pointer to member pointer conversion
    assert(From->isNullPointerConstant(Context,
                                       Expr::NPC_ValueDependentIsNull) &&
           "Expr must be null pointer constant!");
    Kind = CK_NullToMemberPointer;
    return false;
  }

  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
  assert(ToPtrType && "No member pointer cast has a target type "
                      "that is not a member pointer.");

  QualType FromClass = QualType(FromPtrType->getClass(), 0);
  QualType ToClass   = QualType(ToPtrType->getClass(), 0);

  // FIXME: What about dependent types?
  assert(FromClass->isRecordType() && "Pointer into non-class.");
  assert(ToClass->isRecordType() && "Pointer into non-class.");

  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
                     /*DetectVirtual=*/true);
  bool DerivationOkay =
      IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
  assert(DerivationOkay &&
         "Should not have been called if derivation isn't OK.");
  (void)DerivationOkay;

  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
                                  getUnqualifiedType())) {
    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
    return true;
  }

  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
      << FromClass << ToClass << QualType(VBase, 0)
      << From->getSourceRange();
    return true;
  }

  if (!IgnoreBaseAccess)
    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
                         Paths.front(),
                         diag::err_downcast_from_inaccessible_base);

  // Must be a base to derived member conversion.
  BuildBasePathArray(Paths, BasePath);
  Kind = CK_BaseToDerivedMemberPointer;
  return false;
}

/// Determine whether the lifetime conversion between the two given
/// qualifiers sets is nontrivial.
static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
                                               Qualifiers ToQuals) {
  // Converting anything to const __unsafe_unretained is trivial.
  if (ToQuals.hasConst() &&
      ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
    return false;

  return true;
}

/// Perform a single iteration of the loop for checking if a qualification
/// conversion is valid.
///
/// Specifically, check whether any change between the qualifiers of \p
/// FromType and \p ToType is permissible, given knowledge about whether every
/// outer layer is const-qualified.
static bool isQualificationConversionStep(QualType FromType, QualType ToType,
                                          bool CStyle, bool IsTopLevel,
                                          bool &PreviousToQualsIncludeConst,
                                          bool &ObjCLifetimeConversion) {
  Qualifiers FromQuals = FromType.getQualifiers();
  Qualifiers ToQuals = ToType.getQualifiers();

  // Ignore __unaligned qualifier if this type is void.
  if (ToType.getUnqualifiedType()->isVoidType())
    FromQuals.removeUnaligned();

  // Objective-C ARC:
  //   Check Objective-C lifetime conversions.
  if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) {
    if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
      if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
        ObjCLifetimeConversion = true;
      FromQuals.removeObjCLifetime();
      ToQuals.removeObjCLifetime();
    } else {
      // Qualification conversions cannot cast between different
      // Objective-C lifetime qualifiers.
      return false;
    }
  }

  // Allow addition/removal of GC attributes but not changing GC attributes.
  if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
      (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
    FromQuals.removeObjCGCAttr();
    ToQuals.removeObjCGCAttr();
  }

  //   -- for every j > 0, if const is in cv 1,j then const is in cv
  //      2,j, and similarly for volatile.
  if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
    return false;

  // If address spaces mismatch:
  //  - in top level it is only valid to convert to addr space that is a
  //    superset in all cases apart from C-style casts where we allow
  //    conversions between overlapping address spaces.
  //  - in non-top levels it is not a valid conversion.
  if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() &&
      (!IsTopLevel ||
       !(ToQuals.isAddressSpaceSupersetOf(FromQuals) ||
         (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals)))))
    return false;

  //   -- if the cv 1,j and cv 2,j are different, then const is in
  //      every cv for 0 < k < j.
  if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() &&
      !PreviousToQualsIncludeConst)
    return false;

  // The following wording is from C++20, where the result of the conversion
  // is T3, not T2.
  //   -- if [...] P1,i [...] is "array of unknown bound of", P3,i is
  //      "array of unknown bound of"
  if (FromType->isIncompleteArrayType() && !ToType->isIncompleteArrayType())
    return false;

  //   -- if the resulting P3,i is different from P1,i [...], then const is
  //      added to every cv 3_k for 0 < k < i.
  if (!CStyle && FromType->isConstantArrayType() &&
      ToType->isIncompleteArrayType() && !PreviousToQualsIncludeConst)
    return false;

  // Keep track of whether all prior cv-qualifiers in the "to" type
  // include const.
  PreviousToQualsIncludeConst =
      PreviousToQualsIncludeConst && ToQuals.hasConst();
  return true;
}

/// IsQualificationConversion - Determines whether the conversion from
/// an rvalue of type FromType to ToType is a qualification conversion
/// (C++ 4.4).
///
/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
/// when the qualification conversion involves a change in the Objective-C
/// object lifetime.
bool
Sema::IsQualificationConversion(QualType FromType, QualType ToType,
                                bool CStyle, bool &ObjCLifetimeConversion) {
  FromType = Context.getCanonicalType(FromType);
  ToType = Context.getCanonicalType(ToType);
  ObjCLifetimeConversion = false;

  // If FromType and ToType are the same type, this is not a
  // qualification conversion.
  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
    return false;

  // (C++ 4.4p4):
  //   A conversion can add cv-qualifiers at levels other than the first
  //   in multi-level pointers, subject to the following rules: [...]
  bool PreviousToQualsIncludeConst = true;
  bool UnwrappedAnyPointer = false;
  while (Context.UnwrapSimilarTypes(FromType, ToType)) {
    if (!isQualificationConversionStep(
            FromType, ToType, CStyle, !UnwrappedAnyPointer,
            PreviousToQualsIncludeConst, ObjCLifetimeConversion))
      return false;
    UnwrappedAnyPointer = true;
  }

  // We are left with FromType and ToType being the pointee types
  // after unwrapping the original FromType and ToType the same number
  // of times. If we unwrapped any pointers, and if FromType and
  // ToType have the same unqualified type (since we checked
  // qualifiers above), then this is a qualification conversion.
  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
}

/// - Determine whether this is a conversion from a scalar type to an
/// atomic type.
///
/// If successful, updates \c SCS's second and third steps in the conversion
/// sequence to finish the conversion.
static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
                                bool InOverloadResolution,
                                StandardConversionSequence &SCS,
                                bool CStyle) {
  const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
  if (!ToAtomic)
    return false;

  StandardConversionSequence InnerSCS;
  if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
                            InOverloadResolution, InnerSCS,
                            CStyle, /*AllowObjCWritebackConversion=*/false))
    return false;

  SCS.Second = InnerSCS.Second;
  SCS.setToType(1, InnerSCS.getToType(1));
  SCS.Third = InnerSCS.Third;
  SCS.QualificationIncludesObjCLifetime
    = InnerSCS.QualificationIncludesObjCLifetime;
  SCS.setToType(2, InnerSCS.getToType(2));
  return true;
}

static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
                                              CXXConstructorDecl *Constructor,
                                              QualType Type) {
  const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>();
  if (CtorType->getNumParams() > 0) {
    QualType FirstArg = CtorType->getParamType(0);
    if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
      return true;
  }
  return false;
}

static OverloadingResult
IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
                                       CXXRecordDecl *To,
                                       UserDefinedConversionSequence &User,
                                       OverloadCandidateSet &CandidateSet,
                                       bool AllowExplicit) {
  CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
  for (auto *D : S.LookupConstructors(To)) {
    auto Info = getConstructorInfo(D);
    if (!Info)
      continue;

    bool Usable = !Info.Constructor->isInvalidDecl() &&
                  S.isInitListConstructor(Info.Constructor);
    if (Usable) {
      bool SuppressUserConversions = false;
      if (Info.ConstructorTmpl)
        S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
                                       /*ExplicitArgs*/ nullptr, From,
                                       CandidateSet, SuppressUserConversions,
                                       /*PartialOverloading*/ false,
                                       AllowExplicit);
      else
        S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
                               CandidateSet, SuppressUserConversions,
                               /*PartialOverloading*/ false, AllowExplicit);
    }
  }

  bool HadMultipleCandidates = (CandidateSet.size() > 1);

  OverloadCandidateSet::iterator Best;
  switch (auto Result =
              CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
  case OR_Deleted:
  case OR_Success: {
    // Record the standard conversion we used and the conversion function.
    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
    QualType ThisType = Constructor->getThisType();
    // Initializer lists don't have conversions as such.
    User.Before.setAsIdentityConversion();
    User.HadMultipleCandidates = HadMultipleCandidates;
    User.ConversionFunction = Constructor;
    User.FoundConversionFunction = Best->FoundDecl;
    User.After.setAsIdentityConversion();
    User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
    User.After.setAllToTypes(ToType);
    return Result;
  }

  case OR_No_Viable_Function:
    return OR_No_Viable_Function;
  case OR_Ambiguous:
    return OR_Ambiguous;
  }

  llvm_unreachable("Invalid OverloadResult!");
}

/// Determines whether there is a user-defined conversion sequence
/// (C++ [over.ics.user]) that converts expression From to the type
/// ToType. If such a conversion exists, User will contain the
/// user-defined conversion sequence that performs such a conversion
/// and this routine will return true. Otherwise, this routine returns
/// false and User is unspecified.
///
/// \param AllowExplicit  true if the conversion should consider C++0x
/// "explicit" conversion functions as well as non-explicit conversion
/// functions (C++0x [class.conv.fct]p2).
///
/// \param AllowObjCConversionOnExplicit true if the conversion should
/// allow an extra Objective-C pointer conversion on uses of explicit
/// constructors. Requires \c AllowExplicit to also be set.
static OverloadingResult
IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
                        UserDefinedConversionSequence &User,
                        OverloadCandidateSet &CandidateSet,
                        AllowedExplicit AllowExplicit,
                        bool AllowObjCConversionOnExplicit) {
  assert(AllowExplicit != AllowedExplicit::None ||
         !AllowObjCConversionOnExplicit);
  CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);

  // Whether we will only visit constructors.
  bool ConstructorsOnly = false;

  // If the type we are conversion to is a class type, enumerate its
  // constructors.
  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
    // C++ [over.match.ctor]p1:
    //   When objects of class type are direct-initialized (8.5), or
    //   copy-initialized from an expression of the same or a
    //   derived class type (8.5), overload resolution selects the
    //   constructor. [...] For copy-initialization, the candidate
    //   functions are all the converting constructors (12.3.1) of
    //   that class. The argument list is the expression-list within
    //   the parentheses of the initializer.
    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
        (From->getType()->getAs<RecordType>() &&
         S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
      ConstructorsOnly = true;

    if (!S.isCompleteType(From->getExprLoc(), ToType)) {
      // We're not going to find any constructors.
    } else if (CXXRecordDecl *ToRecordDecl
                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {

      Expr **Args = &From;
      unsigned NumArgs = 1;
      bool ListInitializing = false;
      if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
        // But first, see if there is an init-list-constructor that will work.
        OverloadingResult Result = IsInitializerListConstructorConversion(
            S, From, ToType, ToRecordDecl, User, CandidateSet,
            AllowExplicit == AllowedExplicit::All);
        if (Result != OR_No_Viable_Function)
          return Result;
        // Never mind.
        CandidateSet.clear(
            OverloadCandidateSet::CSK_InitByUserDefinedConversion);

        // If we're list-initializing, we pass the individual elements as
        // arguments, not the entire list.
        Args = InitList->getInits();
        NumArgs = InitList->getNumInits();
        ListInitializing = true;
      }

      for (auto *D : S.LookupConstructors(ToRecordDecl)) {
        auto Info = getConstructorInfo(D);
        if (!Info)
          continue;

        bool Usable = !Info.Constructor->isInvalidDecl();
        if (!ListInitializing)
          Usable = Usable && Info.Constructor->isConvertingConstructor(
                                 /*AllowExplicit*/ true);
        if (Usable) {
          bool SuppressUserConversions = !ConstructorsOnly;
          // C++20 [over.best.ics.general]/4.5:
          //   if the target is the first parameter of a constructor [of class
          //   X] and the constructor [...] is a candidate by [...] the second
          //   phase of [over.match.list] when the initializer list has exactly
          //   one element that is itself an initializer list, [...] and the
          //   conversion is to X or reference to cv X, user-defined conversion
          //   sequences are not cnosidered.
          if (SuppressUserConversions && ListInitializing) {
            SuppressUserConversions =
                NumArgs == 1 && isa<InitListExpr>(Args[0]) &&
                isFirstArgumentCompatibleWithType(S.Context, Info.Constructor,
                                                  ToType);
          }
          if (Info.ConstructorTmpl)
            S.AddTemplateOverloadCandidate(
                Info.ConstructorTmpl, Info.FoundDecl,
                /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
                CandidateSet, SuppressUserConversions,
                /*PartialOverloading*/ false,
                AllowExplicit == AllowedExplicit::All);
          else
            // Allow one user-defined conversion when user specifies a
            // From->ToType conversion via an static cast (c-style, etc).
            S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
                                   llvm::makeArrayRef(Args, NumArgs),
                                   CandidateSet, SuppressUserConversions,
                                   /*PartialOverloading*/ false,
                                   AllowExplicit == AllowedExplicit::All);
        }
      }
    }
  }

  // Enumerate conversion functions, if we're allowed to.
  if (ConstructorsOnly || isa<InitListExpr>(From)) {
  } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
    // No conversion functions from incomplete types.
  } else if (const RecordType *FromRecordType =
                 From->getType()->getAs<RecordType>()) {
    if (CXXRecordDecl *FromRecordDecl
         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
      // Add all of the conversion functions as candidates.
      const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
      for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
        DeclAccessPair FoundDecl = I.getPair();
        NamedDecl *D = FoundDecl.getDecl();
        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
        if (isa<UsingShadowDecl>(D))
          D = cast<UsingShadowDecl>(D)->getTargetDecl();

        CXXConversionDecl *Conv;
        FunctionTemplateDecl *ConvTemplate;
        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
        else
          Conv = cast<CXXConversionDecl>(D);

        if (ConvTemplate)
          S.AddTemplateConversionCandidate(
              ConvTemplate, FoundDecl, ActingContext, From, ToType,
              CandidateSet, AllowObjCConversionOnExplicit,
              AllowExplicit != AllowedExplicit::None);
        else
          S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType,
                                   CandidateSet, AllowObjCConversionOnExplicit,
                                   AllowExplicit != AllowedExplicit::None);
      }
    }
  }

  bool HadMultipleCandidates = (CandidateSet.size() > 1);

  OverloadCandidateSet::iterator Best;
  switch (auto Result =
              CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
  case OR_Success:
  case OR_Deleted:
    // Record the standard conversion we used and the conversion function.
    if (CXXConstructorDecl *Constructor
          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
      // C++ [over.ics.user]p1:
      //   If the user-defined conversion is specified by a
      //   constructor (12.3.1), the initial standard conversion
      //   sequence converts the source type to the type required by
      //   the argument of the constructor.
      //
      QualType ThisType = Constructor->getThisType();
      if (isa<InitListExpr>(From)) {
        // Initializer lists don't have conversions as such.
        User.Before.setAsIdentityConversion();
      } else {
        if (Best->Conversions[0].isEllipsis())
          User.EllipsisConversion = true;
        else {
          User.Before = Best->Conversions[0].Standard;
          User.EllipsisConversion = false;
        }
      }
      User.HadMultipleCandidates = HadMultipleCandidates;
      User.ConversionFunction = Constructor;
      User.FoundConversionFunction = Best->FoundDecl;
      User.After.setAsIdentityConversion();
      User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
      User.After.setAllToTypes(ToType);
      return Result;
    }
    if (CXXConversionDecl *Conversion
                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
      // C++ [over.ics.user]p1:
      //
      //   [...] If the user-defined conversion is specified by a
      //   conversion function (12.3.2), the initial standard
      //   conversion sequence converts the source type to the
      //   implicit object parameter of the conversion function.
      User.Before = Best->Conversions[0].Standard;
      User.HadMultipleCandidates = HadMultipleCandidates;
      User.ConversionFunction = Conversion;
      User.FoundConversionFunction = Best->FoundDecl;
      User.EllipsisConversion = false;

      // C++ [over.ics.user]p2:
      //   The second standard conversion sequence converts the
      //   result of the user-defined conversion to the target type
      //   for the sequence. Since an implicit conversion sequence
      //   is an initialization, the special rules for
      //   initialization by user-defined conversion apply when
      //   selecting the best user-defined conversion for a
      //   user-defined conversion sequence (see 13.3.3 and
      //   13.3.3.1).
      User.After = Best->FinalConversion;
      return Result;
    }
    llvm_unreachable("Not a constructor or conversion function?");

  case OR_No_Viable_Function:
    return OR_No_Viable_Function;

  case OR_Ambiguous:
    return OR_Ambiguous;
  }

  llvm_unreachable("Invalid OverloadResult!");
}

bool
Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
  ImplicitConversionSequence ICS;
  OverloadCandidateSet CandidateSet(From->getExprLoc(),
                                    OverloadCandidateSet::CSK_Normal);
  OverloadingResult OvResult =
    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
                            CandidateSet, AllowedExplicit::None, false);

  if (!(OvResult == OR_Ambiguous ||
        (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
    return false;

  auto Cands = CandidateSet.CompleteCandidates(
      *this,
      OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates,
      From);
  if (OvResult == OR_Ambiguous)
    Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
        << From->getType() << ToType << From->getSourceRange();
  else { // OR_No_Viable_Function && !CandidateSet.empty()
    if (!RequireCompleteType(From->getBeginLoc(), ToType,
                             diag::err_typecheck_nonviable_condition_incomplete,
                             From->getType(), From->getSourceRange()))
      Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
          << false << From->getType() << From->getSourceRange() << ToType;
  }

  CandidateSet.NoteCandidates(
                              *this, From, Cands);
  return true;
}

// Helper for compareConversionFunctions that gets the FunctionType that the
// conversion-operator return  value 'points' to, or nullptr.
static const FunctionType *
getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) {
  const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>();
  const PointerType *RetPtrTy =
      ConvFuncTy->getReturnType()->getAs<PointerType>();

  if (!RetPtrTy)
    return nullptr;

  return RetPtrTy->getPointeeType()->getAs<FunctionType>();
}

/// Compare the user-defined conversion functions or constructors
/// of two user-defined conversion sequences to determine whether any ordering
/// is possible.
static ImplicitConversionSequence::CompareKind
compareConversionFunctions(Sema &S, FunctionDecl *Function1,
                           FunctionDecl *Function2) {
  CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
  CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2);
  if (!Conv1 || !Conv2)
    return ImplicitConversionSequence::Indistinguishable;

  if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda())
    return ImplicitConversionSequence::Indistinguishable;

  // Objective-C++:
  //   If both conversion functions are implicitly-declared conversions from
  //   a lambda closure type to a function pointer and a block pointer,
  //   respectively, always prefer the conversion to a function pointer,
  //   because the function pointer is more lightweight and is more likely
  //   to keep code working.
  if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) {
    bool Block1 = Conv1->getConversionType()->isBlockPointerType();
    bool Block2 = Conv2->getConversionType()->isBlockPointerType();
    if (Block1 != Block2)
      return Block1 ? ImplicitConversionSequence::Worse
                    : ImplicitConversionSequence::Better;
  }

  // In order to support multiple calling conventions for the lambda conversion
  // operator (such as when the free and member function calling convention is
  // different), prefer the 'free' mechanism, followed by the calling-convention
  // of operator(). The latter is in place to support the MSVC-like solution of
  // defining ALL of the possible conversions in regards to calling-convention.
  const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1);
  const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2);

  if (Conv1FuncRet && Conv2FuncRet &&
      Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) {
    CallingConv Conv1CC = Conv1FuncRet->getCallConv();
    CallingConv Conv2CC = Conv2FuncRet->getCallConv();

    CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator();
    const auto *CallOpProto = CallOp->getType()->castAs<FunctionProtoType>();

    CallingConv CallOpCC =
        CallOp->getType()->castAs<FunctionType>()->getCallConv();
    CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
        CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
    CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
        CallOpProto->isVariadic(), /*IsCXXMethod=*/true);

    CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC};
    for (CallingConv CC : PrefOrder) {
      if (Conv1CC == CC)
        return ImplicitConversionSequence::Better;
      if (Conv2CC == CC)
        return ImplicitConversionSequence::Worse;
    }
  }

  return ImplicitConversionSequence::Indistinguishable;
}

static bool hasDeprecatedStringLiteralToCharPtrConversion(
    const ImplicitConversionSequence &ICS) {
  return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
         (ICS.isUserDefined() &&
          ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
}

/// CompareImplicitConversionSequences - Compare two implicit
/// conversion sequences to determine whether one is better than the
/// other or if they are indistinguishable (C++ 13.3.3.2).
static ImplicitConversionSequence::CompareKind
CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
                                   const ImplicitConversionSequence& ICS1,
                                   const ImplicitConversionSequence& ICS2)
{
  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
  // conversion sequences (as defined in 13.3.3.1)
  //   -- a standard conversion sequence (13.3.3.1.1) is a better
  //      conversion sequence than a user-defined conversion sequence or
  //      an ellipsis conversion sequence, and
  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
  //      conversion sequence than an ellipsis conversion sequence
  //      (13.3.3.1.3).
  //
  // C++0x [over.best.ics]p10:
  //   For the purpose of ranking implicit conversion sequences as
  //   described in 13.3.3.2, the ambiguous conversion sequence is
  //   treated as a user-defined sequence that is indistinguishable
  //   from any other user-defined conversion sequence.

  // String literal to 'char *' conversion has been deprecated in C++03. It has
  // been removed from C++11. We still accept this conversion, if it happens at
  // the best viable function. Otherwise, this conversion is considered worse
  // than ellipsis conversion. Consider this as an extension; this is not in the
  // standard. For example:
  //
  // int &f(...);    // #1
  // void f(char*);  // #2
  // void g() { int &r = f("foo"); }
  //
  // In C++03, we pick #2 as the best viable function.
  // In C++11, we pick #1 as the best viable function, because ellipsis
  // conversion is better than string-literal to char* conversion (since there
  // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
  // convert arguments, #2 would be the best viable function in C++11.
  // If the best viable function has this conversion, a warning will be issued
  // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.

  if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
      hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
          hasDeprecatedStringLiteralToCharPtrConversion(ICS2) &&
      // Ill-formedness must not differ
      ICS1.isBad() == ICS2.isBad())
    return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
               ? ImplicitConversionSequence::Worse
               : ImplicitConversionSequence::Better;

  if (ICS1.getKindRank() < ICS2.getKindRank())
    return ImplicitConversionSequence::Better;
  if (ICS2.getKindRank() < ICS1.getKindRank())
    return ImplicitConversionSequence::Worse;

  // The following checks require both conversion sequences to be of
  // the same kind.
  if (ICS1.getKind() != ICS2.getKind())
    return ImplicitConversionSequence::Indistinguishable;

  ImplicitConversionSequence::CompareKind Result =
      ImplicitConversionSequence::Indistinguishable;

  // Two implicit conversion sequences of the same form are
  // indistinguishable conversion sequences unless one of the
  // following rules apply: (C++ 13.3.3.2p3):

  // List-initialization sequence L1 is a better conversion sequence than
  // list-initialization sequence L2 if:
  // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
  //   if not that,
  // — L1 and L2 convert to arrays of the same element type, and either the
  //   number of elements n_1 initialized by L1 is less than the number of
  //   elements n_2 initialized by L2, or (C++20) n_1 = n_2 and L2 converts to
  //   an array of unknown bound and L1 does not,
  // even if one of the other rules in this paragraph would otherwise apply.
  if (!ICS1.isBad()) {
    bool StdInit1 = false, StdInit2 = false;
    if (ICS1.hasInitializerListContainerType())
      StdInit1 = S.isStdInitializerList(ICS1.getInitializerListContainerType(),
                                        nullptr);
    if (ICS2.hasInitializerListContainerType())
      StdInit2 = S.isStdInitializerList(ICS2.getInitializerListContainerType(),
                                        nullptr);
    if (StdInit1 != StdInit2)
      return StdInit1 ? ImplicitConversionSequence::Better
                      : ImplicitConversionSequence::Worse;

    if (ICS1.hasInitializerListContainerType() &&
        ICS2.hasInitializerListContainerType())
      if (auto *CAT1 = S.Context.getAsConstantArrayType(
              ICS1.getInitializerListContainerType()))
        if (auto *CAT2 = S.Context.getAsConstantArrayType(
                ICS2.getInitializerListContainerType())) {
          if (S.Context.hasSameUnqualifiedType(CAT1->getElementType(),
                                               CAT2->getElementType())) {
            // Both to arrays of the same element type
            if (CAT1->getSize() != CAT2->getSize())
              // Different sized, the smaller wins
              return CAT1->getSize().ult(CAT2->getSize())
                         ? ImplicitConversionSequence::Better
                         : ImplicitConversionSequence::Worse;
            if (ICS1.isInitializerListOfIncompleteArray() !=
                ICS2.isInitializerListOfIncompleteArray())
              // One is incomplete, it loses
              return ICS2.isInitializerListOfIncompleteArray()
                         ? ImplicitConversionSequence::Better
                         : ImplicitConversionSequence::Worse;
          }
        }
  }

  if (ICS1.isStandard())
    // Standard conversion sequence S1 is a better conversion sequence than
    // standard conversion sequence S2 if [...]
    Result = CompareStandardConversionSequences(S, Loc,
                                                ICS1.Standard, ICS2.Standard);
  else if (ICS1.isUserDefined()) {
    // User-defined conversion sequence U1 is a better conversion
    // sequence than another user-defined conversion sequence U2 if
    // they contain the same user-defined conversion function or
    // constructor and if the second standard conversion sequence of
    // U1 is better than the second standard conversion sequence of
    // U2 (C++ 13.3.3.2p3).
    if (ICS1.UserDefined.ConversionFunction ==
          ICS2.UserDefined.ConversionFunction)
      Result = CompareStandardConversionSequences(S, Loc,
                                                  ICS1.UserDefined.After,
                                                  ICS2.UserDefined.After);
    else
      Result = compareConversionFunctions(S,
                                          ICS1.UserDefined.ConversionFunction,
                                          ICS2.UserDefined.ConversionFunction);
  }

  return Result;
}

// Per 13.3.3.2p3, compare the given standard conversion sequences to
// determine if one is a proper subset of the other.
static ImplicitConversionSequence::CompareKind
compareStandardConversionSubsets(ASTContext &Context,
                                 const StandardConversionSequence& SCS1,
                                 const StandardConversionSequence& SCS2) {
  ImplicitConversionSequence::CompareKind Result
    = ImplicitConversionSequence::Indistinguishable;

  // the identity conversion sequence is considered to be a subsequence of
  // any non-identity conversion sequence
  if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
    return ImplicitConversionSequence::Better;
  else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
    return ImplicitConversionSequence::Worse;

  if (SCS1.Second != SCS2.Second) {
    if (SCS1.Second == ICK_Identity)
      Result = ImplicitConversionSequence::Better;
    else if (SCS2.Second == ICK_Identity)
      Result = ImplicitConversionSequence::Worse;
    else
      return ImplicitConversionSequence::Indistinguishable;
  } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
    return ImplicitConversionSequence::Indistinguishable;

  if (SCS1.Third == SCS2.Third) {
    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
                             : ImplicitConversionSequence::Indistinguishable;
  }

  if (SCS1.Third == ICK_Identity)
    return Result == ImplicitConversionSequence::Worse
             ? ImplicitConversionSequence::Indistinguishable
             : ImplicitConversionSequence::Better;

  if (SCS2.Third == ICK_Identity)
    return Result == ImplicitConversionSequence::Better
             ? ImplicitConversionSequence::Indistinguishable
             : ImplicitConversionSequence::Worse;

  return ImplicitConversionSequence::Indistinguishable;
}

/// Determine whether one of the given reference bindings is better
/// than the other based on what kind of bindings they are.
static bool
isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
                             const StandardConversionSequence &SCS2) {
  // C++0x [over.ics.rank]p3b4:
  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
  //      implicit object parameter of a non-static member function declared
  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
  //      lvalue reference to a function lvalue and S2 binds an rvalue
  //      reference*.
  //
  // FIXME: Rvalue references. We're going rogue with the above edits,
  // because the semantics in the current C++0x working paper (N3225 at the
  // time of this writing) break the standard definition of std::forward
  // and std::reference_wrapper when dealing with references to functions.
  // Proposed wording changes submitted to CWG for consideration.
  if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
      SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
    return false;

  return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
          SCS2.IsLvalueReference) ||
         (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
          !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
}

enum class FixedEnumPromotion {
  None,
  ToUnderlyingType,
  ToPromotedUnderlyingType
};

/// Returns kind of fixed enum promotion the \a SCS uses.
static FixedEnumPromotion
getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) {

  if (SCS.Second != ICK_Integral_Promotion)
    return FixedEnumPromotion::None;

  QualType FromType = SCS.getFromType();
  if (!FromType->isEnumeralType())
    return FixedEnumPromotion::None;

  EnumDecl *Enum = FromType->castAs<EnumType>()->getDecl();
  if (!Enum->isFixed())
    return FixedEnumPromotion::None;

  QualType UnderlyingType = Enum->getIntegerType();
  if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType))
    return FixedEnumPromotion::ToUnderlyingType;

  return FixedEnumPromotion::ToPromotedUnderlyingType;
}

/// CompareStandardConversionSequences - Compare two standard
/// conversion sequences to determine whether one is better than the
/// other or if they are indistinguishable (C++ 13.3.3.2p3).
static ImplicitConversionSequence::CompareKind
CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
                                   const StandardConversionSequence& SCS1,
                                   const StandardConversionSequence& SCS2)
{
  // Standard conversion sequence S1 is a better conversion sequence
  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):

  //  -- S1 is a proper subsequence of S2 (comparing the conversion
  //     sequences in the canonical form defined by 13.3.3.1.1,
  //     excluding any Lvalue Transformation; the identity conversion
  //     sequence is considered to be a subsequence of any
  //     non-identity conversion sequence) or, if not that,
  if (ImplicitConversionSequence::CompareKind CK
        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
    return CK;

  //  -- the rank of S1 is better than the rank of S2 (by the rules
  //     defined below), or, if not that,
  ImplicitConversionRank Rank1 = SCS1.getRank();
  ImplicitConversionRank Rank2 = SCS2.getRank();
  if (Rank1 < Rank2)
    return ImplicitConversionSequence::Better;
  else if (Rank2 < Rank1)
    return ImplicitConversionSequence::Worse;

  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
  // are indistinguishable unless one of the following rules
  // applies:

  //   A conversion that is not a conversion of a pointer, or
  //   pointer to member, to bool is better than another conversion
  //   that is such a conversion.
  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
    return SCS2.isPointerConversionToBool()
             ? ImplicitConversionSequence::Better
             : ImplicitConversionSequence::Worse;

  // C++14 [over.ics.rank]p4b2:
  // This is retroactively applied to C++11 by CWG 1601.
  //
  //   A conversion that promotes an enumeration whose underlying type is fixed
  //   to its underlying type is better than one that promotes to the promoted
  //   underlying type, if the two are different.
  FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1);
  FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2);
  if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None &&
      FEP1 != FEP2)
    return FEP1 == FixedEnumPromotion::ToUnderlyingType
               ? ImplicitConversionSequence::Better
               : ImplicitConversionSequence::Worse;

  // C++ [over.ics.rank]p4b2:
  //
  //   If class B is derived directly or indirectly from class A,
  //   conversion of B* to A* is better than conversion of B* to
  //   void*, and conversion of A* to void* is better than conversion
  //   of B* to void*.
  bool SCS1ConvertsToVoid
    = SCS1.isPointerConversionToVoidPointer(S.Context);
  bool SCS2ConvertsToVoid
    = SCS2.isPointerConversionToVoidPointer(S.Context);
  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
    // Exactly one of the conversion sequences is a conversion to
    // a void pointer; it's the worse conversion.
    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
                              : ImplicitConversionSequence::Worse;
  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
    // Neither conversion sequence converts to a void pointer; compare
    // their derived-to-base conversions.
    if (ImplicitConversionSequence::CompareKind DerivedCK
          = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
      return DerivedCK;
  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
             !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
    // Both conversion sequences are conversions to void
    // pointers. Compare the source types to determine if there's an
    // inheritance relationship in their sources.
    QualType FromType1 = SCS1.getFromType();
    QualType FromType2 = SCS2.getFromType();

    // Adjust the types we're converting from via the array-to-pointer
    // conversion, if we need to.
    if (SCS1.First == ICK_Array_To_Pointer)
      FromType1 = S.Context.getArrayDecayedType(FromType1);
    if (SCS2.First == ICK_Array_To_Pointer)
      FromType2 = S.Context.getArrayDecayedType(FromType2);

    QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
    QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();

    if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
      return ImplicitConversionSequence::Better;
    else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
      return ImplicitConversionSequence::Worse;

    // Objective-C++: If one interface is more specific than the
    // other, it is the better one.
    const ObjCObjectPointerType* FromObjCPtr1
      = FromType1->getAs<ObjCObjectPointerType>();
    const ObjCObjectPointerType* FromObjCPtr2
      = FromType2->getAs<ObjCObjectPointerType>();
    if (FromObjCPtr1 && FromObjCPtr2) {
      bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
                                                          FromObjCPtr2);
      bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
                                                           FromObjCPtr1);
      if (AssignLeft != AssignRight) {
        return AssignLeft? ImplicitConversionSequence::Better
                         : ImplicitConversionSequence::Worse;
      }
    }
  }

  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
    // Check for a better reference binding based on the kind of bindings.
    if (isBetterReferenceBindingKind(SCS1, SCS2))
      return ImplicitConversionSequence::Better;
    else if (isBetterReferenceBindingKind(SCS2, SCS1))
      return ImplicitConversionSequence::Worse;
  }

  // Compare based on qualification conversions (C++ 13.3.3.2p3,
  // bullet 3).
  if (ImplicitConversionSequence::CompareKind QualCK
        = CompareQualificationConversions(S, SCS1, SCS2))
    return QualCK;

  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
    // C++ [over.ics.rank]p3b4:
    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
    //      which the references refer are the same type except for
    //      top-level cv-qualifiers, and the type to which the reference
    //      initialized by S2 refers is more cv-qualified than the type
    //      to which the reference initialized by S1 refers.
    QualType T1 = SCS1.getToType(2);
    QualType T2 = SCS2.getToType(2);
    T1 = S.Context.getCanonicalType(T1);
    T2 = S.Context.getCanonicalType(T2);
    Qualifiers T1Quals, T2Quals;
    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
    if (UnqualT1 == UnqualT2) {
      // Objective-C++ ARC: If the references refer to objects with different
      // lifetimes, prefer bindings that don't change lifetime.
      if (SCS1.ObjCLifetimeConversionBinding !=
                                          SCS2.ObjCLifetimeConversionBinding) {
        return SCS1.ObjCLifetimeConversionBinding
                                           ? ImplicitConversionSequence::Worse
                                           : ImplicitConversionSequence::Better;
      }

      // If the type is an array type, promote the element qualifiers to the
      // type for comparison.
      if (isa<ArrayType>(T1) && T1Quals)
        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
      if (isa<ArrayType>(T2) && T2Quals)
        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
      if (T2.isMoreQualifiedThan(T1))
        return ImplicitConversionSequence::Better;
      if (T1.isMoreQualifiedThan(T2))
        return ImplicitConversionSequence::Worse;
    }
  }

  // In Microsoft mode (below 19.28), prefer an integral conversion to a
  // floating-to-integral conversion if the integral conversion
  // is between types of the same size.
  // For example:
  // void f(float);
  // void f(int);
  // int main {
  //    long a;
  //    f(a);
  // }
  // Here, MSVC will call f(int) instead of generating a compile error
  // as clang will do in standard mode.
  if (S.getLangOpts().MSVCCompat &&
      !S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2019_8) &&
      SCS1.Second == ICK_Integral_Conversion &&
      SCS2.Second == ICK_Floating_Integral &&
      S.Context.getTypeSize(SCS1.getFromType()) ==
          S.Context.getTypeSize(SCS1.getToType(2)))
    return ImplicitConversionSequence::Better;

  // Prefer a compatible vector conversion over a lax vector conversion
  // For example:
  //
  // typedef float __v4sf __attribute__((__vector_size__(16)));
  // void f(vector float);
  // void f(vector signed int);
  // int main() {
  //   __v4sf a;
  //   f(a);
  // }
  // Here, we'd like to choose f(vector float) and not
  // report an ambiguous call error
  if (SCS1.Second == ICK_Vector_Conversion &&
      SCS2.Second == ICK_Vector_Conversion) {
    bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
        SCS1.getFromType(), SCS1.getToType(2));
    bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
        SCS2.getFromType(), SCS2.getToType(2));

    if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
      return SCS1IsCompatibleVectorConversion
                 ? ImplicitConversionSequence::Better
                 : ImplicitConversionSequence::Worse;
  }

  if (SCS1.Second == ICK_SVE_Vector_Conversion &&
      SCS2.Second == ICK_SVE_Vector_Conversion) {
    bool SCS1IsCompatibleSVEVectorConversion =
        S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2));
    bool SCS2IsCompatibleSVEVectorConversion =
        S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2));

    if (SCS1IsCompatibleSVEVectorConversion !=
        SCS2IsCompatibleSVEVectorConversion)
      return SCS1IsCompatibleSVEVectorConversion
                 ? ImplicitConversionSequence::Better
                 : ImplicitConversionSequence::Worse;
  }

  return ImplicitConversionSequence::Indistinguishable;
}

/// CompareQualificationConversions - Compares two standard conversion
/// sequences to determine whether they can be ranked based on their
/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
static ImplicitConversionSequence::CompareKind
CompareQualificationConversions(Sema &S,
                                const StandardConversionSequence& SCS1,
                                const StandardConversionSequence& SCS2) {
  // C++ [over.ics.rank]p3:
  //  -- S1 and S2 differ only in their qualification conversion and
  //     yield similar types T1 and T2 (C++ 4.4), respectively, [...]
  // [C++98]
  //     [...] and the cv-qualification signature of type T1 is a proper subset
  //     of the cv-qualification signature of type T2, and S1 is not the
  //     deprecated string literal array-to-pointer conversion (4.2).
  // [C++2a]
  //     [...] where T1 can be converted to T2 by a qualification conversion.
  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
    return ImplicitConversionSequence::Indistinguishable;

  // FIXME: the example in the standard doesn't use a qualification
  // conversion (!)
  QualType T1 = SCS1.getToType(2);
  QualType T2 = SCS2.getToType(2);
  T1 = S.Context.getCanonicalType(T1);
  T2 = S.Context.getCanonicalType(T2);
  assert(!T1->isReferenceType() && !T2->isReferenceType());
  Qualifiers T1Quals, T2Quals;
  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);

  // If the types are the same, we won't learn anything by unwrapping
  // them.
  if (UnqualT1 == UnqualT2)
    return ImplicitConversionSequence::Indistinguishable;

  // Don't ever prefer a standard conversion sequence that uses the deprecated
  // string literal array to pointer conversion.
  bool CanPick1 = !SCS1.DeprecatedStringLiteralToCharPtr;
  bool CanPick2 = !SCS2.DeprecatedStringLiteralToCharPtr;

  // Objective-C++ ARC:
  //   Prefer qualification conversions not involving a change in lifetime
  //   to qualification conversions that do change lifetime.
  if (SCS1.QualificationIncludesObjCLifetime &&
      !SCS2.QualificationIncludesObjCLifetime)
    CanPick1 = false;
  if (SCS2.QualificationIncludesObjCLifetime &&
      !SCS1.QualificationIncludesObjCLifetime)
    CanPick2 = false;

  bool ObjCLifetimeConversion;
  if (CanPick1 &&
      !S.IsQualificationConversion(T1, T2, false, ObjCLifetimeConversion))
    CanPick1 = false;
  // FIXME: In Objective-C ARC, we can have qualification conversions in both
  // directions, so we can't short-cut this second check in general.
  if (CanPick2 &&
      !S.IsQualificationConversion(T2, T1, false, ObjCLifetimeConversion))
    CanPick2 = false;

  if (CanPick1 != CanPick2)
    return CanPick1 ? ImplicitConversionSequence::Better
                    : ImplicitConversionSequence::Worse;
  return ImplicitConversionSequence::Indistinguishable;
}

/// CompareDerivedToBaseConversions - Compares two standard conversion
/// sequences to determine whether they can be ranked based on their
/// various kinds of derived-to-base conversions (C++
/// [over.ics.rank]p4b3).  As part of these checks, we also look at
/// conversions between Objective-C interface types.
static ImplicitConversionSequence::CompareKind
CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
                                const StandardConversionSequence& SCS1,
                                const StandardConversionSequence& SCS2) {
  QualType FromType1 = SCS1.getFromType();
  QualType ToType1 = SCS1.getToType(1);
  QualType FromType2 = SCS2.getFromType();
  QualType ToType2 = SCS2.getToType(1);

  // Adjust the types we're converting from via the array-to-pointer
  // conversion, if we need to.
  if (SCS1.First == ICK_Array_To_Pointer)
    FromType1 = S.Context.getArrayDecayedType(FromType1);
  if (SCS2.First == ICK_Array_To_Pointer)
    FromType2 = S.Context.getArrayDecayedType(FromType2);

  // Canonicalize all of the types.
  FromType1 = S.Context.getCanonicalType(FromType1);
  ToType1 = S.Context.getCanonicalType(ToType1);
  FromType2 = S.Context.getCanonicalType(FromType2);
  ToType2 = S.Context.getCanonicalType(ToType2);

  // C++ [over.ics.rank]p4b3:
  //
  //   If class B is derived directly or indirectly from class A and
  //   class C is derived directly or indirectly from B,
  //
  // Compare based on pointer conversions.
  if (SCS1.Second == ICK_Pointer_Conversion &&
      SCS2.Second == ICK_Pointer_Conversion &&
      /*FIXME: Remove if Objective-C id conversions get their own rank*/
      FromType1->isPointerType() && FromType2->isPointerType() &&
      ToType1->isPointerType() && ToType2->isPointerType()) {
    QualType FromPointee1 =
        FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
    QualType ToPointee1 =
        ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
    QualType FromPointee2 =
        FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
    QualType ToPointee2 =
        ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();

    //   -- conversion of C* to B* is better than conversion of C* to A*,
    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
      if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
        return ImplicitConversionSequence::Better;
      else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
        return ImplicitConversionSequence::Worse;
    }

    //   -- conversion of B* to A* is better than conversion of C* to A*,
    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
      if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
        return ImplicitConversionSequence::Better;
      else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
        return ImplicitConversionSequence::Worse;
    }
  } else if (SCS1.Second == ICK_Pointer_Conversion &&
             SCS2.Second == ICK_Pointer_Conversion) {
    const ObjCObjectPointerType *FromPtr1
      = FromType1->getAs<ObjCObjectPointerType>();
    const ObjCObjectPointerType *FromPtr2
      = FromType2->getAs<ObjCObjectPointerType>();
    const ObjCObjectPointerType *ToPtr1
      = ToType1->getAs<ObjCObjectPointerType>();
    const ObjCObjectPointerType *ToPtr2
      = ToType2->getAs<ObjCObjectPointerType>();

    if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
      // Apply the same conversion ranking rules for Objective-C pointer types
      // that we do for C++ pointers to class types. However, we employ the
      // Objective-C pseudo-subtyping relationship used for assignment of
      // Objective-C pointer types.
      bool FromAssignLeft
        = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
      bool FromAssignRight
        = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
      bool ToAssignLeft
        = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
      bool ToAssignRight
        = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);

      // A conversion to an a non-id object pointer type or qualified 'id'
      // type is better than a conversion to 'id'.
      if (ToPtr1->isObjCIdType() &&
          (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
        return ImplicitConversionSequence::Worse;
      if (ToPtr2->isObjCIdType() &&
          (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
        return ImplicitConversionSequence::Better;

      // A conversion to a non-id object pointer type is better than a
      // conversion to a qualified 'id' type
      if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
        return ImplicitConversionSequence::Worse;
      if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
        return ImplicitConversionSequence::Better;

      // A conversion to an a non-Class object pointer type or qualified 'Class'
      // type is better than a conversion to 'Class'.
      if (ToPtr1->isObjCClassType() &&
          (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
        return ImplicitConversionSequence::Worse;
      if (ToPtr2->isObjCClassType() &&
          (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
        return ImplicitConversionSequence::Better;

      // A conversion to a non-Class object pointer type is better than a
      // conversion to a qualified 'Class' type.
      if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
        return ImplicitConversionSequence::Worse;
      if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
        return ImplicitConversionSequence::Better;

      //   -- "conversion of C* to B* is better than conversion of C* to A*,"
      if (S.Context.hasSameType(FromType1, FromType2) &&
          !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
          (ToAssignLeft != ToAssignRight)) {
        if (FromPtr1->isSpecialized()) {
          // "conversion of B<A> * to B * is better than conversion of B * to
          // C *.
          bool IsFirstSame =
              FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
          bool IsSecondSame =
              FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
          if (IsFirstSame) {
            if (!IsSecondSame)
              return ImplicitConversionSequence::Better;
          } else if (IsSecondSame)
            return ImplicitConversionSequence::Worse;
        }
        return ToAssignLeft? ImplicitConversionSequence::Worse
                           : ImplicitConversionSequence::Better;
      }

      //   -- "conversion of B* to A* is better than conversion of C* to A*,"
      if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
          (FromAssignLeft != FromAssignRight))
        return FromAssignLeft? ImplicitConversionSequence::Better
        : ImplicitConversionSequence::Worse;
    }
  }

  // Ranking of member-pointer types.
  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
    const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>();
    const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>();
    const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>();
    const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>();
    const Type *FromPointeeType1 = FromMemPointer1->getClass();
    const Type *ToPointeeType1 = ToMemPointer1->getClass();
    const Type *FromPointeeType2 = FromMemPointer2->getClass();
    const Type *ToPointeeType2 = ToMemPointer2->getClass();
    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
    // conversion of A::* to B::* is better than conversion of A::* to C::*,
    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
      if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
        return ImplicitConversionSequence::Worse;
      else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
        return ImplicitConversionSequence::Better;
    }
    // conversion of B::* to C::* is better than conversion of A::* to C::*
    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
      if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
        return ImplicitConversionSequence::Better;
      else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
        return ImplicitConversionSequence::Worse;
    }
  }

  if (SCS1.Second == ICK_Derived_To_Base) {
    //   -- conversion of C to B is better than conversion of C to A,
    //   -- binding of an expression of type C to a reference of type
    //      B& is better than binding an expression of type C to a
    //      reference of type A&,
    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
      if (S.IsDerivedFrom(Loc, ToType1, ToType2))
        return ImplicitConversionSequence::Better;
      else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
        return ImplicitConversionSequence::Worse;
    }

    //   -- conversion of B to A is better than conversion of C to A.
    //   -- binding of an expression of type B to a reference of type
    //      A& is better than binding an expression of type C to a
    //      reference of type A&,
    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
      if (S.IsDerivedFrom(Loc, FromType2, FromType1))
        return ImplicitConversionSequence::Better;
      else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
        return ImplicitConversionSequence::Worse;
    }
  }

  return ImplicitConversionSequence::Indistinguishable;
}

/// Determine whether the given type is valid, e.g., it is not an invalid
/// C++ class.
static bool isTypeValid(QualType T) {
  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
    return !Record->isInvalidDecl();

  return true;
}

static QualType withoutUnaligned(ASTContext &Ctx, QualType T) {
  if (!T.getQualifiers().hasUnaligned())
    return T;

  Qualifiers Q;
  T = Ctx.getUnqualifiedArrayType(T, Q);
  Q.removeUnaligned();
  return Ctx.getQualifiedType(T, Q);
}

/// CompareReferenceRelationship - Compare the two types T1 and T2 to
/// determine whether they are reference-compatible,
/// reference-related, or incompatible, for use in C++ initialization by
/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
/// type, and the first type (T1) is the pointee type of the reference
/// type being initialized.
Sema::ReferenceCompareResult
Sema::CompareReferenceRelationship(SourceLocation Loc,
                                   QualType OrigT1, QualType OrigT2,
                                   ReferenceConversions *ConvOut) {
  assert(!OrigT1->isReferenceType() &&
    "T1 must be the pointee type of the reference type");
  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");

  QualType T1 = Context.getCanonicalType(OrigT1);
  QualType T2 = Context.getCanonicalType(OrigT2);
  Qualifiers T1Quals, T2Quals;
  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);

  ReferenceConversions ConvTmp;
  ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp;
  Conv = ReferenceConversions();

  // C++2a [dcl.init.ref]p4:
  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
  //   reference-related to "cv2 T2" if T1 is similar to T2, or
  //   T1 is a base class of T2.
  //   "cv1 T1" is reference-compatible with "cv2 T2" if
  //   a prvalue of type "pointer to cv2 T2" can be converted to the type
  //   "pointer to cv1 T1" via a standard conversion sequence.

  // Check for standard conversions we can apply to pointers: derived-to-base
  // conversions, ObjC pointer conversions, and function pointer conversions.
  // (Qualification conversions are checked last.)
  QualType ConvertedT2;
  if (UnqualT1 == UnqualT2) {
    // Nothing to do.
  } else if (isCompleteType(Loc, OrigT2) &&
             isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
             IsDerivedFrom(Loc, UnqualT2, UnqualT1))
    Conv |= ReferenceConversions::DerivedToBase;
  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
           UnqualT2->isObjCObjectOrInterfaceType() &&
           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
    Conv |= ReferenceConversions::ObjC;
  else if (UnqualT2->isFunctionType() &&
           IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) {
    Conv |= ReferenceConversions::Function;
    // No need to check qualifiers; function types don't have them.
    return Ref_Compatible;
  }
  bool ConvertedReferent = Conv != 0;

  // We can have a qualification conversion. Compute whether the types are
  // similar at the same time.
  bool PreviousToQualsIncludeConst = true;
  bool TopLevel = true;
  do {
    if (T1 == T2)
      break;

    // We will need a qualification conversion.
    Conv |= ReferenceConversions::Qualification;

    // Track whether we performed a qualification conversion anywhere other
    // than the top level. This matters for ranking reference bindings in
    // overload resolution.
    if (!TopLevel)
      Conv |= ReferenceConversions::NestedQualification;

    // MS compiler ignores __unaligned qualifier for references; do the same.
    T1 = withoutUnaligned(Context, T1);
    T2 = withoutUnaligned(Context, T2);

    // If we find a qualifier mismatch, the types are not reference-compatible,
    // but are still be reference-related if they're similar.
    bool ObjCLifetimeConversion = false;
    if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel,
                                       PreviousToQualsIncludeConst,
                                       ObjCLifetimeConversion))
      return (ConvertedReferent || Context.hasSimilarType(T1, T2))
                 ? Ref_Related
                 : Ref_Incompatible;

    // FIXME: Should we track this for any level other than the first?
    if (ObjCLifetimeConversion)
      Conv |= ReferenceConversions::ObjCLifetime;

    TopLevel = false;
  } while (Context.UnwrapSimilarTypes(T1, T2));

  // At this point, if the types are reference-related, we must either have the
  // same inner type (ignoring qualifiers), or must have already worked out how
  // to convert the referent.
  return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2))
             ? Ref_Compatible
             : Ref_Incompatible;
}

/// Look for a user-defined conversion to a value reference-compatible
///        with DeclType. Return true if something definite is found.
static bool
FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
                         QualType DeclType, SourceLocation DeclLoc,
                         Expr *Init, QualType T2, bool AllowRvalues,
                         bool AllowExplicit) {
  assert(T2->isRecordType() && "Can only find conversions of record types.");
  auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl());

  OverloadCandidateSet CandidateSet(
      DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
  const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
  for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
    NamedDecl *D = *I;
    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
    if (isa<UsingShadowDecl>(D))
      D = cast<UsingShadowDecl>(D)->getTargetDecl();

    FunctionTemplateDecl *ConvTemplate
      = dyn_cast<FunctionTemplateDecl>(D);
    CXXConversionDecl *Conv;
    if (ConvTemplate)
      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
    else
      Conv = cast<CXXConversionDecl>(D);

    if (AllowRvalues) {
      // If we are initializing an rvalue reference, don't permit conversion
      // functions that return lvalues.
      if (!ConvTemplate && DeclType->isRValueReferenceType()) {
        const ReferenceType *RefType
          = Conv->getConversionType()->getAs<LValueReferenceType>();
        if (RefType && !RefType->getPointeeType()->isFunctionType())
          continue;
      }

      if (!ConvTemplate &&
          S.CompareReferenceRelationship(
              DeclLoc,
              Conv->getConversionType()
                  .getNonReferenceType()
                  .getUnqualifiedType(),
              DeclType.getNonReferenceType().getUnqualifiedType()) ==
              Sema::Ref_Incompatible)
        continue;
    } else {
      // If the conversion function doesn't return a reference type,
      // it can't be considered for this conversion. An rvalue reference
      // is only acceptable if its referencee is a function type.

      const ReferenceType *RefType =
        Conv->getConversionType()->getAs<ReferenceType>();
      if (!RefType ||
          (!RefType->isLValueReferenceType() &&
           !RefType->getPointeeType()->isFunctionType()))
        continue;
    }

    if (ConvTemplate)
      S.AddTemplateConversionCandidate(
          ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
          /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
    else
      S.AddConversionCandidate(
          Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
          /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
  }

  bool HadMultipleCandidates = (CandidateSet.size() > 1);

  OverloadCandidateSet::iterator Best;
  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
  case OR_Success:
    // C++ [over.ics.ref]p1:
    //
    //   [...] If the parameter binds directly to the result of
    //   applying a conversion function to the argument
    //   expression, the implicit conversion sequence is a
    //   user-defined conversion sequence (13.3.3.1.2), with the
    //   second standard conversion sequence either an identity
    //   conversion or, if the conversion function returns an
    //   entity of a type that is a derived class of the parameter
    //   type, a derived-to-base Conversion.
    if (!Best->FinalConversion.DirectBinding)
      return false;

    ICS.setUserDefined();
    ICS.UserDefined.Before = Best->Conversions[0].Standard;
    ICS.UserDefined.After = Best->FinalConversion;
    ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
    ICS.UserDefined.ConversionFunction = Best->Function;
    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
    ICS.UserDefined.EllipsisConversion = false;
    assert(ICS.UserDefined.After.ReferenceBinding &&
           ICS.UserDefined.After.DirectBinding &&
           "Expected a direct reference binding!");
    return true;

  case OR_Ambiguous:
    ICS.setAmbiguous();
    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
         Cand != CandidateSet.end(); ++Cand)
      if (Cand->Best)
        ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
    return true;

  case OR_No_Viable_Function:
  case OR_Deleted:
    // There was no suitable conversion, or we found a deleted
    // conversion; continue with other checks.
    return false;
  }

  llvm_unreachable("Invalid OverloadResult!");
}

/// Compute an implicit conversion sequence for reference
/// initialization.
static ImplicitConversionSequence
TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
                 SourceLocation DeclLoc,
                 bool SuppressUserConversions,
                 bool AllowExplicit) {
  assert(DeclType->isReferenceType() && "Reference init needs a reference");

  // Most paths end in a failed conversion.
  ImplicitConversionSequence ICS;
  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);

  QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType();
  QualType T2 = Init->getType();

  // If the initializer is the address of an overloaded function, try
  // to resolve the overloaded function. If all goes well, T2 is the
  // type of the resulting function.
  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
    DeclAccessPair Found;
    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
                                                                false, Found))
      T2 = Fn->getType();
  }

  // Compute some basic properties of the types and the initializer.
  bool isRValRef = DeclType->isRValueReferenceType();
  Expr::Classification InitCategory = Init->Classify(S.Context);

  Sema::ReferenceConversions RefConv;
  Sema::ReferenceCompareResult RefRelationship =
      S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv);

  auto SetAsReferenceBinding = [&](bool BindsDirectly) {
    ICS.setStandard();
    ICS.Standard.First = ICK_Identity;
    // FIXME: A reference binding can be a function conversion too. We should
    // consider that when ordering reference-to-function bindings.
    ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase)
                              ? ICK_Derived_To_Base
                              : (RefConv & Sema::ReferenceConversions::ObjC)
                                    ? ICK_Compatible_Conversion
                                    : ICK_Identity;
    // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank
    // a reference binding that performs a non-top-level qualification
    // conversion as a qualification conversion, not as an identity conversion.
    ICS.Standard.Third = (RefConv &
                              Sema::ReferenceConversions::NestedQualification)
                             ? ICK_Qualification
                             : ICK_Identity;
    ICS.Standard.setFromType(T2);
    ICS.Standard.setToType(0, T2);
    ICS.Standard.setToType(1, T1);
    ICS.Standard.setToType(2, T1);
    ICS.Standard.ReferenceBinding = true;
    ICS.Standard.DirectBinding = BindsDirectly;
    ICS.Standard.IsLvalueReference = !isRValRef;
    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
    ICS.Standard.ObjCLifetimeConversionBinding =
        (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0;
    ICS.Standard.CopyConstructor = nullptr;
    ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
  };

  // C++0x [dcl.init.ref]p5:
  //   A reference to type "cv1 T1" is initialized by an expression
  //   of type "cv2 T2" as follows:

  //     -- If reference is an lvalue reference and the initializer expression
  if (!isRValRef) {
    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
    //        reference-compatible with "cv2 T2," or
    //
    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
    if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
      // C++ [over.ics.ref]p1:
      //   When a parameter of reference type binds directly (8.5.3)
      //   to an argument expression, the implicit conversion sequence
      //   is the identity conversion, unless the argument expression
      //   has a type that is a derived class of the parameter type,
      //   in which case the implicit conversion sequence is a
      //   derived-to-base Conversion (13.3.3.1).
      SetAsReferenceBinding(/*BindsDirectly=*/true);

      // Nothing more to do: the inaccessibility/ambiguity check for
      // derived-to-base conversions is suppressed when we're
      // computing the implicit conversion sequence (C++
      // [over.best.ics]p2).
      return ICS;
    }

    //       -- has a class type (i.e., T2 is a class type), where T1 is
    //          not reference-related to T2, and can be implicitly
    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
    //          is reference-compatible with "cv3 T3" 92) (this
    //          conversion is selected by enumerating the applicable
    //          conversion functions (13.3.1.6) and choosing the best
    //          one through overload resolution (13.3)),
    if (!SuppressUserConversions && T2->isRecordType() &&
        S.isCompleteType(DeclLoc, T2) &&
        RefRelationship == Sema::Ref_Incompatible) {
      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
                                   Init, T2, /*AllowRvalues=*/false,
                                   AllowExplicit))
        return ICS;
    }
  }

  //     -- Otherwise, the reference shall be an lvalue reference to a
  //        non-volatile const type (i.e., cv1 shall be const), or the reference
  //        shall be an rvalue reference.
  if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) {
    if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible)
      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
    return ICS;
  }

  //       -- If the initializer expression
  //
  //            -- is an xvalue, class prvalue, array prvalue or function
  //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
  if (RefRelationship == Sema::Ref_Compatible &&
      (InitCategory.isXValue() ||
       (InitCategory.isPRValue() &&
          (T2->isRecordType() || T2->isArrayType())) ||
       (InitCategory.isLValue() && T2->isFunctionType()))) {
    // In C++11, this is always a direct binding. In C++98/03, it's a direct
    // binding unless we're binding to a class prvalue.
    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
    // allow the use of rvalue references in C++98/03 for the benefit of
    // standard library implementors; therefore, we need the xvalue check here.
    SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 ||
                          !(InitCategory.isPRValue() || T2->isRecordType()));
    return ICS;
  }

  //            -- has a class type (i.e., T2 is a class type), where T1 is not
  //               reference-related to T2, and can be implicitly converted to
  //               an xvalue, class prvalue, or function lvalue of type
  //               "cv3 T3", where "cv1 T1" is reference-compatible with
  //               "cv3 T3",
  //
  //          then the reference is bound to the value of the initializer
  //          expression in the first case and to the result of the conversion
  //          in the second case (or, in either case, to an appropriate base
  //          class subobject).
  if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
      T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
                               Init, T2, /*AllowRvalues=*/true,
                               AllowExplicit)) {
    // In the second case, if the reference is an rvalue reference
    // and the second standard conversion sequence of the
    // user-defined conversion sequence includes an lvalue-to-rvalue
    // conversion, the program is ill-formed.
    if (ICS.isUserDefined() && isRValRef &&
        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);

    return ICS;
  }

  // A temporary of function type cannot be created; don't even try.
  if (T1->isFunctionType())
    return ICS;

  //       -- Otherwise, a temporary of type "cv1 T1" is created and
  //          initialized from the initializer expression using the
  //          rules for a non-reference copy initialization (8.5). The
  //          reference is then bound to the temporary. If T1 is
  //          reference-related to T2, cv1 must be the same
  //          cv-qualification as, or greater cv-qualification than,
  //          cv2; otherwise, the program is ill-formed.
  if (RefRelationship == Sema::Ref_Related) {
    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
    // we would be reference-compatible or reference-compatible with
    // added qualification. But that wasn't the case, so the reference
    // initialization fails.
    //
    // Note that we only want to check address spaces and cvr-qualifiers here.
    // ObjC GC, lifetime and unaligned qualifiers aren't important.
    Qualifiers T1Quals = T1.getQualifiers();
    Qualifiers T2Quals = T2.getQualifiers();
    T1Quals.removeObjCGCAttr();
    T1Quals.removeObjCLifetime();
    T2Quals.removeObjCGCAttr();
    T2Quals.removeObjCLifetime();
    // MS compiler ignores __unaligned qualifier for references; do the same.
    T1Quals.removeUnaligned();
    T2Quals.removeUnaligned();
    if (!T1Quals.compatiblyIncludes(T2Quals))
      return ICS;
  }

  // If at least one of the types is a class type, the types are not
  // related, and we aren't allowed any user conversions, the
  // reference binding fails. This case is important for breaking
  // recursion, since TryImplicitConversion below will attempt to
  // create a temporary through the use of a copy constructor.
  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
      (T1->isRecordType() || T2->isRecordType()))
    return ICS;

  // If T1 is reference-related to T2 and the reference is an rvalue
  // reference, the initializer expression shall not be an lvalue.
  if (RefRelationship >= Sema::Ref_Related && isRValRef &&
      Init->Classify(S.Context).isLValue()) {
    ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType);
    return ICS;
  }

  // C++ [over.ics.ref]p2:
  //   When a parameter of reference type is not bound directly to
  //   an argument expression, the conversion sequence is the one
  //   required to convert the argument expression to the
  //   underlying type of the reference according to
  //   13.3.3.1. Conceptually, this conversion sequence corresponds
  //   to copy-initializing a temporary of the underlying type with
  //   the argument expression. Any difference in top-level
  //   cv-qualification is subsumed by the initialization itself
  //   and does not constitute a conversion.
  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
                              AllowedExplicit::None,
                              /*InOverloadResolution=*/false,
                              /*CStyle=*/false,
                              /*AllowObjCWritebackConversion=*/false,
                              /*AllowObjCConversionOnExplicit=*/false);

  // Of course, that's still a reference binding.
  if (ICS.isStandard()) {
    ICS.Standard.ReferenceBinding = true;
    ICS.Standard.IsLvalueReference = !isRValRef;
    ICS.Standard.BindsToFunctionLvalue = false;
    ICS.Standard.BindsToRvalue = true;
    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
    ICS.Standard.ObjCLifetimeConversionBinding = false;
  } else if (ICS.isUserDefined()) {
    const ReferenceType *LValRefType =
        ICS.UserDefined.ConversionFunction->getReturnType()
            ->getAs<LValueReferenceType>();

    // C++ [over.ics.ref]p3:
    //   Except for an implicit object parameter, for which see 13.3.1, a
    //   standard conversion sequence cannot be formed if it requires [...]
    //   binding an rvalue reference to an lvalue other than a function
    //   lvalue.
    // Note that the function case is not possible here.
    if (isRValRef && LValRefType) {
      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
      return ICS;
    }

    ICS.UserDefined.After.ReferenceBinding = true;
    ICS.UserDefined.After.IsLvalueReference = !isRValRef;
    ICS.UserDefined.After.BindsToFunctionLvalue = false;
    ICS.UserDefined.After.BindsToRvalue = !LValRefType;
    ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
    ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
  }

  return ICS;
}

static ImplicitConversionSequence
TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
                      bool SuppressUserConversions,
                      bool InOverloadResolution,
                      bool AllowObjCWritebackConversion,
                      bool AllowExplicit = false);

/// TryListConversion - Try to copy-initialize a value of type ToType from the
/// initializer list From.
static ImplicitConversionSequence
TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
                  bool SuppressUserConversions,
                  bool InOverloadResolution,
                  bool AllowObjCWritebackConversion) {
  // C++11 [over.ics.list]p1:
  //   When an argument is an initializer list, it is not an expression and
  //   special rules apply for converting it to a parameter type.

  ImplicitConversionSequence Result;
  Result.setBad(BadConversionSequence::no_conversion, From, ToType);

  // We need a complete type for what follows.  With one C++20 exception,
  // incomplete types can never be initialized from init lists.
  QualType InitTy = ToType;
  const ArrayType *AT = S.Context.getAsArrayType(ToType);
  if (AT && S.getLangOpts().CPlusPlus20)
    if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT))
      // C++20 allows list initialization of an incomplete array type.
      InitTy = IAT->getElementType();
  if (!S.isCompleteType(From->getBeginLoc(), InitTy))
    return Result;

  // Per DR1467:
  //   If the parameter type is a class X and the initializer list has a single
  //   element of type cv U, where U is X or a class derived from X, the
  //   implicit conversion sequence is the one required to convert the element
  //   to the parameter type.
  //
  //   Otherwise, if the parameter type is a character array [... ]
  //   and the initializer list has a single element that is an
  //   appropriately-typed string literal (8.5.2 [dcl.init.string]), the
  //   implicit conversion sequence is the identity conversion.
  if (From->getNumInits() == 1) {
    if (ToType->isRecordType()) {
      QualType InitType = From->getInit(0)->getType();
      if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
          S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
        return TryCopyInitialization(S, From->getInit(0), ToType,
                                     SuppressUserConversions,
                                     InOverloadResolution,
                                     AllowObjCWritebackConversion);
    }

    if (AT && S.IsStringInit(From->getInit(0), AT)) {
      InitializedEntity Entity =
          InitializedEntity::InitializeParameter(S.Context, ToType,
                                                 /*Consumed=*/false);
      if (S.CanPerformCopyInitialization(Entity, From)) {
        Result.setStandard();
        Result.Standard.setAsIdentityConversion();
        Result.Standard.setFromType(ToType);
        Result.Standard.setAllToTypes(ToType);
        return Result;
      }
    }
  }

  // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
  // C++11 [over.ics.list]p2:
  //   If the parameter type is std::initializer_list<X> or "array of X" and
  //   all the elements can be implicitly converted to X, the implicit
  //   conversion sequence is the worst conversion necessary to convert an
  //   element of the list to X.
  //
  // C++14 [over.ics.list]p3:
  //   Otherwise, if the parameter type is "array of N X", if the initializer
  //   list has exactly N elements or if it has fewer than N elements and X is
  //   default-constructible, and if all the elements of the initializer list
  //   can be implicitly converted to X, the implicit conversion sequence is
  //   the worst conversion necessary to convert an element of the list to X.
  if (AT || S.isStdInitializerList(ToType, &InitTy)) {
    unsigned e = From->getNumInits();
    ImplicitConversionSequence DfltElt;
    DfltElt.setBad(BadConversionSequence::no_conversion, QualType(),
                   QualType());
    QualType ContTy = ToType;
    bool IsUnbounded = false;
    if (AT) {
      InitTy = AT->getElementType();
      if (ConstantArrayType const *CT = dyn_cast<ConstantArrayType>(AT)) {
        if (CT->getSize().ult(e)) {
          // Too many inits, fatally bad
          Result.setBad(BadConversionSequence::too_many_initializers, From,
                        ToType);
          Result.setInitializerListContainerType(ContTy, IsUnbounded);
          return Result;
        }
        if (CT->getSize().ugt(e)) {
          // Need an init from empty {}, is there one?
          InitListExpr EmptyList(S.Context, From->getEndLoc(), None,
                                 From->getEndLoc());
          EmptyList.setType(S.Context.VoidTy);
          DfltElt = TryListConversion(
              S, &EmptyList, InitTy, SuppressUserConversions,
              InOverloadResolution, AllowObjCWritebackConversion);
          if (DfltElt.isBad()) {
            // No {} init, fatally bad
            Result.setBad(BadConversionSequence::too_few_initializers, From,
                          ToType);
            Result.setInitializerListContainerType(ContTy, IsUnbounded);
            return Result;
          }
        }
      } else {
        assert(isa<IncompleteArrayType>(AT) && "Expected incomplete array");
        IsUnbounded = true;
        if (!e) {
          // Cannot convert to zero-sized.
          Result.setBad(BadConversionSequence::too_few_initializers, From,
                        ToType);
          Result.setInitializerListContainerType(ContTy, IsUnbounded);
          return Result;
        }
        llvm::APInt Size(S.Context.getTypeSize(S.Context.getSizeType()), e);
        ContTy = S.Context.getConstantArrayType(InitTy, Size, nullptr,
                                                ArrayType::Normal, 0);
      }
    }

    Result.setStandard();
    Result.Standard.setAsIdentityConversion();
    Result.Standard.setFromType(InitTy);
    Result.Standard.setAllToTypes(InitTy);
    for (unsigned i = 0; i < e; ++i) {
      Expr *Init = From->getInit(i);
      ImplicitConversionSequence ICS = TryCopyInitialization(
          S, Init, InitTy, SuppressUserConversions, InOverloadResolution,
          AllowObjCWritebackConversion);

      // Keep the worse conversion seen so far.
      // FIXME: Sequences are not totally ordered, so 'worse' can be
      // ambiguous. CWG has been informed.
      if (CompareImplicitConversionSequences(S, From->getBeginLoc(), ICS,
                                             Result) ==
          ImplicitConversionSequence::Worse) {
        Result = ICS;
        // Bail as soon as we find something unconvertible.
        if (Result.isBad()) {
          Result.setInitializerListContainerType(ContTy, IsUnbounded);
          return Result;
        }
      }
    }

    // If we needed any implicit {} initialization, compare that now.
    // over.ics.list/6 indicates we should compare that conversion.  Again CWG
    // has been informed that this might not be the best thing.
    if (!DfltElt.isBad() && CompareImplicitConversionSequences(
                                S, From->getEndLoc(), DfltElt, Result) ==
                                ImplicitConversionSequence::Worse)
      Result = DfltElt;
    // Record the type being initialized so that we may compare sequences
    Result.setInitializerListContainerType(ContTy, IsUnbounded);
    return Result;
  }

  // C++14 [over.ics.list]p4:
  // C++11 [over.ics.list]p3:
  //   Otherwise, if the parameter is a non-aggregate class X and overload
  //   resolution chooses a single best constructor [...] the implicit
  //   conversion sequence is a user-defined conversion sequence. If multiple
  //   constructors are viable but none is better than the others, the
  //   implicit conversion sequence is a user-defined conversion sequence.
  if (ToType->isRecordType() && !ToType->isAggregateType()) {
    // This function can deal with initializer lists.
    return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
                                    AllowedExplicit::None,
                                    InOverloadResolution, /*CStyle=*/false,
                                    AllowObjCWritebackConversion,
                                    /*AllowObjCConversionOnExplicit=*/false);
  }

  // C++14 [over.ics.list]p5:
  // C++11 [over.ics.list]p4:
  //   Otherwise, if the parameter has an aggregate type which can be
  //   initialized from the initializer list [...] the implicit conversion
  //   sequence is a user-defined conversion sequence.
  if (ToType->isAggregateType()) {
    // Type is an aggregate, argument is an init list. At this point it comes
    // down to checking whether the initialization works.
    // FIXME: Find out whether this parameter is consumed or not.
    InitializedEntity Entity =
        InitializedEntity::InitializeParameter(S.Context, ToType,
                                               /*Consumed=*/false);
    if (S.CanPerformAggregateInitializationForOverloadResolution(Entity,
                                                                 From)) {
      Result.setUserDefined();
      Result.UserDefined.Before.setAsIdentityConversion();
      // Initializer lists don't have a type.
      Result.UserDefined.Before.setFromType(QualType());
      Result.UserDefined.Before.setAllToTypes(QualType());

      Result.UserDefined.After.setAsIdentityConversion();
      Result.UserDefined.After.setFromType(ToType);
      Result.UserDefined.After.setAllToTypes(ToType);
      Result.UserDefined.ConversionFunction = nullptr;
    }
    return Result;
  }

  // C++14 [over.ics.list]p6:
  // C++11 [over.ics.list]p5:
  //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
  if (ToType->isReferenceType()) {
    // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
    // mention initializer lists in any way. So we go by what list-
    // initialization would do and try to extrapolate from that.

    QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType();

    // If the initializer list has a single element that is reference-related
    // to the parameter type, we initialize the reference from that.
    if (From->getNumInits() == 1) {
      Expr *Init = From->getInit(0);

      QualType T2 = Init->getType();

      // If the initializer is the address of an overloaded function, try
      // to resolve the overloaded function. If all goes well, T2 is the
      // type of the resulting function.
      if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
        DeclAccessPair Found;
        if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
                                   Init, ToType, false, Found))
          T2 = Fn->getType();
      }

      // Compute some basic properties of the types and the initializer.
      Sema::ReferenceCompareResult RefRelationship =
          S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2);

      if (RefRelationship >= Sema::Ref_Related) {
        return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
                                SuppressUserConversions,
                                /*AllowExplicit=*/false);
      }
    }

    // Otherwise, we bind the reference to a temporary created from the
    // initializer list.
    Result = TryListConversion(S, From, T1, SuppressUserConversions,
                               InOverloadResolution,
                               AllowObjCWritebackConversion);
    if (Result.isFailure())
      return Result;
    assert(!Result.isEllipsis() &&
           "Sub-initialization cannot result in ellipsis conversion.");

    // Can we even bind to a temporary?
    if (ToType->isRValueReferenceType() ||
        (T1.isConstQualified() && !T1.isVolatileQualified())) {
      StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
                                            Result.UserDefined.After;
      SCS.ReferenceBinding = true;
      SCS.IsLvalueReference = ToType->isLValueReferenceType();
      SCS.BindsToRvalue = true;
      SCS.BindsToFunctionLvalue = false;
      SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
      SCS.ObjCLifetimeConversionBinding = false;
    } else
      Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
                    From, ToType);
    return Result;
  }

  // C++14 [over.ics.list]p7:
  // C++11 [over.ics.list]p6:
  //   Otherwise, if the parameter type is not a class:
  if (!ToType->isRecordType()) {
    //    - if the initializer list has one element that is not itself an
    //      initializer list, the implicit conversion sequence is the one
    //      required to convert the element to the parameter type.
    unsigned NumInits = From->getNumInits();
    if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
      Result = TryCopyInitialization(S, From->getInit(0), ToType,
                                     SuppressUserConversions,
                                     InOverloadResolution,
                                     AllowObjCWritebackConversion);
    //    - if the initializer list has no elements, the implicit conversion
    //      sequence is the identity conversion.
    else if (NumInits == 0) {
      Result.setStandard();
      Result.Standard.setAsIdentityConversion();
      Result.Standard.setFromType(ToType);
      Result.Standard.setAllToTypes(ToType);
    }
    return Result;
  }

  // C++14 [over.ics.list]p8:
  // C++11 [over.ics.list]p7:
  //   In all cases other than those enumerated above, no conversion is possible
  return Result;
}

/// TryCopyInitialization - Try to copy-initialize a value of type
/// ToType from the expression From. Return the implicit conversion
/// sequence required to pass this argument, which may be a bad
/// conversion sequence (meaning that the argument cannot be passed to
/// a parameter of this type). If @p SuppressUserConversions, then we
/// do not permit any user-defined conversion sequences.
static ImplicitConversionSequence
TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
                      bool SuppressUserConversions,
                      bool InOverloadResolution,
                      bool AllowObjCWritebackConversion,
                      bool AllowExplicit) {
  if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
    return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
                             InOverloadResolution,AllowObjCWritebackConversion);

  if (ToType->isReferenceType())
    return TryReferenceInit(S, From, ToType,
                            /*FIXME:*/ From->getBeginLoc(),
                            SuppressUserConversions, AllowExplicit);

  return TryImplicitConversion(S, From, ToType,
                               SuppressUserConversions,
                               AllowedExplicit::None,
                               InOverloadResolution,
                               /*CStyle=*/false,
                               AllowObjCWritebackConversion,
                               /*AllowObjCConversionOnExplicit=*/false);
}

static bool TryCopyInitialization(const CanQualType FromQTy,
                                  const CanQualType ToQTy,
                                  Sema &S,
                                  SourceLocation Loc,
                                  ExprValueKind FromVK) {
  OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
  ImplicitConversionSequence ICS =
    TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);

  return !ICS.isBad();
}

/// TryObjectArgumentInitialization - Try to initialize the object
/// parameter of the given member function (@c Method) from the
/// expression @p From.
static ImplicitConversionSequence
TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
                                Expr::Classification FromClassification,
                                CXXMethodDecl *Method,
                                CXXRecordDecl *ActingContext) {
  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
  //                 const volatile object.
  Qualifiers Quals = Method->getMethodQualifiers();
  if (isa<CXXDestructorDecl>(Method)) {
    Quals.addConst();
    Quals.addVolatile();
  }

  QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);

  // Set up the conversion sequence as a "bad" conversion, to allow us
  // to exit early.
  ImplicitConversionSequence ICS;

  // We need to have an object of class type.
  if (const PointerType *PT = FromType->getAs<PointerType>()) {
    FromType = PT->getPointeeType();

    // When we had a pointer, it's implicitly dereferenced, so we
    // better have an lvalue.
    assert(FromClassification.isLValue());
  }

  assert(FromType->isRecordType());

  // C++0x [over.match.funcs]p4:
  //   For non-static member functions, the type of the implicit object
  //   parameter is
  //
  //     - "lvalue reference to cv X" for functions declared without a
  //        ref-qualifier or with the & ref-qualifier
  //     - "rvalue reference to cv X" for functions declared with the &&
  //        ref-qualifier
  //
  // where X is the class of which the function is a member and cv is the
  // cv-qualification on the member function declaration.
  //
  // However, when finding an implicit conversion sequence for the argument, we
  // are not allowed to perform user-defined conversions
  // (C++ [over.match.funcs]p5). We perform a simplified version of
  // reference binding here, that allows class rvalues to bind to
  // non-constant references.

  // First check the qualifiers.
  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
  if (ImplicitParamType.getCVRQualifiers()
                                    != FromTypeCanon.getLocalCVRQualifiers() &&
      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
    ICS.setBad(BadConversionSequence::bad_qualifiers,
               FromType, ImplicitParamType);
    return ICS;
  }

  if (FromTypeCanon.hasAddressSpace()) {
    Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
    Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
    if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
      ICS.setBad(BadConversionSequence::bad_qualifiers,
                 FromType, ImplicitParamType);
      return ICS;
    }
  }

  // Check that we have either the same type or a derived type. It
  // affects the conversion rank.
  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
  ImplicitConversionKind SecondKind;
  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
    SecondKind = ICK_Identity;
  } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
    SecondKind = ICK_Derived_To_Base;
  else {
    ICS.setBad(BadConversionSequence::unrelated_class,
               FromType, ImplicitParamType);
    return ICS;
  }

  // Check the ref-qualifier.
  switch (Method->getRefQualifier()) {
  case RQ_None:
    // Do nothing; we don't care about lvalueness or rvalueness.
    break;

  case RQ_LValue:
    if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
      // non-const lvalue reference cannot bind to an rvalue
      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
                 ImplicitParamType);
      return ICS;
    }
    break;

  case RQ_RValue:
    if (!FromClassification.isRValue()) {
      // rvalue reference cannot bind to an lvalue
      ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
                 ImplicitParamType);
      return ICS;
    }
    break;
  }

  // Success. Mark this as a reference binding.
  ICS.setStandard();
  ICS.Standard.setAsIdentityConversion();
  ICS.Standard.Second = SecondKind;
  ICS.Standard.setFromType(FromType);
  ICS.Standard.setAllToTypes(ImplicitParamType);
  ICS.Standard.ReferenceBinding = true;
  ICS.Standard.DirectBinding = true;
  ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
  ICS.Standard.BindsToFunctionLvalue = false;
  ICS.Standard.BindsToRvalue = FromClassification.isRValue();
  ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
    = (Method->getRefQualifier() == RQ_None);
  return ICS;
}

/// PerformObjectArgumentInitialization - Perform initialization of
/// the implicit object parameter for the given Method with the given
/// expression.
ExprResult
Sema::PerformObjectArgumentInitialization(Expr *From,
                                          NestedNameSpecifier *Qualifier,
                                          NamedDecl *FoundDecl,
                                          CXXMethodDecl *Method) {
  QualType FromRecordType, DestType;
  QualType ImplicitParamRecordType  =
    Method->getThisType()->castAs<PointerType>()->getPointeeType();

  Expr::Classification FromClassification;
  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
    FromRecordType = PT->getPointeeType();
    DestType = Method->getThisType();
    FromClassification = Expr::Classification::makeSimpleLValue();
  } else {
    FromRecordType = From->getType();
    DestType = ImplicitParamRecordType;
    FromClassification = From->Classify(Context);

    // When performing member access on a prvalue, materialize a temporary.
    if (From->isPRValue()) {
      From = CreateMaterializeTemporaryExpr(FromRecordType, From,
                                            Method->getRefQualifier() !=
                                                RefQualifierKind::RQ_RValue);
    }
  }

  // Note that we always use the true parent context when performing
  // the actual argument initialization.
  ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
      *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
      Method->getParent());
  if (ICS.isBad()) {
    switch (ICS.Bad.Kind) {
    case BadConversionSequence::bad_qualifiers: {
      Qualifiers FromQs = FromRecordType.getQualifiers();
      Qualifiers ToQs = DestType.getQualifiers();
      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
      if (CVR) {
        Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
            << Method->getDeclName() << FromRecordType << (CVR - 1)
            << From->getSourceRange();
        Diag(Method->getLocation(), diag::note_previous_decl)
          << Method->getDeclName();
        return ExprError();
      }
      break;
    }

    case BadConversionSequence::lvalue_ref_to_rvalue:
    case BadConversionSequence::rvalue_ref_to_lvalue: {
      bool IsRValueQualified =
        Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
      Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
          << Method->getDeclName() << FromClassification.isRValue()
          << IsRValueQualified;
      Diag(Method->getLocation(), diag::note_previous_decl)
        << Method->getDeclName();
      return ExprError();
    }

    case BadConversionSequence::no_conversion:
    case BadConversionSequence::unrelated_class:
      break;

    case BadConversionSequence::too_few_initializers:
    case BadConversionSequence::too_many_initializers:
      llvm_unreachable("Lists are not objects");
    }

    return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
           << ImplicitParamRecordType << FromRecordType
           << From->getSourceRange();
  }

  if (ICS.Standard.Second == ICK_Derived_To_Base) {
    ExprResult FromRes =
      PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
    if (FromRes.isInvalid())
      return ExprError();
    From = FromRes.get();
  }

  if (!Context.hasSameType(From->getType(), DestType)) {
    CastKind CK;
    QualType PteeTy = DestType->getPointeeType();
    LangAS DestAS =
        PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace();
    if (FromRecordType.getAddressSpace() != DestAS)
      CK = CK_AddressSpaceConversion;
    else
      CK = CK_NoOp;
    From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
  }
  return From;
}

/// TryContextuallyConvertToBool - Attempt to contextually convert the
/// expression From to bool (C++0x [conv]p3).
static ImplicitConversionSequence
TryContextuallyConvertToBool(Sema &S, Expr *From) {
  // C++ [dcl.init]/17.8:
  //   - Otherwise, if the initialization is direct-initialization, the source
  //     type is std::nullptr_t, and the destination type is bool, the initial
  //     value of the object being initialized is false.
  if (From->getType()->isNullPtrType())
    return ImplicitConversionSequence::getNullptrToBool(From->getType(),
                                                        S.Context.BoolTy,
                                                        From->isGLValue());

  // All other direct-initialization of bool is equivalent to an implicit
  // conversion to bool in which explicit conversions are permitted.
  return TryImplicitConversion(S, From, S.Context.BoolTy,
                               /*SuppressUserConversions=*/false,
                               AllowedExplicit::Conversions,
                               /*InOverloadResolution=*/false,
                               /*CStyle=*/false,
                               /*AllowObjCWritebackConversion=*/false,
                               /*AllowObjCConversionOnExplicit=*/false);
}

/// PerformContextuallyConvertToBool - Perform a contextual conversion
/// of the expression From to bool (C++0x [conv]p3).
ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
  if (checkPlaceholderForOverload(*this, From))
    return ExprError();

  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
  if (!ICS.isBad())
    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);

  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
    return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
           << From->getType() << From->getSourceRange();
  return ExprError();
}

/// Check that the specified conversion is permitted in a converted constant
/// expression, according to C++11 [expr.const]p3. Return true if the conversion
/// is acceptable.
static bool CheckConvertedConstantConversions(Sema &S,
                                              StandardConversionSequence &SCS) {
  // Since we know that the target type is an integral or unscoped enumeration
  // type, most conversion kinds are impossible. All possible First and Third
  // conversions are fine.
  switch (SCS.Second) {
  case ICK_Identity:
  case ICK_Integral_Promotion:
  case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
  case ICK_Zero_Queue_Conversion:
    return true;

  case ICK_Boolean_Conversion:
    // Conversion from an integral or unscoped enumeration type to bool is
    // classified as ICK_Boolean_Conversion, but it's also arguably an integral
    // conversion, so we allow it in a converted constant expression.
    //
    // FIXME: Per core issue 1407, we should not allow this, but that breaks
    // a lot of popular code. We should at least add a warning for this
    // (non-conforming) extension.
    return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
           SCS.getToType(2)->isBooleanType();

  case ICK_Pointer_Conversion:
  case ICK_Pointer_Member:
    // C++1z: null pointer conversions and null member pointer conversions are
    // only permitted if the source type is std::nullptr_t.
    return SCS.getFromType()->isNullPtrType();

  case ICK_Floating_Promotion:
  case ICK_Complex_Promotion:
  case ICK_Floating_Conversion:
  case ICK_Complex_Conversion:
  case ICK_Floating_Integral:
  case ICK_Compatible_Conversion:
  case ICK_Derived_To_Base:
  case ICK_Vector_Conversion:
  case ICK_SVE_Vector_Conversion:
  case ICK_Vector_Splat:
  case ICK_Complex_Real:
  case ICK_Block_Pointer_Conversion:
  case ICK_TransparentUnionConversion:
  case ICK_Writeback_Conversion:
  case ICK_Zero_Event_Conversion:
  case ICK_C_Only_Conversion:
  case ICK_Incompatible_Pointer_Conversion:
    return false;

  case ICK_Lvalue_To_Rvalue:
  case ICK_Array_To_Pointer:
  case ICK_Function_To_Pointer:
    llvm_unreachable("found a first conversion kind in Second");

  case ICK_Function_Conversion:
  case ICK_Qualification:
    llvm_unreachable("found a third conversion kind in Second");

  case ICK_Num_Conversion_Kinds:
    break;
  }

  llvm_unreachable("unknown conversion kind");
}

/// CheckConvertedConstantExpression - Check that the expression From is a
/// converted constant expression of type T, perform the conversion and produce
/// the converted expression, per C++11 [expr.const]p3.
static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
                                                   QualType T, APValue &Value,
                                                   Sema::CCEKind CCE,
                                                   bool RequireInt,
                                                   NamedDecl *Dest) {
  assert(S.getLangOpts().CPlusPlus11 &&
         "converted constant expression outside C++11");

  if (checkPlaceholderForOverload(S, From))
    return ExprError();

  // C++1z [expr.const]p3:
  //  A converted constant expression of type T is an expression,
  //  implicitly converted to type T, where the converted
  //  expression is a constant expression and the implicit conversion
  //  sequence contains only [... list of conversions ...].
  ImplicitConversionSequence ICS =
      (CCE == Sema::CCEK_ExplicitBool || CCE == Sema::CCEK_Noexcept)
          ? TryContextuallyConvertToBool(S, From)
          : TryCopyInitialization(S, From, T,
                                  /*SuppressUserConversions=*/false,
                                  /*InOverloadResolution=*/false,
                                  /*AllowObjCWritebackConversion=*/false,
                                  /*AllowExplicit=*/false);
  StandardConversionSequence *SCS = nullptr;
  switch (ICS.getKind()) {
  case ImplicitConversionSequence::StandardConversion:
    SCS = &ICS.Standard;
    break;
  case ImplicitConversionSequence::UserDefinedConversion:
    if (T->isRecordType())
      SCS = &ICS.UserDefined.Before;
    else
      SCS = &ICS.UserDefined.After;
    break;
  case ImplicitConversionSequence::AmbiguousConversion:
  case ImplicitConversionSequence::BadConversion:
    if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
      return S.Diag(From->getBeginLoc(),
                    diag::err_typecheck_converted_constant_expression)
             << From->getType() << From->getSourceRange() << T;
    return ExprError();

  case ImplicitConversionSequence::EllipsisConversion:
    llvm_unreachable("ellipsis conversion in converted constant expression");
  }

  // Check that we would only use permitted conversions.
  if (!CheckConvertedConstantConversions(S, *SCS)) {
    return S.Diag(From->getBeginLoc(),
                  diag::err_typecheck_converted_constant_expression_disallowed)
           << From->getType() << From->getSourceRange() << T;
  }
  // [...] and where the reference binding (if any) binds directly.
  if (SCS->ReferenceBinding && !SCS->DirectBinding) {
    return S.Diag(From->getBeginLoc(),
                  diag::err_typecheck_converted_constant_expression_indirect)
           << From->getType() << From->getSourceRange() << T;
  }

  // Usually we can simply apply the ImplicitConversionSequence we formed
  // earlier, but that's not guaranteed to work when initializing an object of
  // class type.
  ExprResult Result;
  if (T->isRecordType()) {
    assert(CCE == Sema::CCEK_TemplateArg &&
           "unexpected class type converted constant expr");
    Result = S.PerformCopyInitialization(
        InitializedEntity::InitializeTemplateParameter(
            T, cast<NonTypeTemplateParmDecl>(Dest)),
        SourceLocation(), From);
  } else {
    Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
  }
  if (Result.isInvalid())
    return Result;

  // C++2a [intro.execution]p5:
  //   A full-expression is [...] a constant-expression [...]
  Result =
      S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(),
                            /*DiscardedValue=*/false, /*IsConstexpr=*/true);
  if (Result.isInvalid())
    return Result;

  // Check for a narrowing implicit conversion.
  bool ReturnPreNarrowingValue = false;
  APValue PreNarrowingValue;
  QualType PreNarrowingType;
  switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
                                PreNarrowingType)) {
  case NK_Dependent_Narrowing:
    // Implicit conversion to a narrower type, but the expression is
    // value-dependent so we can't tell whether it's actually narrowing.
  case NK_Variable_Narrowing:
    // Implicit conversion to a narrower type, and the value is not a constant
    // expression. We'll diagnose this in a moment.
  case NK_Not_Narrowing:
    break;

  case NK_Constant_Narrowing:
    if (CCE == Sema::CCEK_ArrayBound &&
        PreNarrowingType->isIntegralOrEnumerationType() &&
        PreNarrowingValue.isInt()) {
      // Don't diagnose array bound narrowing here; we produce more precise
      // errors by allowing the un-narrowed value through.
      ReturnPreNarrowingValue = true;
      break;
    }
    S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
        << CCE << /*Constant*/ 1
        << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
    break;

  case NK_Type_Narrowing:
    // FIXME: It would be better to diagnose that the expression is not a
    // constant expression.
    S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
        << CCE << /*Constant*/ 0 << From->getType() << T;
    break;
  }

  if (Result.get()->isValueDependent()) {
    Value = APValue();
    return Result;
  }

  // Check the expression is a constant expression.
  SmallVector<PartialDiagnosticAt, 8> Notes;
  Expr::EvalResult Eval;
  Eval.Diag = &Notes;

  ConstantExprKind Kind;
  if (CCE == Sema::CCEK_TemplateArg && T->isRecordType())
    Kind = ConstantExprKind::ClassTemplateArgument;
  else if (CCE == Sema::CCEK_TemplateArg)
    Kind = ConstantExprKind::NonClassTemplateArgument;
  else
    Kind = ConstantExprKind::Normal;

  if (!Result.get()->EvaluateAsConstantExpr(Eval, S.Context, Kind) ||
      (RequireInt && !Eval.Val.isInt())) {
    // The expression can't be folded, so we can't keep it at this position in
    // the AST.
    Result = ExprError();
  } else {
    Value = Eval.Val;

    if (Notes.empty()) {
      // It's a constant expression.
      Expr *E = ConstantExpr::Create(S.Context, Result.get(), Value);
      if (ReturnPreNarrowingValue)
        Value = std::move(PreNarrowingValue);
      return E;
    }
  }

  // It's not a constant expression. Produce an appropriate diagnostic.
  if (Notes.size() == 1 &&
      Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) {
    S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
  } else if (!Notes.empty() && Notes[0].second.getDiagID() ==
                                   diag::note_constexpr_invalid_template_arg) {
    Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg);
    for (unsigned I = 0; I < Notes.size(); ++I)
      S.Diag(Notes[I].first, Notes[I].second);
  } else {
    S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
        << CCE << From->getSourceRange();
    for (unsigned I = 0; I < Notes.size(); ++I)
      S.Diag(Notes[I].first, Notes[I].second);
  }
  return ExprError();
}

ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
                                                  APValue &Value, CCEKind CCE,
                                                  NamedDecl *Dest) {
  return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false,
                                            Dest);
}

ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
                                                  llvm::APSInt &Value,
                                                  CCEKind CCE) {
  assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");

  APValue V;
  auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true,
                                              /*Dest=*/nullptr);
  if (!R.isInvalid() && !R.get()->isValueDependent())
    Value = V.getInt();
  return R;
}


/// dropPointerConversions - If the given standard conversion sequence
/// involves any pointer conversions, remove them.  This may change
/// the result type of the conversion sequence.
static void dropPointerConversion(StandardConversionSequence &SCS) {
  if (SCS.Second == ICK_Pointer_Conversion) {
    SCS.Second = ICK_Identity;
    SCS.Third = ICK_Identity;
    SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
  }
}

/// TryContextuallyConvertToObjCPointer - Attempt to contextually
/// convert the expression From to an Objective-C pointer type.
static ImplicitConversionSequence
TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
  // Do an implicit conversion to 'id'.
  QualType Ty = S.Context.getObjCIdType();
  ImplicitConversionSequence ICS
    = TryImplicitConversion(S, From, Ty,
                            // FIXME: Are these flags correct?
                            /*SuppressUserConversions=*/false,
                            AllowedExplicit::Conversions,
                            /*InOverloadResolution=*/false,
                            /*CStyle=*/false,
                            /*AllowObjCWritebackConversion=*/false,
                            /*AllowObjCConversionOnExplicit=*/true);

  // Strip off any final conversions to 'id'.
  switch (ICS.getKind()) {
  case ImplicitConversionSequence::BadConversion:
  case ImplicitConversionSequence::AmbiguousConversion:
  case ImplicitConversionSequence::EllipsisConversion:
    break;

  case ImplicitConversionSequence::UserDefinedConversion:
    dropPointerConversion(ICS.UserDefined.After);
    break;

  case ImplicitConversionSequence::StandardConversion:
    dropPointerConversion(ICS.Standard);
    break;
  }

  return ICS;
}

/// PerformContextuallyConvertToObjCPointer - Perform a contextual
/// conversion of the expression From to an Objective-C pointer type.
/// Returns a valid but null ExprResult if no conversion sequence exists.
ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
  if (checkPlaceholderForOverload(*this, From))
    return ExprError();

  QualType Ty = Context.getObjCIdType();
  ImplicitConversionSequence ICS =
    TryContextuallyConvertToObjCPointer(*this, From);
  if (!ICS.isBad())
    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
  return ExprResult();
}

/// Determine whether the provided type is an integral type, or an enumeration
/// type of a permitted flavor.
bool Sema::ICEConvertDiagnoser::match(QualType T) {
  return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
                                 : T->isIntegralOrUnscopedEnumerationType();
}

static ExprResult
diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
                            Sema::ContextualImplicitConverter &Converter,
                            QualType T, UnresolvedSetImpl &ViableConversions) {

  if (Converter.Suppress)
    return ExprError();

  Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
  for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
    CXXConversionDecl *Conv =
        cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
    QualType ConvTy = Conv->getConversionType().getNonReferenceType();
    Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
  }
  return From;
}

static bool
diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
                           Sema::ContextualImplicitConverter &Converter,
                           QualType T, bool HadMultipleCandidates,
                           UnresolvedSetImpl &ExplicitConversions) {
  if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
    DeclAccessPair Found = ExplicitConversions[0];
    CXXConversionDecl *Conversion =
        cast<CXXConversionDecl>(Found->getUnderlyingDecl());

    // The user probably meant to invoke the given explicit
    // conversion; use it.
    QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
    std::string TypeStr;
    ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());

    Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
        << FixItHint::CreateInsertion(From->getBeginLoc(),
                                      "static_cast<" + TypeStr + ">(")
        << FixItHint::CreateInsertion(
               SemaRef.getLocForEndOfToken(From->getEndLoc()), ")");
    Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);

    // If we aren't in a SFINAE context, build a call to the
    // explicit conversion function.
    if (SemaRef.isSFINAEContext())
      return true;

    SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
    ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
                                                       HadMultipleCandidates);
    if (Result.isInvalid())
      return true;
    // Record usage of conversion in an implicit cast.
    From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
                                    CK_UserDefinedConversion, Result.get(),
                                    nullptr, Result.get()->getValueKind(),
                                    SemaRef.CurFPFeatureOverrides());
  }
  return false;
}

static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
                             Sema::ContextualImplicitConverter &Converter,
                             QualType T, bool HadMultipleCandidates,
                             DeclAccessPair &Found) {
  CXXConversionDecl *Conversion =
      cast<CXXConversionDecl>(Found->getUnderlyingDecl());
  SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);

  QualType ToType = Conversion->getConversionType().getNonReferenceType();
  if (!Converter.SuppressConversion) {
    if (SemaRef.isSFINAEContext())
      return true;

    Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
        << From->getSourceRange();
  }

  ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
                                                     HadMultipleCandidates);
  if (Result.isInvalid())
    return true;
  // Record usage of conversion in an implicit cast.
  From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
                                  CK_UserDefinedConversion, Result.get(),
                                  nullptr, Result.get()->getValueKind(),
                                  SemaRef.CurFPFeatureOverrides());
  return false;
}

static ExprResult finishContextualImplicitConversion(
    Sema &SemaRef, SourceLocation Loc, Expr *From,
    Sema::ContextualImplicitConverter &Converter) {
  if (!Converter.match(From->getType()) && !Converter.Suppress)
    Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
        << From->getSourceRange();

  return SemaRef.DefaultLvalueConversion(From);
}

static void
collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
                                  UnresolvedSetImpl &ViableConversions,
                                  OverloadCandidateSet &CandidateSet) {
  for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
    DeclAccessPair FoundDecl = ViableConversions[I];
    NamedDecl *D = FoundDecl.getDecl();
    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
    if (isa<UsingShadowDecl>(D))
      D = cast<UsingShadowDecl>(D)->getTargetDecl();

    CXXConversionDecl *Conv;
    FunctionTemplateDecl *ConvTemplate;
    if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
    else
      Conv = cast<CXXConversionDecl>(D);

    if (ConvTemplate)
      SemaRef.AddTemplateConversionCandidate(
          ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
          /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true);
    else
      SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
                                     ToType, CandidateSet,
                                     /*AllowObjCConversionOnExplicit=*/false,
                                     /*AllowExplicit*/ true);
  }
}

/// Attempt to convert the given expression to a type which is accepted
/// by the given converter.
///
/// This routine will attempt to convert an expression of class type to a
/// type accepted by the specified converter. In C++11 and before, the class
/// must have a single non-explicit conversion function converting to a matching
/// type. In C++1y, there can be multiple such conversion functions, but only
/// one target type.
///
/// \param Loc The source location of the construct that requires the
/// conversion.
///
/// \param From The expression we're converting from.
///
/// \param Converter Used to control and diagnose the conversion process.
///
/// \returns The expression, converted to an integral or enumeration type if
/// successful.
ExprResult Sema::PerformContextualImplicitConversion(
    SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
  // We can't perform any more checking for type-dependent expressions.
  if (From->isTypeDependent())
    return From;

  // Process placeholders immediately.
  if (From->hasPlaceholderType()) {
    ExprResult result = CheckPlaceholderExpr(From);
    if (result.isInvalid())
      return result;
    From = result.get();
  }

  // If the expression already has a matching type, we're golden.
  QualType T = From->getType();
  if (Converter.match(T))
    return DefaultLvalueConversion(From);

  // FIXME: Check for missing '()' if T is a function type?

  // We can only perform contextual implicit conversions on objects of class
  // type.
  const RecordType *RecordTy = T->getAs<RecordType>();
  if (!RecordTy || !getLangOpts().CPlusPlus) {
    if (!Converter.Suppress)
      Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
    return From;
  }

  // We must have a complete class type.
  struct TypeDiagnoserPartialDiag : TypeDiagnoser {
    ContextualImplicitConverter &Converter;
    Expr *From;

    TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
        : Converter(Converter), From(From) {}

    void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
      Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
    }
  } IncompleteDiagnoser(Converter, From);

  if (Converter.Suppress ? !isCompleteType(Loc, T)
                         : RequireCompleteType(Loc, T, IncompleteDiagnoser))
    return From;

  // Look for a conversion to an integral or enumeration type.
  UnresolvedSet<4>
      ViableConversions; // These are *potentially* viable in C++1y.
  UnresolvedSet<4> ExplicitConversions;
  const auto &Conversions =
      cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();

  bool HadMultipleCandidates =
      (std::distance(Conversions.begin(), Conversions.end()) > 1);

  // To check that there is only one target type, in C++1y:
  QualType ToType;
  bool HasUniqueTargetType = true;

  // Collect explicit or viable (potentially in C++1y) conversions.
  for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
    NamedDecl *D = (*I)->getUnderlyingDecl();
    CXXConversionDecl *Conversion;
    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
    if (ConvTemplate) {
      if (getLangOpts().CPlusPlus14)
        Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
      else
        continue; // C++11 does not consider conversion operator templates(?).
    } else
      Conversion = cast<CXXConversionDecl>(D);

    assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
           "Conversion operator templates are considered potentially "
           "viable in C++1y");

    QualType CurToType = Conversion->getConversionType().getNonReferenceType();
    if (Converter.match(CurToType) || ConvTemplate) {

      if (Conversion->isExplicit()) {
        // FIXME: For C++1y, do we need this restriction?
        // cf. diagnoseNoViableConversion()
        if (!ConvTemplate)
          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
      } else {
        if (!ConvTemplate && getLangOpts().CPlusPlus14) {
          if (ToType.isNull())
            ToType = CurToType.getUnqualifiedType();
          else if (HasUniqueTargetType &&
                   (CurToType.getUnqualifiedType() != ToType))
            HasUniqueTargetType = false;
        }
        ViableConversions.addDecl(I.getDecl(), I.getAccess());
      }
    }
  }

  if (getLangOpts().CPlusPlus14) {
    // C++1y [conv]p6:
    // ... An expression e of class type E appearing in such a context
    // is said to be contextually implicitly converted to a specified
    // type T and is well-formed if and only if e can be implicitly
    // converted to a type T that is determined as follows: E is searched
    // for conversion functions whose return type is cv T or reference to
    // cv T such that T is allowed by the context. There shall be
    // exactly one such T.

    // If no unique T is found:
    if (ToType.isNull()) {
      if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
                                     HadMultipleCandidates,
                                     ExplicitConversions))
        return ExprError();
      return finishContextualImplicitConversion(*this, Loc, From, Converter);
    }

    // If more than one unique Ts are found:
    if (!HasUniqueTargetType)
      return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
                                         ViableConversions);

    // If one unique T is found:
    // First, build a candidate set from the previously recorded
    // potentially viable conversions.
    OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
    collectViableConversionCandidates(*this, From, ToType, ViableConversions,
                                      CandidateSet);

    // Then, perform overload resolution over the candidate set.
    OverloadCandidateSet::iterator Best;
    switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
    case OR_Success: {
      // Apply this conversion.
      DeclAccessPair Found =
          DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
      if (recordConversion(*this, Loc, From, Converter, T,
                           HadMultipleCandidates, Found))
        return ExprError();
      break;
    }
    case OR_Ambiguous:
      return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
                                         ViableConversions);
    case OR_No_Viable_Function:
      if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
                                     HadMultipleCandidates,
                                     ExplicitConversions))
        return ExprError();
      LLVM_FALLTHROUGH;
    case OR_Deleted:
      // We'll complain below about a non-integral condition type.
      break;
    }
  } else {
    switch (ViableConversions.size()) {
    case 0: {
      if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
                                     HadMultipleCandidates,
                                     ExplicitConversions))
        return ExprError();

      // We'll complain below about a non-integral condition type.
      break;
    }
    case 1: {
      // Apply this conversion.
      DeclAccessPair Found = ViableConversions[0];
      if (recordConversion(*this, Loc, From, Converter, T,
                           HadMultipleCandidates, Found))
        return ExprError();
      break;
    }
    default:
      return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
                                         ViableConversions);
    }
  }

  return finishContextualImplicitConversion(*this, Loc, From, Converter);
}

/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
/// an acceptable non-member overloaded operator for a call whose
/// arguments have types T1 (and, if non-empty, T2). This routine
/// implements the check in C++ [over.match.oper]p3b2 concerning
/// enumeration types.
static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
                                                   FunctionDecl *Fn,
                                                   ArrayRef<Expr *> Args) {
  QualType T1 = Args[0]->getType();
  QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();

  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
    return true;

  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
    return true;

  const auto *Proto = Fn->getType()->castAs<FunctionProtoType>();
  if (Proto->getNumParams() < 1)
    return false;

  if (T1->isEnumeralType()) {
    QualType ArgType = Proto->getParamType(0).getNonReferenceType();
    if (Context.hasSameUnqualifiedType(T1, ArgType))
      return true;
  }

  if (Proto->getNumParams() < 2)
    return false;

  if (!T2.isNull() && T2->isEnumeralType()) {
    QualType ArgType = Proto->getParamType(1).getNonReferenceType();
    if (Context.hasSameUnqualifiedType(T2, ArgType))
      return true;
  }

  return false;
}

/// AddOverloadCandidate - Adds the given function to the set of
/// candidate functions, using the given function call arguments.  If
/// @p SuppressUserConversions, then don't allow user-defined
/// conversions via constructors or conversion operators.
///
/// \param PartialOverloading true if we are performing "partial" overloading
/// based on an incomplete set of function arguments. This feature is used by
/// code completion.
void Sema::AddOverloadCandidate(
    FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
    OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
    bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions,
    ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions,
    OverloadCandidateParamOrder PO) {
  const FunctionProtoType *Proto
    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
  assert(Proto && "Functions without a prototype cannot be overloaded");
  assert(!Function->getDescribedFunctionTemplate() &&
         "Use AddTemplateOverloadCandidate for function templates");

  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
    if (!isa<CXXConstructorDecl>(Method)) {
      // If we get here, it's because we're calling a member function
      // that is named without a member access expression (e.g.,
      // "this->f") that was either written explicitly or created
      // implicitly. This can happen with a qualified call to a member
      // function, e.g., X::f(). We use an empty type for the implied
      // object argument (C++ [over.call.func]p3), and the acting context
      // is irrelevant.
      AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(),
                         Expr::Classification::makeSimpleLValue(), Args,
                         CandidateSet, SuppressUserConversions,
                         PartialOverloading, EarlyConversions, PO);
      return;
    }
    // We treat a constructor like a non-member function, since its object
    // argument doesn't participate in overload resolution.
  }

  if (!CandidateSet.isNewCandidate(Function, PO))
    return;

  // C++11 [class.copy]p11: [DR1402]
  //   A defaulted move constructor that is defined as deleted is ignored by
  //   overload resolution.
  CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
  if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
      Constructor->isMoveConstructor())
    return;

  // Overload resolution is always an unevaluated context.
  EnterExpressionEvaluationContext Unevaluated(
      *this, Sema::ExpressionEvaluationContext::Unevaluated);

  // C++ [over.match.oper]p3:
  //   if no operand has a class type, only those non-member functions in the
  //   lookup set that have a first parameter of type T1 or "reference to
  //   (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
  //   is a right operand) a second parameter of type T2 or "reference to
  //   (possibly cv-qualified) T2", when T2 is an enumeration type, are
  //   candidate functions.
  if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
      !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
    return;

  // Add this candidate
  OverloadCandidate &Candidate =
      CandidateSet.addCandidate(Args.size(), EarlyConversions);
  Candidate.FoundDecl = FoundDecl;
  Candidate.Function = Function;
  Candidate.Viable = true;
  Candidate.RewriteKind =
      CandidateSet.getRewriteInfo().getRewriteKind(Function, PO);
  Candidate.IsSurrogate = false;
  Candidate.IsADLCandidate = IsADLCandidate;
  Candidate.IgnoreObjectArgument = false;
  Candidate.ExplicitCallArguments = Args.size();

  // Explicit functions are not actually candidates at all if we're not
  // allowing them in this context, but keep them around so we can point
  // to them in diagnostics.
  if (!AllowExplicit && ExplicitSpecifier::getFromDecl(Function).isExplicit()) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_explicit;
    return;
  }

  if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() &&
      !Function->getAttr<TargetAttr>()->isDefaultVersion()) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_non_default_multiversion_function;
    return;
  }

  if (Constructor) {
    // C++ [class.copy]p3:
    //   A member function template is never instantiated to perform the copy
    //   of a class object to an object of its class type.
    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
    if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
         IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(),
                       ClassType))) {
      Candidate.Viable = false;
      Candidate.FailureKind = ovl_fail_illegal_constructor;
      return;
    }

    // C++ [over.match.funcs]p8: (proposed DR resolution)
    //   A constructor inherited from class type C that has a first parameter
    //   of type "reference to P" (including such a constructor instantiated
    //   from a template) is excluded from the set of candidate functions when
    //   constructing an object of type cv D if the argument list has exactly
    //   one argument and D is reference-related to P and P is reference-related
    //   to C.
    auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
    if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 &&
        Constructor->getParamDecl(0)->getType()->isReferenceType()) {
      QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType();
      QualType C = Context.getRecordType(Constructor->getParent());
      QualType D = Context.getRecordType(Shadow->getParent());
      SourceLocation Loc = Args.front()->getExprLoc();
      if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) &&
          (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) {
        Candidate.Viable = false;
        Candidate.FailureKind = ovl_fail_inhctor_slice;
        return;
      }
    }

    // Check that the constructor is capable of constructing an object in the
    // destination address space.
    if (!Qualifiers::isAddressSpaceSupersetOf(
            Constructor->getMethodQualifiers().getAddressSpace(),
            CandidateSet.getDestAS())) {
      Candidate.Viable = false;
      Candidate.FailureKind = ovl_fail_object_addrspace_mismatch;
    }
  }

  unsigned NumParams = Proto->getNumParams();

  // (C++ 13.3.2p2): A candidate function having fewer than m
  // parameters is viable only if it has an ellipsis in its parameter
  // list (8.3.5).
  if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
      !Proto->isVariadic() &&
      shouldEnforceArgLimit(PartialOverloading, Function)) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_too_many_arguments;
    return;
  }

  // (C++ 13.3.2p2): A candidate function having more than m parameters
  // is viable only if the (m+1)st parameter has a default argument
  // (8.3.6). For the purposes of overload resolution, the
  // parameter list is truncated on the right, so that there are
  // exactly m parameters.
  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
  if (Args.size() < MinRequiredArgs && !PartialOverloading) {
    // Not enough arguments.
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_too_few_arguments;
    return;
  }

  // (CUDA B.1): Check for invalid calls between targets.
  if (getLangOpts().CUDA)
    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
      // Skip the check for callers that are implicit members, because in this
      // case we may not yet know what the member's target is; the target is
      // inferred for the member automatically, based on the bases and fields of
      // the class.
      if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) {
        Candidate.Viable = false;
        Candidate.FailureKind = ovl_fail_bad_target;
        return;
      }

  if (Function->getTrailingRequiresClause()) {
    ConstraintSatisfaction Satisfaction;
    if (CheckFunctionConstraints(Function, Satisfaction) ||
        !Satisfaction.IsSatisfied) {
      Candidate.Viable = false;
      Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
      return;
    }
  }

  // Determine the implicit conversion sequences for each of the
  // arguments.
  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
    unsigned ConvIdx =
        PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx;
    if (Candidate.Conversions[ConvIdx].isInitialized()) {
      // We already formed a conversion sequence for this parameter during
      // template argument deduction.
    } else if (ArgIdx < NumParams) {
      // (C++ 13.3.2p3): for F to be a viable function, there shall
      // exist for each argument an implicit conversion sequence
      // (13.3.3.1) that converts that argument to the corresponding
      // parameter of F.
      QualType ParamType = Proto->getParamType(ArgIdx);
      Candidate.Conversions[ConvIdx] = TryCopyInitialization(
          *this, Args[ArgIdx], ParamType, SuppressUserConversions,
          /*InOverloadResolution=*/true,
          /*AllowObjCWritebackConversion=*/
          getLangOpts().ObjCAutoRefCount, AllowExplicitConversions);
      if (Candidate.Conversions[ConvIdx].isBad()) {
        Candidate.Viable = false;
        Candidate.FailureKind = ovl_fail_bad_conversion;
        return;
      }
    } else {
      // (C++ 13.3.2p2): For the purposes of overload resolution, any
      // argument for which there is no corresponding parameter is
      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
      Candidate.Conversions[ConvIdx].setEllipsis();
    }
  }

  if (EnableIfAttr *FailedAttr =
          CheckEnableIf(Function, CandidateSet.getLocation(), Args)) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_enable_if;
    Candidate.DeductionFailure.Data = FailedAttr;
    return;
  }
}

ObjCMethodDecl *
Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
                       SmallVectorImpl<ObjCMethodDecl *> &Methods) {
  if (Methods.size() <= 1)
    return nullptr;

  for (unsigned b = 0, e = Methods.size(); b < e; b++) {
    bool Match = true;
    ObjCMethodDecl *Method = Methods[b];
    unsigned NumNamedArgs = Sel.getNumArgs();
    // Method might have more arguments than selector indicates. This is due
    // to addition of c-style arguments in method.
    if (Method->param_size() > NumNamedArgs)
      NumNamedArgs = Method->param_size();
    if (Args.size() < NumNamedArgs)
      continue;

    for (unsigned i = 0; i < NumNamedArgs; i++) {
      // We can't do any type-checking on a type-dependent argument.
      if (Args[i]->isTypeDependent()) {
        Match = false;
        break;
      }

      ParmVarDecl *param = Method->parameters()[i];
      Expr *argExpr = Args[i];
      assert(argExpr && "SelectBestMethod(): missing expression");

      // Strip the unbridged-cast placeholder expression off unless it's
      // a consumed argument.
      if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
          !param->hasAttr<CFConsumedAttr>())
        argExpr = stripARCUnbridgedCast(argExpr);

      // If the parameter is __unknown_anytype, move on to the next method.
      if (param->getType() == Context.UnknownAnyTy) {
        Match = false;
        break;
      }

      ImplicitConversionSequence ConversionState
        = TryCopyInitialization(*this, argExpr, param->getType(),
                                /*SuppressUserConversions*/false,
                                /*InOverloadResolution=*/true,
                                /*AllowObjCWritebackConversion=*/
                                getLangOpts().ObjCAutoRefCount,
                                /*AllowExplicit*/false);
      // This function looks for a reasonably-exact match, so we consider
      // incompatible pointer conversions to be a failure here.
      if (ConversionState.isBad() ||
          (ConversionState.isStandard() &&
           ConversionState.Standard.Second ==
               ICK_Incompatible_Pointer_Conversion)) {
        Match = false;
        break;
      }
    }
    // Promote additional arguments to variadic methods.
    if (Match && Method->isVariadic()) {
      for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
        if (Args[i]->isTypeDependent()) {
          Match = false;
          break;
        }
        ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
                                                          nullptr);
        if (Arg.isInvalid()) {
          Match = false;
          break;
        }
      }
    } else {
      // Check for extra arguments to non-variadic methods.
      if (Args.size() != NumNamedArgs)
        Match = false;
      else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
        // Special case when selectors have no argument. In this case, select
        // one with the most general result type of 'id'.
        for (unsigned b = 0, e = Methods.size(); b < e; b++) {
          QualType ReturnT = Methods[b]->getReturnType();
          if (ReturnT->isObjCIdType())
            return Methods[b];
        }
      }
    }

    if (Match)
      return Method;
  }
  return nullptr;
}

static bool convertArgsForAvailabilityChecks(
    Sema &S, FunctionDecl *Function, Expr *ThisArg, SourceLocation CallLoc,
    ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap, bool MissingImplicitThis,
    Expr *&ConvertedThis, SmallVectorImpl<Expr *> &ConvertedArgs) {
  if (ThisArg) {
    CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
    assert(!isa<CXXConstructorDecl>(Method) &&
           "Shouldn't have `this` for ctors!");
    assert(!Method->isStatic() && "Shouldn't have `this` for static methods!");
    ExprResult R = S.PerformObjectArgumentInitialization(
        ThisArg, /*Qualifier=*/nullptr, Method, Method);
    if (R.isInvalid())
      return false;
    ConvertedThis = R.get();
  } else {
    if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) {
      (void)MD;
      assert((MissingImplicitThis || MD->isStatic() ||
              isa<CXXConstructorDecl>(MD)) &&
             "Expected `this` for non-ctor instance methods");
    }
    ConvertedThis = nullptr;
  }

  // Ignore any variadic arguments. Converting them is pointless, since the
  // user can't refer to them in the function condition.
  unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size());

  // Convert the arguments.
  for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) {
    ExprResult R;
    R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
                                        S.Context, Function->getParamDecl(I)),
                                    SourceLocation(), Args[I]);

    if (R.isInvalid())
      return false;

    ConvertedArgs.push_back(R.get());
  }

  if (Trap.hasErrorOccurred())
    return false;

  // Push default arguments if needed.
  if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
    for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
      ParmVarDecl *P = Function->getParamDecl(i);
      if (!P->hasDefaultArg())
        return false;
      ExprResult R = S.BuildCXXDefaultArgExpr(CallLoc, Function, P);
      if (R.isInvalid())
        return false;
      ConvertedArgs.push_back(R.get());
    }

    if (Trap.hasErrorOccurred())
      return false;
  }
  return true;
}

EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function,
                                  SourceLocation CallLoc,
                                  ArrayRef<Expr *> Args,
                                  bool MissingImplicitThis) {
  auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>();
  if (EnableIfAttrs.begin() == EnableIfAttrs.end())
    return nullptr;

  SFINAETrap Trap(*this);
  SmallVector<Expr *, 16> ConvertedArgs;
  // FIXME: We should look into making enable_if late-parsed.
  Expr *DiscardedThis;
  if (!convertArgsForAvailabilityChecks(
          *this, Function, /*ThisArg=*/nullptr, CallLoc, Args, Trap,
          /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs))
    return *EnableIfAttrs.begin();

  for (auto *EIA : EnableIfAttrs) {
    APValue Result;
    // FIXME: This doesn't consider value-dependent cases, because doing so is
    // very difficult. Ideally, we should handle them more gracefully.
    if (EIA->getCond()->isValueDependent() ||
        !EIA->getCond()->EvaluateWithSubstitution(
            Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
      return EIA;

    if (!Result.isInt() || !Result.getInt().getBoolValue())
      return EIA;
  }
  return nullptr;
}

template <typename CheckFn>
static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND,
                                        bool ArgDependent, SourceLocation Loc,
                                        CheckFn &&IsSuccessful) {
  SmallVector<const DiagnoseIfAttr *, 8> Attrs;
  for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) {
    if (ArgDependent == DIA->getArgDependent())
      Attrs.push_back(DIA);
  }

  // Common case: No diagnose_if attributes, so we can quit early.
  if (Attrs.empty())
    return false;

  auto WarningBegin = std::stable_partition(
      Attrs.begin(), Attrs.end(),
      [](const DiagnoseIfAttr *DIA) { return DIA->isError(); });

  // Note that diagnose_if attributes are late-parsed, so they appear in the
  // correct order (unlike enable_if attributes).
  auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin),
                               IsSuccessful);
  if (ErrAttr != WarningBegin) {
    const DiagnoseIfAttr *DIA = *ErrAttr;
    S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage();
    S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
        << DIA->getParent() << DIA->getCond()->getSourceRange();
    return true;
  }

  for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end()))
    if (IsSuccessful(DIA)) {
      S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage();
      S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
          << DIA->getParent() << DIA->getCond()->getSourceRange();
    }

  return false;
}

bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
                                               const Expr *ThisArg,
                                               ArrayRef<const Expr *> Args,
                                               SourceLocation Loc) {
  return diagnoseDiagnoseIfAttrsWith(
      *this, Function, /*ArgDependent=*/true, Loc,
      [&](const DiagnoseIfAttr *DIA) {
        APValue Result;
        // It's sane to use the same Args for any redecl of this function, since
        // EvaluateWithSubstitution only cares about the position of each
        // argument in the arg list, not the ParmVarDecl* it maps to.
        if (!DIA->getCond()->EvaluateWithSubstitution(
                Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg))
          return false;
        return Result.isInt() && Result.getInt().getBoolValue();
      });
}

bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
                                                 SourceLocation Loc) {
  return diagnoseDiagnoseIfAttrsWith(
      *this, ND, /*ArgDependent=*/false, Loc,
      [&](const DiagnoseIfAttr *DIA) {
        bool Result;
        return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) &&
               Result;
      });
}

/// Add all of the function declarations in the given function set to
/// the overload candidate set.
void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
                                 ArrayRef<Expr *> Args,
                                 OverloadCandidateSet &CandidateSet,
                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
                                 bool SuppressUserConversions,
                                 bool PartialOverloading,
                                 bool FirstArgumentIsBase) {
  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
    ArrayRef<Expr *> FunctionArgs = Args;

    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
    FunctionDecl *FD =
        FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);

    if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) {
      QualType ObjectType;
      Expr::Classification ObjectClassification;
      if (Args.size() > 0) {
        if (Expr *E = Args[0]) {
          // Use the explicit base to restrict the lookup:
          ObjectType = E->getType();
          // Pointers in the object arguments are implicitly dereferenced, so we
          // always classify them as l-values.
          if (!ObjectType.isNull() && ObjectType->isPointerType())
            ObjectClassification = Expr::Classification::makeSimpleLValue();
          else
            ObjectClassification = E->Classify(Context);
        } // .. else there is an implicit base.
        FunctionArgs = Args.slice(1);
      }
      if (FunTmpl) {
        AddMethodTemplateCandidate(
            FunTmpl, F.getPair(),
            cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
            ExplicitTemplateArgs, ObjectType, ObjectClassification,
            FunctionArgs, CandidateSet, SuppressUserConversions,
            PartialOverloading);
      } else {
        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
                           cast<CXXMethodDecl>(FD)->getParent(), ObjectType,
                           ObjectClassification, FunctionArgs, CandidateSet,
                           SuppressUserConversions, PartialOverloading);
      }
    } else {
      // This branch handles both standalone functions and static methods.

      // Slice the first argument (which is the base) when we access
      // static method as non-static.
      if (Args.size() > 0 &&
          (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) &&
                        !isa<CXXConstructorDecl>(FD)))) {
        assert(cast<CXXMethodDecl>(FD)->isStatic());
        FunctionArgs = Args.slice(1);
      }
      if (FunTmpl) {
        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
                                     ExplicitTemplateArgs, FunctionArgs,
                                     CandidateSet, SuppressUserConversions,
                                     PartialOverloading);
      } else {
        AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet,
                             SuppressUserConversions, PartialOverloading);
      }
    }
  }
}

/// AddMethodCandidate - Adds a named decl (which is some kind of
/// method) as a method candidate to the given overload set.
void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType,
                              Expr::Classification ObjectClassification,
                              ArrayRef<Expr *> Args,
                              OverloadCandidateSet &CandidateSet,
                              bool SuppressUserConversions,
                              OverloadCandidateParamOrder PO) {
  NamedDecl *Decl = FoundDecl.getDecl();
  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());

  if (isa<UsingShadowDecl>(Decl))
    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();

  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
           "Expected a member function template");
    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
                               /*ExplicitArgs*/ nullptr, ObjectType,
                               ObjectClassification, Args, CandidateSet,
                               SuppressUserConversions, false, PO);
  } else {
    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
                       ObjectType, ObjectClassification, Args, CandidateSet,
                       SuppressUserConversions, false, None, PO);
  }
}

/// AddMethodCandidate - Adds the given C++ member function to the set
/// of candidate functions, using the given function call arguments
/// and the object argument (@c Object). For example, in a call
/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
/// allow user-defined conversions via constructors or conversion
/// operators.
void
Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
                         CXXRecordDecl *ActingContext, QualType ObjectType,
                         Expr::Classification ObjectClassification,
                         ArrayRef<Expr *> Args,
                         OverloadCandidateSet &CandidateSet,
                         bool SuppressUserConversions,
                         bool PartialOverloading,
                         ConversionSequenceList EarlyConversions,
                         OverloadCandidateParamOrder PO) {
  const FunctionProtoType *Proto
    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
  assert(Proto && "Methods without a prototype cannot be overloaded");
  assert(!isa<CXXConstructorDecl>(Method) &&
         "Use AddOverloadCandidate for constructors");

  if (!CandidateSet.isNewCandidate(Method, PO))
    return;

  // C++11 [class.copy]p23: [DR1402]
  //   A defaulted move assignment operator that is defined as deleted is
  //   ignored by overload resolution.
  if (Method->isDefaulted() && Method->isDeleted() &&
      Method->isMoveAssignmentOperator())
    return;

  // Overload resolution is always an unevaluated context.
  EnterExpressionEvaluationContext Unevaluated(
      *this, Sema::ExpressionEvaluationContext::Unevaluated);

  // Add this candidate
  OverloadCandidate &Candidate =
      CandidateSet.addCandidate(Args.size() + 1, EarlyConversions);
  Candidate.FoundDecl = FoundDecl;
  Candidate.Function = Method;
  Candidate.RewriteKind =
      CandidateSet.getRewriteInfo().getRewriteKind(Method, PO);
  Candidate.IsSurrogate = false;
  Candidate.IgnoreObjectArgument = false;
  Candidate.ExplicitCallArguments = Args.size();

  unsigned NumParams = Proto->getNumParams();

  // (C++ 13.3.2p2): A candidate function having fewer than m
  // parameters is viable only if it has an ellipsis in its parameter
  // list (8.3.5).
  if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
      !Proto->isVariadic() &&
      shouldEnforceArgLimit(PartialOverloading, Method)) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_too_many_arguments;
    return;
  }

  // (C++ 13.3.2p2): A candidate function having more than m parameters
  // is viable only if the (m+1)st parameter has a default argument
  // (8.3.6). For the purposes of overload resolution, the
  // parameter list is truncated on the right, so that there are
  // exactly m parameters.
  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
  if (Args.size() < MinRequiredArgs && !PartialOverloading) {
    // Not enough arguments.
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_too_few_arguments;
    return;
  }

  Candidate.Viable = true;

  if (Method->isStatic() || ObjectType.isNull())
    // The implicit object argument is ignored.
    Candidate.IgnoreObjectArgument = true;
  else {
    unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
    // Determine the implicit conversion sequence for the object
    // parameter.
    Candidate.Conversions[ConvIdx] = TryObjectArgumentInitialization(
        *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
        Method, ActingContext);
    if (Candidate.Conversions[ConvIdx].isBad()) {
      Candidate.Viable = false;
      Candidate.FailureKind = ovl_fail_bad_conversion;
      return;
    }
  }

  // (CUDA B.1): Check for invalid calls between targets.
  if (getLangOpts().CUDA)
    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
      if (!IsAllowedCUDACall(Caller, Method)) {
        Candidate.Viable = false;
        Candidate.FailureKind = ovl_fail_bad_target;
        return;
      }

  if (Method->getTrailingRequiresClause()) {
    ConstraintSatisfaction Satisfaction;
    if (CheckFunctionConstraints(Method, Satisfaction) ||
        !Satisfaction.IsSatisfied) {
      Candidate.Viable = false;
      Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
      return;
    }
  }

  // Determine the implicit conversion sequences for each of the
  // arguments.
  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
    unsigned ConvIdx =
        PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1);
    if (Candidate.Conversions[ConvIdx].isInitialized()) {
      // We already formed a conversion sequence for this parameter during
      // template argument deduction.
    } else if (ArgIdx < NumParams) {
      // (C++ 13.3.2p3): for F to be a viable function, there shall
      // exist for each argument an implicit conversion sequence
      // (13.3.3.1) that converts that argument to the corresponding
      // parameter of F.
      QualType ParamType = Proto->getParamType(ArgIdx);
      Candidate.Conversions[ConvIdx]
        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
                                SuppressUserConversions,
                                /*InOverloadResolution=*/true,
                                /*AllowObjCWritebackConversion=*/
                                  getLangOpts().ObjCAutoRefCount);
      if (Candidate.Conversions[ConvIdx].isBad()) {
        Candidate.Viable = false;
        Candidate.FailureKind = ovl_fail_bad_conversion;
        return;
      }
    } else {
      // (C++ 13.3.2p2): For the purposes of overload resolution, any
      // argument for which there is no corresponding parameter is
      // considered to "match the ellipsis" (C+ 13.3.3.1.3).
      Candidate.Conversions[ConvIdx].setEllipsis();
    }
  }

  if (EnableIfAttr *FailedAttr =
          CheckEnableIf(Method, CandidateSet.getLocation(), Args, true)) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_enable_if;
    Candidate.DeductionFailure.Data = FailedAttr;
    return;
  }

  if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() &&
      !Method->getAttr<TargetAttr>()->isDefaultVersion()) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_non_default_multiversion_function;
  }
}

/// Add a C++ member function template as a candidate to the candidate
/// set, using template argument deduction to produce an appropriate member
/// function template specialization.
void Sema::AddMethodTemplateCandidate(
    FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl,
    CXXRecordDecl *ActingContext,
    TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType,
    Expr::Classification ObjectClassification, ArrayRef<Expr *> Args,
    OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
    bool PartialOverloading, OverloadCandidateParamOrder PO) {
  if (!CandidateSet.isNewCandidate(MethodTmpl, PO))
    return;

  // C++ [over.match.funcs]p7:
  //   In each case where a candidate is a function template, candidate
  //   function template specializations are generated using template argument
  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
  //   candidate functions in the usual way.113) A given name can refer to one
  //   or more function templates and also to a set of overloaded non-template
  //   functions. In such a case, the candidate functions generated from each
  //   function template are combined with the set of non-template candidate
  //   functions.
  TemplateDeductionInfo Info(CandidateSet.getLocation());
  FunctionDecl *Specialization = nullptr;
  ConversionSequenceList Conversions;
  if (TemplateDeductionResult Result = DeduceTemplateArguments(
          MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info,
          PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
            return CheckNonDependentConversions(
                MethodTmpl, ParamTypes, Args, CandidateSet, Conversions,
                SuppressUserConversions, ActingContext, ObjectType,
                ObjectClassification, PO);
          })) {
    OverloadCandidate &Candidate =
        CandidateSet.addCandidate(Conversions.size(), Conversions);
    Candidate.FoundDecl = FoundDecl;
    Candidate.Function = MethodTmpl->getTemplatedDecl();
    Candidate.Viable = false;
    Candidate.RewriteKind =
      CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
    Candidate.IsSurrogate = false;
    Candidate.IgnoreObjectArgument =
        cast<CXXMethodDecl>(Candidate.Function)->isStatic() ||
        ObjectType.isNull();
    Candidate.ExplicitCallArguments = Args.size();
    if (Result == TDK_NonDependentConversionFailure)
      Candidate.FailureKind = ovl_fail_bad_conversion;
    else {
      Candidate.FailureKind = ovl_fail_bad_deduction;
      Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
                                                            Info);
    }
    return;
  }

  // Add the function template specialization produced by template argument
  // deduction as a candidate.
  assert(Specialization && "Missing member function template specialization?");
  assert(isa<CXXMethodDecl>(Specialization) &&
         "Specialization is not a member function?");
  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
                     ActingContext, ObjectType, ObjectClassification, Args,
                     CandidateSet, SuppressUserConversions, PartialOverloading,
                     Conversions, PO);
}

/// Determine whether a given function template has a simple explicit specifier
/// or a non-value-dependent explicit-specification that evaluates to true.
static bool isNonDependentlyExplicit(FunctionTemplateDecl *FTD) {
  return ExplicitSpecifier::getFromDecl(FTD->getTemplatedDecl()).isExplicit();
}

/// Add a C++ function template specialization as a candidate
/// in the candidate set, using template argument deduction to produce
/// an appropriate function template specialization.
void Sema::AddTemplateOverloadCandidate(
    FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
    TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
    OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
    bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate,
    OverloadCandidateParamOrder PO) {
  if (!CandidateSet.isNewCandidate(FunctionTemplate, PO))
    return;

  // If the function template has a non-dependent explicit specification,
  // exclude it now if appropriate; we are not permitted to perform deduction
  // and substitution in this case.
  if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) {
    OverloadCandidate &Candidate = CandidateSet.addCandidate();
    Candidate.FoundDecl = FoundDecl;
    Candidate.Function = FunctionTemplate->getTemplatedDecl();
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_explicit;
    return;
  }

  // C++ [over.match.funcs]p7:
  //   In each case where a candidate is a function template, candidate
  //   function template specializations are generated using template argument
  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
  //   candidate functions in the usual way.113) A given name can refer to one
  //   or more function templates and also to a set of overloaded non-template
  //   functions. In such a case, the candidate functions generated from each
  //   function template are combined with the set of non-template candidate
  //   functions.
  TemplateDeductionInfo Info(CandidateSet.getLocation());
  FunctionDecl *Specialization = nullptr;
  ConversionSequenceList Conversions;
  if (TemplateDeductionResult Result = DeduceTemplateArguments(
          FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info,
          PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
            return CheckNonDependentConversions(
                FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions,
                SuppressUserConversions, nullptr, QualType(), {}, PO);
          })) {
    OverloadCandidate &Candidate =
        CandidateSet.addCandidate(Conversions.size(), Conversions);
    Candidate.FoundDecl = FoundDecl;
    Candidate.Function = FunctionTemplate->getTemplatedDecl();
    Candidate.Viable = false;
    Candidate.RewriteKind =
      CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
    Candidate.IsSurrogate = false;
    Candidate.IsADLCandidate = IsADLCandidate;
    // Ignore the object argument if there is one, since we don't have an object
    // type.
    Candidate.IgnoreObjectArgument =
        isa<CXXMethodDecl>(Candidate.Function) &&
        !isa<CXXConstructorDecl>(Candidate.Function);
    Candidate.ExplicitCallArguments = Args.size();
    if (Result == TDK_NonDependentConversionFailure)
      Candidate.FailureKind = ovl_fail_bad_conversion;
    else {
      Candidate.FailureKind = ovl_fail_bad_deduction;
      Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
                                                            Info);
    }
    return;
  }

  // Add the function template specialization produced by template argument
  // deduction as a candidate.
  assert(Specialization && "Missing function template specialization?");
  AddOverloadCandidate(
      Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions,
      PartialOverloading, AllowExplicit,
      /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions, PO);
}

/// Check that implicit conversion sequences can be formed for each argument
/// whose corresponding parameter has a non-dependent type, per DR1391's
/// [temp.deduct.call]p10.
bool Sema::CheckNonDependentConversions(
    FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
    ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
    ConversionSequenceList &Conversions, bool SuppressUserConversions,
    CXXRecordDecl *ActingContext, QualType ObjectType,
    Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) {
  // FIXME: The cases in which we allow explicit conversions for constructor
  // arguments never consider calling a constructor template. It's not clear
  // that is correct.
  const bool AllowExplicit = false;

  auto *FD = FunctionTemplate->getTemplatedDecl();
  auto *Method = dyn_cast<CXXMethodDecl>(FD);
  bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method);
  unsigned ThisConversions = HasThisConversion ? 1 : 0;

  Conversions =
      CandidateSet.allocateConversionSequences(ThisConversions + Args.size());

  // Overload resolution is always an unevaluated context.
  EnterExpressionEvaluationContext Unevaluated(
      *this, Sema::ExpressionEvaluationContext::Unevaluated);

  // For a method call, check the 'this' conversion here too. DR1391 doesn't
  // require that, but this check should never result in a hard error, and
  // overload resolution is permitted to sidestep instantiations.
  if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() &&
      !ObjectType.isNull()) {
    unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
    Conversions[ConvIdx] = TryObjectArgumentInitialization(
        *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
        Method, ActingContext);
    if (Conversions[ConvIdx].isBad())
      return true;
  }

  for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N;
       ++I) {
    QualType ParamType = ParamTypes[I];
    if (!ParamType->isDependentType()) {
      unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed
                             ? 0
                             : (ThisConversions + I);
      Conversions[ConvIdx]
        = TryCopyInitialization(*this, Args[I], ParamType,
                                SuppressUserConversions,
                                /*InOverloadResolution=*/true,
                                /*AllowObjCWritebackConversion=*/
                                  getLangOpts().ObjCAutoRefCount,
                                AllowExplicit);
      if (Conversions[ConvIdx].isBad())
        return true;
    }
  }

  return false;
}

/// Determine whether this is an allowable conversion from the result
/// of an explicit conversion operator to the expected type, per C++
/// [over.match.conv]p1 and [over.match.ref]p1.
///
/// \param ConvType The return type of the conversion function.
///
/// \param ToType The type we are converting to.
///
/// \param AllowObjCPointerConversion Allow a conversion from one
/// Objective-C pointer to another.
///
/// \returns true if the conversion is allowable, false otherwise.
static bool isAllowableExplicitConversion(Sema &S,
                                          QualType ConvType, QualType ToType,
                                          bool AllowObjCPointerConversion) {
  QualType ToNonRefType = ToType.getNonReferenceType();

  // Easy case: the types are the same.
  if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
    return true;

  // Allow qualification conversions.
  bool ObjCLifetimeConversion;
  if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
                                  ObjCLifetimeConversion))
    return true;

  // If we're not allowed to consider Objective-C pointer conversions,
  // we're done.
  if (!AllowObjCPointerConversion)
    return false;

  // Is this an Objective-C pointer conversion?
  bool IncompatibleObjC = false;
  QualType ConvertedType;
  return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
                                   IncompatibleObjC);
}

/// AddConversionCandidate - Add a C++ conversion function as a
/// candidate in the candidate set (C++ [over.match.conv],
/// C++ [over.match.copy]). From is the expression we're converting from,
/// and ToType is the type that we're eventually trying to convert to
/// (which may or may not be the same type as the type that the
/// conversion function produces).
void Sema::AddConversionCandidate(
    CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
    CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
    OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
    bool AllowExplicit, bool AllowResultConversion) {
  assert(!Conversion->getDescribedFunctionTemplate() &&
         "Conversion function templates use AddTemplateConversionCandidate");
  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
  if (!CandidateSet.isNewCandidate(Conversion))
    return;

  // If the conversion function has an undeduced return type, trigger its
  // deduction now.
  if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
    if (DeduceReturnType(Conversion, From->getExprLoc()))
      return;
    ConvType = Conversion->getConversionType().getNonReferenceType();
  }

  // If we don't allow any conversion of the result type, ignore conversion
  // functions that don't convert to exactly (possibly cv-qualified) T.
  if (!AllowResultConversion &&
      !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType))
    return;

  // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
  // operator is only a candidate if its return type is the target type or
  // can be converted to the target type with a qualification conversion.
  //
  // FIXME: Include such functions in the candidate list and explain why we
  // can't select them.
  if (Conversion->isExplicit() &&
      !isAllowableExplicitConversion(*this, ConvType, ToType,
                                     AllowObjCConversionOnExplicit))
    return;

  // Overload resolution is always an unevaluated context.
  EnterExpressionEvaluationContext Unevaluated(
      *this, Sema::ExpressionEvaluationContext::Unevaluated);

  // Add this candidate
  OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
  Candidate.FoundDecl = FoundDecl;
  Candidate.Function = Conversion;
  Candidate.IsSurrogate = false;
  Candidate.IgnoreObjectArgument = false;
  Candidate.FinalConversion.setAsIdentityConversion();
  Candidate.FinalConversion.setFromType(ConvType);
  Candidate.FinalConversion.setAllToTypes(ToType);
  Candidate.Viable = true;
  Candidate.ExplicitCallArguments = 1;

  // Explicit functions are not actually candidates at all if we're not
  // allowing them in this context, but keep them around so we can point
  // to them in diagnostics.
  if (!AllowExplicit && Conversion->isExplicit()) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_explicit;
    return;
  }

  // C++ [over.match.funcs]p4:
  //   For conversion functions, the function is considered to be a member of
  //   the class of the implicit implied object argument for the purpose of
  //   defining the type of the implicit object parameter.
  //
  // Determine the implicit conversion sequence for the implicit
  // object parameter.
  QualType ImplicitParamType = From->getType();
  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
    ImplicitParamType = FromPtrType->getPointeeType();
  CXXRecordDecl *ConversionContext
    = cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl());

  Candidate.Conversions[0] = TryObjectArgumentInitialization(
      *this, CandidateSet.getLocation(), From->getType(),
      From->Classify(Context), Conversion, ConversionContext);

  if (Candidate.Conversions[0].isBad()) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_bad_conversion;
    return;
  }

  if (Conversion->getTrailingRequiresClause()) {
    ConstraintSatisfaction Satisfaction;
    if (CheckFunctionConstraints(Conversion, Satisfaction) ||
        !Satisfaction.IsSatisfied) {
      Candidate.Viable = false;
      Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
      return;
    }
  }

  // We won't go through a user-defined type conversion function to convert a
  // derived to base as such conversions are given Conversion Rank. They only
  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
  QualType FromCanon
    = Context.getCanonicalType(From->getType().getUnqualifiedType());
  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
  if (FromCanon == ToCanon ||
      IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_trivial_conversion;
    return;
  }

  // To determine what the conversion from the result of calling the
  // conversion function to the type we're eventually trying to
  // convert to (ToType), we need to synthesize a call to the
  // conversion function and attempt copy initialization from it. This
  // makes sure that we get the right semantics with respect to
  // lvalues/rvalues and the type. Fortunately, we can allocate this
  // call on the stack and we don't need its arguments to be
  // well-formed.
  DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(),
                            VK_LValue, From->getBeginLoc());
  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
                                Context.getPointerType(Conversion->getType()),
                                CK_FunctionToPointerDecay, &ConversionRef,
                                VK_PRValue, FPOptionsOverride());

  QualType ConversionType = Conversion->getConversionType();
  if (!isCompleteType(From->getBeginLoc(), ConversionType)) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_bad_final_conversion;
    return;
  }

  ExprValueKind VK = Expr::getValueKindForType(ConversionType);

  // Note that it is safe to allocate CallExpr on the stack here because
  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
  // allocator).
  QualType CallResultType = ConversionType.getNonLValueExprType(Context);

  alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)];
  CallExpr *TheTemporaryCall = CallExpr::CreateTemporary(
      Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc());

  ImplicitConversionSequence ICS =
      TryCopyInitialization(*this, TheTemporaryCall, ToType,
                            /*SuppressUserConversions=*/true,
                            /*InOverloadResolution=*/false,
                            /*AllowObjCWritebackConversion=*/false);

  switch (ICS.getKind()) {
  case ImplicitConversionSequence::StandardConversion:
    Candidate.FinalConversion = ICS.Standard;

    // C++ [over.ics.user]p3:
    //   If the user-defined conversion is specified by a specialization of a
    //   conversion function template, the second standard conversion sequence
    //   shall have exact match rank.
    if (Conversion->getPrimaryTemplate() &&
        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
      Candidate.Viable = false;
      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
      return;
    }

    // C++0x [dcl.init.ref]p5:
    //    In the second case, if the reference is an rvalue reference and
    //    the second standard conversion sequence of the user-defined
    //    conversion sequence includes an lvalue-to-rvalue conversion, the
    //    program is ill-formed.
    if (ToType->isRValueReferenceType() &&
        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
      Candidate.Viable = false;
      Candidate.FailureKind = ovl_fail_bad_final_conversion;
      return;
    }
    break;

  case ImplicitConversionSequence::BadConversion:
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_bad_final_conversion;
    return;

  default:
    llvm_unreachable(
           "Can only end up with a standard conversion sequence or failure");
  }

  if (EnableIfAttr *FailedAttr =
          CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_enable_if;
    Candidate.DeductionFailure.Data = FailedAttr;
    return;
  }

  if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() &&
      !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_non_default_multiversion_function;
  }
}

/// Adds a conversion function template specialization
/// candidate to the overload set, using template argument deduction
/// to deduce the template arguments of the conversion function
/// template from the type that we are converting to (C++
/// [temp.deduct.conv]).
void Sema::AddTemplateConversionCandidate(
    FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
    CXXRecordDecl *ActingDC, Expr *From, QualType ToType,
    OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
    bool AllowExplicit, bool AllowResultConversion) {
  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
         "Only conversion function templates permitted here");

  if (!CandidateSet.isNewCandidate(FunctionTemplate))
    return;

  // If the function template has a non-dependent explicit specification,
  // exclude it now if appropriate; we are not permitted to perform deduction
  // and substitution in this case.
  if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) {
    OverloadCandidate &Candidate = CandidateSet.addCandidate();
    Candidate.FoundDecl = FoundDecl;
    Candidate.Function = FunctionTemplate->getTemplatedDecl();
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_explicit;
    return;
  }

  TemplateDeductionInfo Info(CandidateSet.getLocation());
  CXXConversionDecl *Specialization = nullptr;
  if (TemplateDeductionResult Result
        = DeduceTemplateArguments(FunctionTemplate, ToType,
                                  Specialization, Info)) {
    OverloadCandidate &Candidate = CandidateSet.addCandidate();
    Candidate.FoundDecl = FoundDecl;
    Candidate.Function = FunctionTemplate->getTemplatedDecl();
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_bad_deduction;
    Candidate.IsSurrogate = false;
    Candidate.IgnoreObjectArgument = false;
    Candidate.ExplicitCallArguments = 1;
    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
                                                          Info);
    return;
  }

  // Add the conversion function template specialization produced by
  // template argument deduction as a candidate.
  assert(Specialization && "Missing function template specialization?");
  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
                         CandidateSet, AllowObjCConversionOnExplicit,
                         AllowExplicit, AllowResultConversion);
}

/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
/// converts the given @c Object to a function pointer via the
/// conversion function @c Conversion, and then attempts to call it
/// with the given arguments (C++ [over.call.object]p2-4). Proto is
/// the type of function that we'll eventually be calling.
void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
                                 DeclAccessPair FoundDecl,
                                 CXXRecordDecl *ActingContext,
                                 const FunctionProtoType *Proto,
                                 Expr *Object,
                                 ArrayRef<Expr *> Args,
                                 OverloadCandidateSet& CandidateSet) {
  if (!CandidateSet.isNewCandidate(Conversion))
    return;

  // Overload resolution is always an unevaluated context.
  EnterExpressionEvaluationContext Unevaluated(
      *this, Sema::ExpressionEvaluationContext::Unevaluated);

  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
  Candidate.FoundDecl = FoundDecl;
  Candidate.Function = nullptr;
  Candidate.Surrogate = Conversion;
  Candidate.Viable = true;
  Candidate.IsSurrogate = true;
  Candidate.IgnoreObjectArgument = false;
  Candidate.ExplicitCallArguments = Args.size();

  // Determine the implicit conversion sequence for the implicit
  // object parameter.
  ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
      *this, CandidateSet.getLocation(), Object->getType(),
      Object->Classify(Context), Conversion, ActingContext);
  if (ObjectInit.isBad()) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_bad_conversion;
    Candidate.Conversions[0] = ObjectInit;
    return;
  }

  // The first conversion is actually a user-defined conversion whose
  // first conversion is ObjectInit's standard conversion (which is
  // effectively a reference binding). Record it as such.
  Candidate.Conversions[0].setUserDefined();
  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
  Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
  Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
  Candidate.Conversions[0].UserDefined.After
    = Candidate.Conversions[0].UserDefined.Before;
  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();

  // Find the
  unsigned NumParams = Proto->getNumParams();

  // (C++ 13.3.2p2): A candidate function having fewer than m
  // parameters is viable only if it has an ellipsis in its parameter
  // list (8.3.5).
  if (Args.size() > NumParams && !Proto->isVariadic()) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_too_many_arguments;
    return;
  }

  // Function types don't have any default arguments, so just check if
  // we have enough arguments.
  if (Args.size() < NumParams) {
    // Not enough arguments.
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_too_few_arguments;
    return;
  }

  // Determine the implicit conversion sequences for each of the
  // arguments.
  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
    if (ArgIdx < NumParams) {
      // (C++ 13.3.2p3): for F to be a viable function, there shall
      // exist for each argument an implicit conversion sequence
      // (13.3.3.1) that converts that argument to the corresponding
      // parameter of F.
      QualType ParamType = Proto->getParamType(ArgIdx);
      Candidate.Conversions[ArgIdx + 1]
        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
                                /*SuppressUserConversions=*/false,
                                /*InOverloadResolution=*/false,
                                /*AllowObjCWritebackConversion=*/
                                  getLangOpts().ObjCAutoRefCount);
      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
        Candidate.Viable = false;
        Candidate.FailureKind = ovl_fail_bad_conversion;
        return;
      }
    } else {
      // (C++ 13.3.2p2): For the purposes of overload resolution, any
      // argument for which there is no corresponding parameter is
      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
      Candidate.Conversions[ArgIdx + 1].setEllipsis();
    }
  }

  if (EnableIfAttr *FailedAttr =
          CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_enable_if;
    Candidate.DeductionFailure.Data = FailedAttr;
    return;
  }
}

/// Add all of the non-member operator function declarations in the given
/// function set to the overload candidate set.
void Sema::AddNonMemberOperatorCandidates(
    const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args,
    OverloadCandidateSet &CandidateSet,
    TemplateArgumentListInfo *ExplicitTemplateArgs) {
  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
    ArrayRef<Expr *> FunctionArgs = Args;

    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
    FunctionDecl *FD =
        FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);

    // Don't consider rewritten functions if we're not rewriting.
    if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD))
      continue;

    assert(!isa<CXXMethodDecl>(FD) &&
           "unqualified operator lookup found a member function");

    if (FunTmpl) {
      AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs,
                                   FunctionArgs, CandidateSet);
      if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
        AddTemplateOverloadCandidate(
            FunTmpl, F.getPair(), ExplicitTemplateArgs,
            {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false,
            true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed);
    } else {
      if (ExplicitTemplateArgs)
        continue;
      AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet);
      if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
        AddOverloadCandidate(FD, F.getPair(),
                             {FunctionArgs[1], FunctionArgs[0]}, CandidateSet,
                             false, false, true, false, ADLCallKind::NotADL,
                             None, OverloadCandidateParamOrder::Reversed);
    }
  }
}

/// Add overload candidates for overloaded operators that are
/// member functions.
///
/// Add the overloaded operator candidates that are member functions
/// for the operator Op that was used in an operator expression such
/// as "x Op y". , Args/NumArgs provides the operator arguments, and
/// CandidateSet will store the added overload candidates. (C++
/// [over.match.oper]).
void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
                                       SourceLocation OpLoc,
                                       ArrayRef<Expr *> Args,
                                       OverloadCandidateSet &CandidateSet,
                                       OverloadCandidateParamOrder PO) {
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);

  // C++ [over.match.oper]p3:
  //   For a unary operator @ with an operand of a type whose
  //   cv-unqualified version is T1, and for a binary operator @ with
  //   a left operand of a type whose cv-unqualified version is T1 and
  //   a right operand of a type whose cv-unqualified version is T2,
  //   three sets of candidate functions, designated member
  //   candidates, non-member candidates and built-in candidates, are
  //   constructed as follows:
  QualType T1 = Args[0]->getType();

  //     -- If T1 is a complete class type or a class currently being
  //        defined, the set of member candidates is the result of the
  //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
  //        the set of member candidates is empty.
  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
    // Complete the type if it can be completed.
    if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
      return;
    // If the type is neither complete nor being defined, bail out now.
    if (!T1Rec->getDecl()->getDefinition())
      return;

    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
    LookupQualifiedName(Operators, T1Rec->getDecl());
    Operators.suppressDiagnostics();

    for (LookupResult::iterator Oper = Operators.begin(),
                             OperEnd = Operators.end();
         Oper != OperEnd;
         ++Oper)
      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
                         Args[0]->Classify(Context), Args.slice(1),
                         CandidateSet, /*SuppressUserConversion=*/false, PO);
  }
}

/// AddBuiltinCandidate - Add a candidate for a built-in
/// operator. ResultTy and ParamTys are the result and parameter types
/// of the built-in candidate, respectively. Args and NumArgs are the
/// arguments being passed to the candidate. IsAssignmentOperator
/// should be true when this built-in candidate is an assignment
/// operator. NumContextualBoolArguments is the number of arguments
/// (at the beginning of the argument list) that will be contextually
/// converted to bool.
void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
                               OverloadCandidateSet& CandidateSet,
                               bool IsAssignmentOperator,
                               unsigned NumContextualBoolArguments) {
  // Overload resolution is always an unevaluated context.
  EnterExpressionEvaluationContext Unevaluated(
      *this, Sema::ExpressionEvaluationContext::Unevaluated);

  // Add this candidate
  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
  Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
  Candidate.Function = nullptr;
  Candidate.IsSurrogate = false;
  Candidate.IgnoreObjectArgument = false;
  std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes);

  // Determine the implicit conversion sequences for each of the
  // arguments.
  Candidate.Viable = true;
  Candidate.ExplicitCallArguments = Args.size();
  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
    // C++ [over.match.oper]p4:
    //   For the built-in assignment operators, conversions of the
    //   left operand are restricted as follows:
    //     -- no temporaries are introduced to hold the left operand, and
    //     -- no user-defined conversions are applied to the left
    //        operand to achieve a type match with the left-most
    //        parameter of a built-in candidate.
    //
    // We block these conversions by turning off user-defined
    // conversions, since that is the only way that initialization of
    // a reference to a non-class type can occur from something that
    // is not of the same type.
    if (ArgIdx < NumContextualBoolArguments) {
      assert(ParamTys[ArgIdx] == Context.BoolTy &&
             "Contextual conversion to bool requires bool type");
      Candidate.Conversions[ArgIdx]
        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
    } else {
      Candidate.Conversions[ArgIdx]
        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
                                ArgIdx == 0 && IsAssignmentOperator,
                                /*InOverloadResolution=*/false,
                                /*AllowObjCWritebackConversion=*/
                                  getLangOpts().ObjCAutoRefCount);
    }
    if (Candidate.Conversions[ArgIdx].isBad()) {
      Candidate.Viable = false;
      Candidate.FailureKind = ovl_fail_bad_conversion;
      break;
    }
  }
}

namespace {

/// BuiltinCandidateTypeSet - A set of types that will be used for the
/// candidate operator functions for built-in operators (C++
/// [over.built]). The types are separated into pointer types and
/// enumeration types.
class BuiltinCandidateTypeSet  {
  /// TypeSet - A set of types.
  typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
                          llvm::SmallPtrSet<QualType, 8>> TypeSet;

  /// PointerTypes - The set of pointer types that will be used in the
  /// built-in candidates.
  TypeSet PointerTypes;

  /// MemberPointerTypes - The set of member pointer types that will be
  /// used in the built-in candidates.
  TypeSet MemberPointerTypes;

  /// EnumerationTypes - The set of enumeration types that will be
  /// used in the built-in candidates.
  TypeSet EnumerationTypes;

  /// The set of vector types that will be used in the built-in
  /// candidates.
  TypeSet VectorTypes;

  /// The set of matrix types that will be used in the built-in
  /// candidates.
  TypeSet MatrixTypes;

  /// A flag indicating non-record types are viable candidates
  bool HasNonRecordTypes;

  /// A flag indicating whether either arithmetic or enumeration types
  /// were present in the candidate set.
  bool HasArithmeticOrEnumeralTypes;

  /// A flag indicating whether the nullptr type was present in the
  /// candidate set.
  bool HasNullPtrType;

  /// Sema - The semantic analysis instance where we are building the
  /// candidate type set.
  Sema &SemaRef;

  /// Context - The AST context in which we will build the type sets.
  ASTContext &Context;

  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
                                               const Qualifiers &VisibleQuals);
  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);

public:
  /// iterator - Iterates through the types that are part of the set.
  typedef TypeSet::iterator iterator;

  BuiltinCandidateTypeSet(Sema &SemaRef)
    : HasNonRecordTypes(false),
      HasArithmeticOrEnumeralTypes(false),
      HasNullPtrType(false),
      SemaRef(SemaRef),
      Context(SemaRef.Context) { }

  void AddTypesConvertedFrom(QualType Ty,
                             SourceLocation Loc,
                             bool AllowUserConversions,
                             bool AllowExplicitConversions,
                             const Qualifiers &VisibleTypeConversionsQuals);

  llvm::iterator_range<iterator> pointer_types() { return PointerTypes; }
  llvm::iterator_range<iterator> member_pointer_types() {
    return MemberPointerTypes;
  }
  llvm::iterator_range<iterator> enumeration_types() {
    return EnumerationTypes;
  }
  llvm::iterator_range<iterator> vector_types() { return VectorTypes; }
  llvm::iterator_range<iterator> matrix_types() { return MatrixTypes; }

  bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(Ty); }
  bool hasNonRecordTypes() { return HasNonRecordTypes; }
  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
  bool hasNullPtrType() const { return HasNullPtrType; }
};

} // end anonymous namespace

/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
/// the set of pointer types along with any more-qualified variants of
/// that type. For example, if @p Ty is "int const *", this routine
/// will add "int const *", "int const volatile *", "int const
/// restrict *", and "int const volatile restrict *" to the set of
/// pointer types. Returns true if the add of @p Ty itself succeeded,
/// false otherwise.
///
/// FIXME: what to do about extended qualifiers?
bool
BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
                                             const Qualifiers &VisibleQuals) {

  // Insert this type.
  if (!PointerTypes.insert(Ty))
    return false;

  QualType PointeeTy;
  const PointerType *PointerTy = Ty->getAs<PointerType>();
  bool buildObjCPtr = false;
  if (!PointerTy) {
    const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
    PointeeTy = PTy->getPointeeType();
    buildObjCPtr = true;
  } else {
    PointeeTy = PointerTy->getPointeeType();
  }

  // Don't add qualified variants of arrays. For one, they're not allowed
  // (the qualifier would sink to the element type), and for another, the
  // only overload situation where it matters is subscript or pointer +- int,
  // and those shouldn't have qualifier variants anyway.
  if (PointeeTy->isArrayType())
    return true;

  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
  bool hasVolatile = VisibleQuals.hasVolatile();
  bool hasRestrict = VisibleQuals.hasRestrict();

  // Iterate through all strict supersets of BaseCVR.
  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
    if ((CVR | BaseCVR) != CVR) continue;
    // Skip over volatile if no volatile found anywhere in the types.
    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;

    // Skip over restrict if no restrict found anywhere in the types, or if
    // the type cannot be restrict-qualified.
    if ((CVR & Qualifiers::Restrict) &&
        (!hasRestrict ||
         (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
      continue;

    // Build qualified pointee type.
    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);

    // Build qualified pointer type.
    QualType QPointerTy;
    if (!buildObjCPtr)
      QPointerTy = Context.getPointerType(QPointeeTy);
    else
      QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);

    // Insert qualified pointer type.
    PointerTypes.insert(QPointerTy);
  }

  return true;
}

/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
/// to the set of pointer types along with any more-qualified variants of
/// that type. For example, if @p Ty is "int const *", this routine
/// will add "int const *", "int const volatile *", "int const
/// restrict *", and "int const volatile restrict *" to the set of
/// pointer types. Returns true if the add of @p Ty itself succeeded,
/// false otherwise.
///
/// FIXME: what to do about extended qualifiers?
bool
BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
    QualType Ty) {
  // Insert this type.
  if (!MemberPointerTypes.insert(Ty))
    return false;

  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
  assert(PointerTy && "type was not a member pointer type!");

  QualType PointeeTy = PointerTy->getPointeeType();
  // Don't add qualified variants of arrays. For one, they're not allowed
  // (the qualifier would sink to the element type), and for another, the
  // only overload situation where it matters is subscript or pointer +- int,
  // and those shouldn't have qualifier variants anyway.
  if (PointeeTy->isArrayType())
    return true;
  const Type *ClassTy = PointerTy->getClass();

  // Iterate through all strict supersets of the pointee type's CVR
  // qualifiers.
  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
    if ((CVR | BaseCVR) != CVR) continue;

    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
    MemberPointerTypes.insert(
      Context.getMemberPointerType(QPointeeTy, ClassTy));
  }

  return true;
}

/// AddTypesConvertedFrom - Add each of the types to which the type @p
/// Ty can be implicit converted to the given set of @p Types. We're
/// primarily interested in pointer types and enumeration types. We also
/// take member pointer types, for the conditional operator.
/// AllowUserConversions is true if we should look at the conversion
/// functions of a class type, and AllowExplicitConversions if we
/// should also include the explicit conversion functions of a class
/// type.
void
BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
                                               SourceLocation Loc,
                                               bool AllowUserConversions,
                                               bool AllowExplicitConversions,
                                               const Qualifiers &VisibleQuals) {
  // Only deal with canonical types.
  Ty = Context.getCanonicalType(Ty);

  // Look through reference types; they aren't part of the type of an
  // expression for the purposes of conversions.
  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
    Ty = RefTy->getPointeeType();

  // If we're dealing with an array type, decay to the pointer.
  if (Ty->isArrayType())
    Ty = SemaRef.Context.getArrayDecayedType(Ty);

  // Otherwise, we don't care about qualifiers on the type.
  Ty = Ty.getLocalUnqualifiedType();

  // Flag if we ever add a non-record type.
  const RecordType *TyRec = Ty->getAs<RecordType>();
  HasNonRecordTypes = HasNonRecordTypes || !TyRec;

  // Flag if we encounter an arithmetic type.
  HasArithmeticOrEnumeralTypes =
    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();

  if (Ty->isObjCIdType() || Ty->isObjCClassType())
    PointerTypes.insert(Ty);
  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
    // Insert our type, and its more-qualified variants, into the set
    // of types.
    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
      return;
  } else if (Ty->isMemberPointerType()) {
    // Member pointers are far easier, since the pointee can't be converted.
    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
      return;
  } else if (Ty->isEnumeralType()) {
    HasArithmeticOrEnumeralTypes = true;
    EnumerationTypes.insert(Ty);
  } else if (Ty->isVectorType()) {
    // We treat vector types as arithmetic types in many contexts as an
    // extension.
    HasArithmeticOrEnumeralTypes = true;
    VectorTypes.insert(Ty);
  } else if (Ty->isMatrixType()) {
    // Similar to vector types, we treat vector types as arithmetic types in
    // many contexts as an extension.
    HasArithmeticOrEnumeralTypes = true;
    MatrixTypes.insert(Ty);
  } else if (Ty->isNullPtrType()) {
    HasNullPtrType = true;
  } else if (AllowUserConversions && TyRec) {
    // No conversion functions in incomplete types.
    if (!SemaRef.isCompleteType(Loc, Ty))
      return;

    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
    for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
      if (isa<UsingShadowDecl>(D))
        D = cast<UsingShadowDecl>(D)->getTargetDecl();

      // Skip conversion function templates; they don't tell us anything
      // about which builtin types we can convert to.
      if (isa<FunctionTemplateDecl>(D))
        continue;

      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
      if (AllowExplicitConversions || !Conv->isExplicit()) {
        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
                              VisibleQuals);
      }
    }
  }
}
/// Helper function for adjusting address spaces for the pointer or reference
/// operands of builtin operators depending on the argument.
static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T,
                                                        Expr *Arg) {
  return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace());
}

/// Helper function for AddBuiltinOperatorCandidates() that adds
/// the volatile- and non-volatile-qualified assignment operators for the
/// given type to the candidate set.
static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
                                                   QualType T,
                                                   ArrayRef<Expr *> Args,
                                    OverloadCandidateSet &CandidateSet) {
  QualType ParamTypes[2];

  // T& operator=(T&, T)
  ParamTypes[0] = S.Context.getLValueReferenceType(
      AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0]));
  ParamTypes[1] = T;
  S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
                        /*IsAssignmentOperator=*/true);

  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
    // volatile T& operator=(volatile T&, T)
    ParamTypes[0] = S.Context.getLValueReferenceType(
        AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T),
                                                Args[0]));
    ParamTypes[1] = T;
    S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
                          /*IsAssignmentOperator=*/true);
  }
}

/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
/// if any, found in visible type conversion functions found in ArgExpr's type.
static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
    Qualifiers VRQuals;
    const RecordType *TyRec;
    if (const MemberPointerType *RHSMPType =
        ArgExpr->getType()->getAs<MemberPointerType>())
      TyRec = RHSMPType->getClass()->getAs<RecordType>();
    else
      TyRec = ArgExpr->getType()->getAs<RecordType>();
    if (!TyRec) {
      // Just to be safe, assume the worst case.
      VRQuals.addVolatile();
      VRQuals.addRestrict();
      return VRQuals;
    }

    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
    if (!ClassDecl->hasDefinition())
      return VRQuals;

    for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
      if (isa<UsingShadowDecl>(D))
        D = cast<UsingShadowDecl>(D)->getTargetDecl();
      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
          CanTy = ResTypeRef->getPointeeType();
        // Need to go down the pointer/mempointer chain and add qualifiers
        // as see them.
        bool done = false;
        while (!done) {
          if (CanTy.isRestrictQualified())
            VRQuals.addRestrict();
          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
            CanTy = ResTypePtr->getPointeeType();
          else if (const MemberPointerType *ResTypeMPtr =
                CanTy->getAs<MemberPointerType>())
            CanTy = ResTypeMPtr->getPointeeType();
          else
            done = true;
          if (CanTy.isVolatileQualified())
            VRQuals.addVolatile();
          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
            return VRQuals;
        }
      }
    }
    return VRQuals;
}

namespace {

/// Helper class to manage the addition of builtin operator overload
/// candidates. It provides shared state and utility methods used throughout
/// the process, as well as a helper method to add each group of builtin
/// operator overloads from the standard to a candidate set.
class BuiltinOperatorOverloadBuilder {
  // Common instance state available to all overload candidate addition methods.
  Sema &S;
  ArrayRef<Expr *> Args;
  Qualifiers VisibleTypeConversionsQuals;
  bool HasArithmeticOrEnumeralCandidateType;
  SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
  OverloadCandidateSet &CandidateSet;

  static constexpr int ArithmeticTypesCap = 24;
  SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes;

  // Define some indices used to iterate over the arithmetic types in
  // ArithmeticTypes.  The "promoted arithmetic types" are the arithmetic
  // types are that preserved by promotion (C++ [over.built]p2).
  unsigned FirstIntegralType,
           LastIntegralType;
  unsigned FirstPromotedIntegralType,
           LastPromotedIntegralType;
  unsigned FirstPromotedArithmeticType,
           LastPromotedArithmeticType;
  unsigned NumArithmeticTypes;

  void InitArithmeticTypes() {
    // Start of promoted types.
    FirstPromotedArithmeticType = 0;
    ArithmeticTypes.push_back(S.Context.FloatTy);
    ArithmeticTypes.push_back(S.Context.DoubleTy);
    ArithmeticTypes.push_back(S.Context.LongDoubleTy);
    if (S.Context.getTargetInfo().hasFloat128Type())
      ArithmeticTypes.push_back(S.Context.Float128Ty);
    if (S.Context.getTargetInfo().hasIbm128Type())
      ArithmeticTypes.push_back(S.Context.Ibm128Ty);

    // Start of integral types.
    FirstIntegralType = ArithmeticTypes.size();
    FirstPromotedIntegralType = ArithmeticTypes.size();
    ArithmeticTypes.push_back(S.Context.IntTy);
    ArithmeticTypes.push_back(S.Context.LongTy);
    ArithmeticTypes.push_back(S.Context.LongLongTy);
    if (S.Context.getTargetInfo().hasInt128Type() ||
        (S.Context.getAuxTargetInfo() &&
         S.Context.getAuxTargetInfo()->hasInt128Type()))
      ArithmeticTypes.push_back(S.Context.Int128Ty);
    ArithmeticTypes.push_back(S.Context.UnsignedIntTy);
    ArithmeticTypes.push_back(S.Context.UnsignedLongTy);
    ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy);
    if (S.Context.getTargetInfo().hasInt128Type() ||
        (S.Context.getAuxTargetInfo() &&
         S.Context.getAuxTargetInfo()->hasInt128Type()))
      ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty);
    LastPromotedIntegralType = ArithmeticTypes.size();
    LastPromotedArithmeticType = ArithmeticTypes.size();
    // End of promoted types.

    ArithmeticTypes.push_back(S.Context.BoolTy);
    ArithmeticTypes.push_back(S.Context.CharTy);
    ArithmeticTypes.push_back(S.Context.WCharTy);
    if (S.Context.getLangOpts().Char8)
      ArithmeticTypes.push_back(S.Context.Char8Ty);
    ArithmeticTypes.push_back(S.Context.Char16Ty);
    ArithmeticTypes.push_back(S.Context.Char32Ty);
    ArithmeticTypes.push_back(S.Context.SignedCharTy);
    ArithmeticTypes.push_back(S.Context.ShortTy);
    ArithmeticTypes.push_back(S.Context.UnsignedCharTy);
    ArithmeticTypes.push_back(S.Context.UnsignedShortTy);
    LastIntegralType = ArithmeticTypes.size();
    NumArithmeticTypes = ArithmeticTypes.size();
    // End of integral types.
    // FIXME: What about complex? What about half?

    assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&
           "Enough inline storage for all arithmetic types.");
  }

  /// Helper method to factor out the common pattern of adding overloads
  /// for '++' and '--' builtin operators.
  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
                                           bool HasVolatile,
                                           bool HasRestrict) {
    QualType ParamTypes[2] = {
      S.Context.getLValueReferenceType(CandidateTy),
      S.Context.IntTy
    };

    // Non-volatile version.
    S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);

    // Use a heuristic to reduce number of builtin candidates in the set:
    // add volatile version only if there are conversions to a volatile type.
    if (HasVolatile) {
      ParamTypes[0] =
        S.Context.getLValueReferenceType(
          S.Context.getVolatileType(CandidateTy));
      S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
    }

    // Add restrict version only if there are conversions to a restrict type
    // and our candidate type is a non-restrict-qualified pointer.
    if (HasRestrict && CandidateTy->isAnyPointerType() &&
        !CandidateTy.isRestrictQualified()) {
      ParamTypes[0]
        = S.Context.getLValueReferenceType(
            S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
      S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);

      if (HasVolatile) {
        ParamTypes[0]
          = S.Context.getLValueReferenceType(
              S.Context.getCVRQualifiedType(CandidateTy,
                                            (Qualifiers::Volatile |
                                             Qualifiers::Restrict)));
        S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
      }
    }

  }

  /// Helper to add an overload candidate for a binary builtin with types \p L
  /// and \p R.
  void AddCandidate(QualType L, QualType R) {
    QualType LandR[2] = {L, R};
    S.AddBuiltinCandidate(LandR, Args, CandidateSet);
  }

public:
  BuiltinOperatorOverloadBuilder(
    Sema &S, ArrayRef<Expr *> Args,
    Qualifiers VisibleTypeConversionsQuals,
    bool HasArithmeticOrEnumeralCandidateType,
    SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
    OverloadCandidateSet &CandidateSet)
    : S(S), Args(Args),
      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
      HasArithmeticOrEnumeralCandidateType(
        HasArithmeticOrEnumeralCandidateType),
      CandidateTypes(CandidateTypes),
      CandidateSet(CandidateSet) {

    InitArithmeticTypes();
  }

  // Increment is deprecated for bool since C++17.
  //
  // C++ [over.built]p3:
  //
  //   For every pair (T, VQ), where T is an arithmetic type other
  //   than bool, and VQ is either volatile or empty, there exist
  //   candidate operator functions of the form
  //
  //       VQ T&      operator++(VQ T&);
  //       T          operator++(VQ T&, int);
  //
  // C++ [over.built]p4:
  //
  //   For every pair (T, VQ), where T is an arithmetic type other
  //   than bool, and VQ is either volatile or empty, there exist
  //   candidate operator functions of the form
  //
  //       VQ T&      operator--(VQ T&);
  //       T          operator--(VQ T&, int);
  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
    if (!HasArithmeticOrEnumeralCandidateType)
      return;

    for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) {
      const auto TypeOfT = ArithmeticTypes[Arith];
      if (TypeOfT == S.Context.BoolTy) {
        if (Op == OO_MinusMinus)
          continue;
        if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17)
          continue;
      }
      addPlusPlusMinusMinusStyleOverloads(
        TypeOfT,
        VisibleTypeConversionsQuals.hasVolatile(),
        VisibleTypeConversionsQuals.hasRestrict());
    }
  }

  // C++ [over.built]p5:
  //
  //   For every pair (T, VQ), where T is a cv-qualified or
  //   cv-unqualified object type, and VQ is either volatile or
  //   empty, there exist candidate operator functions of the form
  //
  //       T*VQ&      operator++(T*VQ&);
  //       T*VQ&      operator--(T*VQ&);
  //       T*         operator++(T*VQ&, int);
  //       T*         operator--(T*VQ&, int);
  void addPlusPlusMinusMinusPointerOverloads() {
    for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
      // Skip pointer types that aren't pointers to object types.
      if (!PtrTy->getPointeeType()->isObjectType())
        continue;

      addPlusPlusMinusMinusStyleOverloads(
          PtrTy,
          (!PtrTy.isVolatileQualified() &&
           VisibleTypeConversionsQuals.hasVolatile()),
          (!PtrTy.isRestrictQualified() &&
           VisibleTypeConversionsQuals.hasRestrict()));
    }
  }

  // C++ [over.built]p6:
  //   For every cv-qualified or cv-unqualified object type T, there
  //   exist candidate operator functions of the form
  //
  //       T&         operator*(T*);
  //
  // C++ [over.built]p7:
  //   For every function type T that does not have cv-qualifiers or a
  //   ref-qualifier, there exist candidate operator functions of the form
  //       T&         operator*(T*);
  void addUnaryStarPointerOverloads() {
    for (QualType ParamTy : CandidateTypes[0].pointer_types()) {
      QualType PointeeTy = ParamTy->getPointeeType();
      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
        continue;

      if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
        if (Proto->getMethodQuals() || Proto->getRefQualifier())
          continue;

      S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
    }
  }

  // C++ [over.built]p9:
  //  For every promoted arithmetic type T, there exist candidate
  //  operator functions of the form
  //
  //       T         operator+(T);
  //       T         operator-(T);
  void addUnaryPlusOrMinusArithmeticOverloads() {
    if (!HasArithmeticOrEnumeralCandidateType)
      return;

    for (unsigned Arith = FirstPromotedArithmeticType;
         Arith < LastPromotedArithmeticType; ++Arith) {
      QualType ArithTy = ArithmeticTypes[Arith];
      S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet);
    }

    // Extension: We also add these operators for vector types.
    for (QualType VecTy : CandidateTypes[0].vector_types())
      S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
  }

  // C++ [over.built]p8:
  //   For every type T, there exist candidate operator functions of
  //   the form
  //
  //       T*         operator+(T*);
  void addUnaryPlusPointerOverloads() {
    for (QualType ParamTy : CandidateTypes[0].pointer_types())
      S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
  }

  // C++ [over.built]p10:
  //   For every promoted integral type T, there exist candidate
  //   operator functions of the form
  //
  //        T         operator~(T);
  void addUnaryTildePromotedIntegralOverloads() {
    if (!HasArithmeticOrEnumeralCandidateType)
      return;

    for (unsigned Int = FirstPromotedIntegralType;
         Int < LastPromotedIntegralType; ++Int) {
      QualType IntTy = ArithmeticTypes[Int];
      S.AddBuiltinCandidate(&IntTy, Args, CandidateSet);
    }

    // Extension: We also add this operator for vector types.
    for (QualType VecTy : CandidateTypes[0].vector_types())
      S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
  }

  // C++ [over.match.oper]p16:
  //   For every pointer to member type T or type std::nullptr_t, there
  //   exist candidate operator functions of the form
  //
  //        bool operator==(T,T);
  //        bool operator!=(T,T);
  void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() {
    /// Set of (canonical) types that we've already handled.
    llvm::SmallPtrSet<QualType, 8> AddedTypes;

    for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
      for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
        // Don't add the same builtin candidate twice.
        if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
          continue;

        QualType ParamTypes[2] = {MemPtrTy, MemPtrTy};
        S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
      }

      if (CandidateTypes[ArgIdx].hasNullPtrType()) {
        CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
        if (AddedTypes.insert(NullPtrTy).second) {
          QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
          S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
        }
      }
    }
  }

  // C++ [over.built]p15:
  //
  //   For every T, where T is an enumeration type or a pointer type,
  //   there exist candidate operator functions of the form
  //
  //        bool       operator<(T, T);
  //        bool       operator>(T, T);
  //        bool       operator<=(T, T);
  //        bool       operator>=(T, T);
  //        bool       operator==(T, T);
  //        bool       operator!=(T, T);
  //           R       operator<=>(T, T)
  void addGenericBinaryPointerOrEnumeralOverloads(bool IsSpaceship) {
    // C++ [over.match.oper]p3:
    //   [...]the built-in candidates include all of the candidate operator
    //   functions defined in 13.6 that, compared to the given operator, [...]
    //   do not have the same parameter-type-list as any non-template non-member
    //   candidate.
    //
    // Note that in practice, this only affects enumeration types because there
    // aren't any built-in candidates of record type, and a user-defined operator
    // must have an operand of record or enumeration type. Also, the only other
    // overloaded operator with enumeration arguments, operator=,
    // cannot be overloaded for enumeration types, so this is the only place
    // where we must suppress candidates like this.
    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
      UserDefinedBinaryOperators;

    for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
      if (!CandidateTypes[ArgIdx].enumeration_types().empty()) {
        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
                                         CEnd = CandidateSet.end();
             C != CEnd; ++C) {
          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
            continue;

          if (C->Function->isFunctionTemplateSpecialization())
            continue;

          // We interpret "same parameter-type-list" as applying to the
          // "synthesized candidate, with the order of the two parameters
          // reversed", not to the original function.
          bool Reversed = C->isReversed();
          QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0)
                                        ->getType()
                                        .getUnqualifiedType();
          QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1)
                                         ->getType()
                                         .getUnqualifiedType();

          // Skip if either parameter isn't of enumeral type.
          if (!FirstParamType->isEnumeralType() ||
              !SecondParamType->isEnumeralType())
            continue;

          // Add this operator to the set of known user-defined operators.
          UserDefinedBinaryOperators.insert(
            std::make_pair(S.Context.getCanonicalType(FirstParamType),
                           S.Context.getCanonicalType(SecondParamType)));
        }
      }
    }

    /// Set of (canonical) types that we've already handled.
    llvm::SmallPtrSet<QualType, 8> AddedTypes;

    for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
      for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) {
        // Don't add the same builtin candidate twice.
        if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
          continue;
        if (IsSpaceship && PtrTy->isFunctionPointerType())
          continue;

        QualType ParamTypes[2] = {PtrTy, PtrTy};
        S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
      }
      for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
        CanQualType CanonType = S.Context.getCanonicalType(EnumTy);

        // Don't add the same builtin candidate twice, or if a user defined
        // candidate exists.
        if (!AddedTypes.insert(CanonType).second ||
            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
                                                            CanonType)))
          continue;
        QualType ParamTypes[2] = {EnumTy, EnumTy};
        S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
      }
    }
  }

  // C++ [over.built]p13:
  //
  //   For every cv-qualified or cv-unqualified object type T
  //   there exist candidate operator functions of the form
  //
  //      T*         operator+(T*, ptrdiff_t);
  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
  //      T*         operator-(T*, ptrdiff_t);
  //      T*         operator+(ptrdiff_t, T*);
  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
  //
  // C++ [over.built]p14:
  //
  //   For every T, where T is a pointer to object type, there
  //   exist candidate operator functions of the form
  //
  //      ptrdiff_t  operator-(T, T);
  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
    /// Set of (canonical) types that we've already handled.
    llvm::SmallPtrSet<QualType, 8> AddedTypes;

    for (int Arg = 0; Arg < 2; ++Arg) {
      QualType AsymmetricParamTypes[2] = {
        S.Context.getPointerDiffType(),
        S.Context.getPointerDiffType(),
      };
      for (QualType PtrTy : CandidateTypes[Arg].pointer_types()) {
        QualType PointeeTy = PtrTy->getPointeeType();
        if (!PointeeTy->isObjectType())
          continue;

        AsymmetricParamTypes[Arg] = PtrTy;
        if (Arg == 0 || Op == OO_Plus) {
          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
          // T* operator+(ptrdiff_t, T*);
          S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet);
        }
        if (Op == OO_Minus) {
          // ptrdiff_t operator-(T, T);
          if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
            continue;

          QualType ParamTypes[2] = {PtrTy, PtrTy};
          S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
        }
      }
    }
  }

  // C++ [over.built]p12:
  //
  //   For every pair of promoted arithmetic types L and R, there
  //   exist candidate operator functions of the form
  //
  //        LR         operator*(L, R);
  //        LR         operator/(L, R);
  //        LR         operator+(L, R);
  //        LR         operator-(L, R);
  //        bool       operator<(L, R);
  //        bool       operator>(L, R);
  //        bool       operator<=(L, R);
  //        bool       operator>=(L, R);
  //        bool       operator==(L, R);
  //        bool       operator!=(L, R);
  //
  //   where LR is the result of the usual arithmetic conversions
  //   between types L and R.
  //
  // C++ [over.built]p24:
  //
  //   For every pair of promoted arithmetic types L and R, there exist
  //   candidate operator functions of the form
  //
  //        LR       operator?(bool, L, R);
  //
  //   where LR is the result of the usual arithmetic conversions
  //   between types L and R.
  // Our candidates ignore the first parameter.
  void addGenericBinaryArithmeticOverloads() {
    if (!HasArithmeticOrEnumeralCandidateType)
      return;

    for (unsigned Left = FirstPromotedArithmeticType;
         Left < LastPromotedArithmeticType; ++Left) {
      for (unsigned Right = FirstPromotedArithmeticType;
           Right < LastPromotedArithmeticType; ++Right) {
        QualType LandR[2] = { ArithmeticTypes[Left],
                              ArithmeticTypes[Right] };
        S.AddBuiltinCandidate(LandR, Args, CandidateSet);
      }
    }

    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
    // conditional operator for vector types.
    for (QualType Vec1Ty : CandidateTypes[0].vector_types())
      for (QualType Vec2Ty : CandidateTypes[1].vector_types()) {
        QualType LandR[2] = {Vec1Ty, Vec2Ty};
        S.AddBuiltinCandidate(LandR, Args, CandidateSet);
      }
  }

  /// Add binary operator overloads for each candidate matrix type M1, M2:
  ///  * (M1, M1) -> M1
  ///  * (M1, M1.getElementType()) -> M1
  ///  * (M2.getElementType(), M2) -> M2
  ///  * (M2, M2) -> M2 // Only if M2 is not part of CandidateTypes[0].
  void addMatrixBinaryArithmeticOverloads() {
    if (!HasArithmeticOrEnumeralCandidateType)
      return;

    for (QualType M1 : CandidateTypes[0].matrix_types()) {
      AddCandidate(M1, cast<MatrixType>(M1)->getElementType());
      AddCandidate(M1, M1);
    }

    for (QualType M2 : CandidateTypes[1].matrix_types()) {
      AddCandidate(cast<MatrixType>(M2)->getElementType(), M2);
      if (!CandidateTypes[0].containsMatrixType(M2))
        AddCandidate(M2, M2);
    }
  }

  // C++2a [over.built]p14:
  //
  //   For every integral type T there exists a candidate operator function
  //   of the form
  //
  //        std::strong_ordering operator<=>(T, T)
  //
  // C++2a [over.built]p15:
  //
  //   For every pair of floating-point types L and R, there exists a candidate
  //   operator function of the form
  //
  //       std::partial_ordering operator<=>(L, R);
  //
  // FIXME: The current specification for integral types doesn't play nice with
  // the direction of p0946r0, which allows mixed integral and unscoped-enum
  // comparisons. Under the current spec this can lead to ambiguity during
  // overload resolution. For example:
  //
  //   enum A : int {a};
  //   auto x = (a <=> (long)42);
  //
  //   error: call is ambiguous for arguments 'A' and 'long'.
  //   note: candidate operator<=>(int, int)
  //   note: candidate operator<=>(long, long)
  //
  // To avoid this error, this function deviates from the specification and adds
  // the mixed overloads `operator<=>(L, R)` where L and R are promoted
  // arithmetic types (the same as the generic relational overloads).
  //
  // For now this function acts as a placeholder.
  void addThreeWayArithmeticOverloads() {
    addGenericBinaryArithmeticOverloads();
  }

  // C++ [over.built]p17:
  //
  //   For every pair of promoted integral types L and R, there
  //   exist candidate operator functions of the form
  //
  //      LR         operator%(L, R);
  //      LR         operator&(L, R);
  //      LR         operator^(L, R);
  //      LR         operator|(L, R);
  //      L          operator<<(L, R);
  //      L          operator>>(L, R);
  //
  //   where LR is the result of the usual arithmetic conversions
  //   between types L and R.
  void addBinaryBitwiseArithmeticOverloads() {
    if (!HasArithmeticOrEnumeralCandidateType)
      return;

    for (unsigned Left = FirstPromotedIntegralType;
         Left < LastPromotedIntegralType; ++Left) {
      for (unsigned Right = FirstPromotedIntegralType;
           Right < LastPromotedIntegralType; ++Right) {
        QualType LandR[2] = { ArithmeticTypes[Left],
                              ArithmeticTypes[Right] };
        S.AddBuiltinCandidate(LandR, Args, CandidateSet);
      }
    }
  }

  // C++ [over.built]p20:
  //
  //   For every pair (T, VQ), where T is an enumeration or
  //   pointer to member type and VQ is either volatile or
  //   empty, there exist candidate operator functions of the form
  //
  //        VQ T&      operator=(VQ T&, T);
  void addAssignmentMemberPointerOrEnumeralOverloads() {
    /// Set of (canonical) types that we've already handled.
    llvm::SmallPtrSet<QualType, 8> AddedTypes;

    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
      for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
        if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second)
          continue;

        AddBuiltinAssignmentOperatorCandidates(S, EnumTy, Args, CandidateSet);
      }

      for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
        if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
          continue;

        AddBuiltinAssignmentOperatorCandidates(S, MemPtrTy, Args, CandidateSet);
      }
    }
  }

  // C++ [over.built]p19:
  //
  //   For every pair (T, VQ), where T is any type and VQ is either
  //   volatile or empty, there exist candidate operator functions
  //   of the form
  //
  //        T*VQ&      operator=(T*VQ&, T*);
  //
  // C++ [over.built]p21:
  //
  //   For every pair (T, VQ), where T is a cv-qualified or
  //   cv-unqualified object type and VQ is either volatile or
  //   empty, there exist candidate operator functions of the form
  //
  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
  void addAssignmentPointerOverloads(bool isEqualOp) {
    /// Set of (canonical) types that we've already handled.
    llvm::SmallPtrSet<QualType, 8> AddedTypes;

    for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
      // If this is operator=, keep track of the builtin candidates we added.
      if (isEqualOp)
        AddedTypes.insert(S.Context.getCanonicalType(PtrTy));
      else if (!PtrTy->getPointeeType()->isObjectType())
        continue;

      // non-volatile version
      QualType ParamTypes[2] = {
          S.Context.getLValueReferenceType(PtrTy),
          isEqualOp ? PtrTy : S.Context.getPointerDiffType(),
      };
      S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
                            /*IsAssignmentOperator=*/ isEqualOp);

      bool NeedVolatile = !PtrTy.isVolatileQualified() &&
                          VisibleTypeConversionsQuals.hasVolatile();
      if (NeedVolatile) {
        // volatile version
        ParamTypes[0] =
            S.Context.getLValueReferenceType(S.Context.getVolatileType(PtrTy));
        S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
                              /*IsAssignmentOperator=*/isEqualOp);
      }

      if (!PtrTy.isRestrictQualified() &&
          VisibleTypeConversionsQuals.hasRestrict()) {
        // restrict version
        ParamTypes[0] =
            S.Context.getLValueReferenceType(S.Context.getRestrictType(PtrTy));
        S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
                              /*IsAssignmentOperator=*/isEqualOp);

        if (NeedVolatile) {
          // volatile restrict version
          ParamTypes[0] =
              S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType(
                  PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict)));
          S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
                                /*IsAssignmentOperator=*/isEqualOp);
        }
      }
    }

    if (isEqualOp) {
      for (QualType PtrTy : CandidateTypes[1].pointer_types()) {
        // Make sure we don't add the same candidate twice.
        if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
          continue;

        QualType ParamTypes[2] = {
            S.Context.getLValueReferenceType(PtrTy),
            PtrTy,
        };

        // non-volatile version
        S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
                              /*IsAssignmentOperator=*/true);

        bool NeedVolatile = !PtrTy.isVolatileQualified() &&
                            VisibleTypeConversionsQuals.hasVolatile();
        if (NeedVolatile) {
          // volatile version
          ParamTypes[0] = S.Context.getLValueReferenceType(
              S.Context.getVolatileType(PtrTy));
          S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
                                /*IsAssignmentOperator=*/true);
        }

        if (!PtrTy.isRestrictQualified() &&
            VisibleTypeConversionsQuals.hasRestrict()) {
          // restrict version
          ParamTypes[0] = S.Context.getLValueReferenceType(
              S.Context.getRestrictType(PtrTy));
          S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
                                /*IsAssignmentOperator=*/true);

          if (NeedVolatile) {
            // volatile restrict version
            ParamTypes[0] =
                S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType(
                    PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict)));
            S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
                                  /*IsAssignmentOperator=*/true);
          }
        }
      }
    }
  }

  // C++ [over.built]p18:
  //
  //   For every triple (L, VQ, R), where L is an arithmetic type,
  //   VQ is either volatile or empty, and R is a promoted
  //   arithmetic type, there exist candidate operator functions of
  //   the form
  //
  //        VQ L&      operator=(VQ L&, R);
  //        VQ L&      operator*=(VQ L&, R);
  //        VQ L&      operator/=(VQ L&, R);
  //        VQ L&      operator+=(VQ L&, R);
  //        VQ L&      operator-=(VQ L&, R);
  void addAssignmentArithmeticOverloads(bool isEqualOp) {
    if (!HasArithmeticOrEnumeralCandidateType)
      return;

    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
      for (unsigned Right = FirstPromotedArithmeticType;
           Right < LastPromotedArithmeticType; ++Right) {
        QualType ParamTypes[2];
        ParamTypes[1] = ArithmeticTypes[Right];
        auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
            S, ArithmeticTypes[Left], Args[0]);
        // Add this built-in operator as a candidate (VQ is empty).
        ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
        S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
                              /*IsAssignmentOperator=*/isEqualOp);

        // Add this built-in operator as a candidate (VQ is 'volatile').
        if (VisibleTypeConversionsQuals.hasVolatile()) {
          ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy);
          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
          S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
                                /*IsAssignmentOperator=*/isEqualOp);
        }
      }
    }

    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
    for (QualType Vec1Ty : CandidateTypes[0].vector_types())
      for (QualType Vec2Ty : CandidateTypes[0].vector_types()) {
        QualType ParamTypes[2];
        ParamTypes[1] = Vec2Ty;
        // Add this built-in operator as a candidate (VQ is empty).
        ParamTypes[0] = S.Context.getLValueReferenceType(Vec1Ty);
        S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
                              /*IsAssignmentOperator=*/isEqualOp);

        // Add this built-in operator as a candidate (VQ is 'volatile').
        if (VisibleTypeConversionsQuals.hasVolatile()) {
          ParamTypes[0] = S.Context.getVolatileType(Vec1Ty);
          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
          S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
                                /*IsAssignmentOperator=*/isEqualOp);
        }
      }
  }

  // C++ [over.built]p22:
  //
  //   For every triple (L, VQ, R), where L is an integral type, VQ
  //   is either volatile or empty, and R is a promoted integral
  //   type, there exist candidate operator functions of the form
  //
  //        VQ L&       operator%=(VQ L&, R);
  //        VQ L&       operator<<=(VQ L&, R);
  //        VQ L&       operator>>=(VQ L&, R);
  //        VQ L&       operator&=(VQ L&, R);
  //        VQ L&       operator^=(VQ L&, R);
  //        VQ L&       operator|=(VQ L&, R);
  void addAssignmentIntegralOverloads() {
    if (!HasArithmeticOrEnumeralCandidateType)
      return;

    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
      for (unsigned Right = FirstPromotedIntegralType;
           Right < LastPromotedIntegralType; ++Right) {
        QualType ParamTypes[2];
        ParamTypes[1] = ArithmeticTypes[Right];
        auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
            S, ArithmeticTypes[Left], Args[0]);
        // Add this built-in operator as a candidate (VQ is empty).
        ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
        S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
        if (VisibleTypeConversionsQuals.hasVolatile()) {
          // Add this built-in operator as a candidate (VQ is 'volatile').
          ParamTypes[0] = LeftBaseTy;
          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
          S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
        }
      }
    }
  }

  // C++ [over.operator]p23:
  //
  //   There also exist candidate operator functions of the form
  //
  //        bool        operator!(bool);
  //        bool        operator&&(bool, bool);
  //        bool        operator||(bool, bool);
  void addExclaimOverload() {
    QualType ParamTy = S.Context.BoolTy;
    S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet,
                          /*IsAssignmentOperator=*/false,
                          /*NumContextualBoolArguments=*/1);
  }
  void addAmpAmpOrPipePipeOverload() {
    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
    S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
                          /*IsAssignmentOperator=*/false,
                          /*NumContextualBoolArguments=*/2);
  }

  // C++ [over.built]p13:
  //
  //   For every cv-qualified or cv-unqualified object type T there
  //   exist candidate operator functions of the form
  //
  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
  //        T&         operator[](T*, ptrdiff_t);
  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
  //        T&         operator[](ptrdiff_t, T*);
  void addSubscriptOverloads() {
    for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
      QualType ParamTypes[2] = {PtrTy, S.Context.getPointerDiffType()};
      QualType PointeeType = PtrTy->getPointeeType();
      if (!PointeeType->isObjectType())
        continue;

      // T& operator[](T*, ptrdiff_t)
      S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
    }

    for (QualType PtrTy : CandidateTypes[1].pointer_types()) {
      QualType ParamTypes[2] = {S.Context.getPointerDiffType(), PtrTy};
      QualType PointeeType = PtrTy->getPointeeType();
      if (!PointeeType->isObjectType())
        continue;

      // T& operator[](ptrdiff_t, T*)
      S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
    }
  }

  // C++ [over.built]p11:
  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
  //    C1 is the same type as C2 or is a derived class of C2, T is an object
  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
  //    there exist candidate operator functions of the form
  //
  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
  //
  //    where CV12 is the union of CV1 and CV2.
  void addArrowStarOverloads() {
    for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
      QualType C1Ty = PtrTy;
      QualType C1;
      QualifierCollector Q1;
      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
      if (!isa<RecordType>(C1))
        continue;
      // heuristic to reduce number of builtin candidates in the set.
      // Add volatile/restrict version only if there are conversions to a
      // volatile/restrict type.
      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
        continue;
      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
        continue;
      for (QualType MemPtrTy : CandidateTypes[1].member_pointer_types()) {
        const MemberPointerType *mptr = cast<MemberPointerType>(MemPtrTy);
        QualType C2 = QualType(mptr->getClass(), 0);
        C2 = C2.getUnqualifiedType();
        if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
          break;
        QualType ParamTypes[2] = {PtrTy, MemPtrTy};
        // build CV12 T&
        QualType T = mptr->getPointeeType();
        if (!VisibleTypeConversionsQuals.hasVolatile() &&
            T.isVolatileQualified())
          continue;
        if (!VisibleTypeConversionsQuals.hasRestrict() &&
            T.isRestrictQualified())
          continue;
        T = Q1.apply(S.Context, T);
        S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
      }
    }
  }

  // Note that we don't consider the first argument, since it has been
  // contextually converted to bool long ago. The candidates below are
  // therefore added as binary.
  //
  // C++ [over.built]p25:
  //   For every type T, where T is a pointer, pointer-to-member, or scoped
  //   enumeration type, there exist candidate operator functions of the form
  //
  //        T        operator?(bool, T, T);
  //
  void addConditionalOperatorOverloads() {
    /// Set of (canonical) types that we've already handled.
    llvm::SmallPtrSet<QualType, 8> AddedTypes;

    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
      for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) {
        if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
          continue;

        QualType ParamTypes[2] = {PtrTy, PtrTy};
        S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
      }

      for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
        if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
          continue;

        QualType ParamTypes[2] = {MemPtrTy, MemPtrTy};
        S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
      }

      if (S.getLangOpts().CPlusPlus11) {
        for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
          if (!EnumTy->castAs<EnumType>()->getDecl()->isScoped())
            continue;

          if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second)
            continue;

          QualType ParamTypes[2] = {EnumTy, EnumTy};
          S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
        }
      }
    }
  }
};

} // end anonymous namespace

/// AddBuiltinOperatorCandidates - Add the appropriate built-in
/// operator overloads to the candidate set (C++ [over.built]), based
/// on the operator @p Op and the arguments given. For example, if the
/// operator is a binary '+', this routine might add "int
/// operator+(int, int)" to cover integer addition.
void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
                                        SourceLocation OpLoc,
                                        ArrayRef<Expr *> Args,
                                        OverloadCandidateSet &CandidateSet) {
  // Find all of the types that the arguments can convert to, but only
  // if the operator we're looking at has built-in operator candidates
  // that make use of these types. Also record whether we encounter non-record
  // candidate types or either arithmetic or enumeral candidate types.
  Qualifiers VisibleTypeConversionsQuals;
  VisibleTypeConversionsQuals.addConst();
  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);

  bool HasNonRecordCandidateType = false;
  bool HasArithmeticOrEnumeralCandidateType = false;
  SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
    CandidateTypes.emplace_back(*this);
    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
                                                 OpLoc,
                                                 true,
                                                 (Op == OO_Exclaim ||
                                                  Op == OO_AmpAmp ||
                                                  Op == OO_PipePipe),
                                                 VisibleTypeConversionsQuals);
    HasNonRecordCandidateType = HasNonRecordCandidateType ||
        CandidateTypes[ArgIdx].hasNonRecordTypes();
    HasArithmeticOrEnumeralCandidateType =
        HasArithmeticOrEnumeralCandidateType ||
        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
  }

  // Exit early when no non-record types have been added to the candidate set
  // for any of the arguments to the operator.
  //
  // We can't exit early for !, ||, or &&, since there we have always have
  // 'bool' overloads.
  if (!HasNonRecordCandidateType &&
      !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
    return;

  // Setup an object to manage the common state for building overloads.
  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
                                           VisibleTypeConversionsQuals,
                                           HasArithmeticOrEnumeralCandidateType,
                                           CandidateTypes, CandidateSet);

  // Dispatch over the operation to add in only those overloads which apply.
  switch (Op) {
  case OO_None:
  case NUM_OVERLOADED_OPERATORS:
    llvm_unreachable("Expected an overloaded operator");

  case OO_New:
  case OO_Delete:
  case OO_Array_New:
  case OO_Array_Delete:
  case OO_Call:
    llvm_unreachable(
                    "Special operators don't use AddBuiltinOperatorCandidates");

  case OO_Comma:
  case OO_Arrow:
  case OO_Coawait:
    // C++ [over.match.oper]p3:
    //   -- For the operator ',', the unary operator '&', the
    //      operator '->', or the operator 'co_await', the
    //      built-in candidates set is empty.
    break;

  case OO_Plus: // '+' is either unary or binary
    if (Args.size() == 1)
      OpBuilder.addUnaryPlusPointerOverloads();
    LLVM_FALLTHROUGH;

  case OO_Minus: // '-' is either unary or binary
    if (Args.size() == 1) {
      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
    } else {
      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
      OpBuilder.addGenericBinaryArithmeticOverloads();
      OpBuilder.addMatrixBinaryArithmeticOverloads();
    }
    break;

  case OO_Star: // '*' is either unary or binary
    if (Args.size() == 1)
      OpBuilder.addUnaryStarPointerOverloads();
    else {
      OpBuilder.addGenericBinaryArithmeticOverloads();
      OpBuilder.addMatrixBinaryArithmeticOverloads();
    }
    break;

  case OO_Slash:
    OpBuilder.addGenericBinaryArithmeticOverloads();
    break;

  case OO_PlusPlus:
  case OO_MinusMinus:
    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
    break;

  case OO_EqualEqual:
  case OO_ExclaimEqual:
    OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads();
    OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false);
    OpBuilder.addGenericBinaryArithmeticOverloads();
    break;

  case OO_Less:
  case OO_Greater:
  case OO_LessEqual:
  case OO_GreaterEqual:
    OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false);
    OpBuilder.addGenericBinaryArithmeticOverloads();
    break;

  case OO_Spaceship:
    OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/true);
    OpBuilder.addThreeWayArithmeticOverloads();
    break;

  case OO_Percent:
  case OO_Caret:
  case OO_Pipe:
  case OO_LessLess:
  case OO_GreaterGreater:
    OpBuilder.addBinaryBitwiseArithmeticOverloads();
    break;

  case OO_Amp: // '&' is either unary or binary
    if (Args.size() == 1)
      // C++ [over.match.oper]p3:
      //   -- For the operator ',', the unary operator '&', or the
      //      operator '->', the built-in candidates set is empty.
      break;

    OpBuilder.addBinaryBitwiseArithmeticOverloads();
    break;

  case OO_Tilde:
    OpBuilder.addUnaryTildePromotedIntegralOverloads();
    break;

  case OO_Equal:
    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
    LLVM_FALLTHROUGH;

  case OO_PlusEqual:
  case OO_MinusEqual:
    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
    LLVM_FALLTHROUGH;

  case OO_StarEqual:
  case OO_SlashEqual:
    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
    break;

  case OO_PercentEqual:
  case OO_LessLessEqual:
  case OO_GreaterGreaterEqual:
  case OO_AmpEqual:
  case OO_CaretEqual:
  case OO_PipeEqual:
    OpBuilder.addAssignmentIntegralOverloads();
    break;

  case OO_Exclaim:
    OpBuilder.addExclaimOverload();
    break;

  case OO_AmpAmp:
  case OO_PipePipe:
    OpBuilder.addAmpAmpOrPipePipeOverload();
    break;

  case OO_Subscript:
    OpBuilder.addSubscriptOverloads();
    break;

  case OO_ArrowStar:
    OpBuilder.addArrowStarOverloads();
    break;

  case OO_Conditional:
    OpBuilder.addConditionalOperatorOverloads();
    OpBuilder.addGenericBinaryArithmeticOverloads();
    break;
  }
}

/// Add function candidates found via argument-dependent lookup
/// to the set of overloading candidates.
///
/// This routine performs argument-dependent name lookup based on the
/// given function name (which may also be an operator name) and adds
/// all of the overload candidates found by ADL to the overload
/// candidate set (C++ [basic.lookup.argdep]).
void
Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
                                           SourceLocation Loc,
                                           ArrayRef<Expr *> Args,
                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
                                           OverloadCandidateSet& CandidateSet,
                                           bool PartialOverloading) {
  ADLResult Fns;

  // FIXME: This approach for uniquing ADL results (and removing
  // redundant candidates from the set) relies on pointer-equality,
  // which means we need to key off the canonical decl.  However,
  // always going back to the canonical decl might not get us the
  // right set of default arguments.  What default arguments are
  // we supposed to consider on ADL candidates, anyway?

  // FIXME: Pass in the explicit template arguments?
  ArgumentDependentLookup(Name, Loc, Args, Fns);

  // Erase all of the candidates we already knew about.
  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
                                   CandEnd = CandidateSet.end();
       Cand != CandEnd; ++Cand)
    if (Cand->Function) {
      Fns.erase(Cand->Function);
      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
        Fns.erase(FunTmpl);
    }

  // For each of the ADL candidates we found, add it to the overload
  // set.
  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);

    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
      if (ExplicitTemplateArgs)
        continue;

      AddOverloadCandidate(
          FD, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false,
          PartialOverloading, /*AllowExplicit=*/true,
          /*AllowExplicitConversion=*/false, ADLCallKind::UsesADL);
      if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) {
        AddOverloadCandidate(
            FD, FoundDecl, {Args[1], Args[0]}, CandidateSet,
            /*SuppressUserConversions=*/false, PartialOverloading,
            /*AllowExplicit=*/true, /*AllowExplicitConversion=*/false,
            ADLCallKind::UsesADL, None, OverloadCandidateParamOrder::Reversed);
      }
    } else {
      auto *FTD = cast<FunctionTemplateDecl>(*I);
      AddTemplateOverloadCandidate(
          FTD, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet,
          /*SuppressUserConversions=*/false, PartialOverloading,
          /*AllowExplicit=*/true, ADLCallKind::UsesADL);
      if (CandidateSet.getRewriteInfo().shouldAddReversed(
              Context, FTD->getTemplatedDecl())) {
        AddTemplateOverloadCandidate(
            FTD, FoundDecl, ExplicitTemplateArgs, {Args[1], Args[0]},
            CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading,
            /*AllowExplicit=*/true, ADLCallKind::UsesADL,
            OverloadCandidateParamOrder::Reversed);
      }
    }
  }
}

namespace {
enum class Comparison { Equal, Better, Worse };
}

/// Compares the enable_if attributes of two FunctionDecls, for the purposes of
/// overload resolution.
///
/// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
/// Cand1's first N enable_if attributes have precisely the same conditions as
/// Cand2's first N enable_if attributes (where N = the number of enable_if
/// attributes on Cand2), and Cand1 has more than N enable_if attributes.
///
/// Note that you can have a pair of candidates such that Cand1's enable_if
/// attributes are worse than Cand2's, and Cand2's enable_if attributes are
/// worse than Cand1's.
static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
                                       const FunctionDecl *Cand2) {
  // Common case: One (or both) decls don't have enable_if attrs.
  bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
  bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
  if (!Cand1Attr || !Cand2Attr) {
    if (Cand1Attr == Cand2Attr)
      return Comparison::Equal;
    return Cand1Attr ? Comparison::Better : Comparison::Worse;
  }

  auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>();
  auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>();

  llvm::FoldingSetNodeID Cand1ID, Cand2ID;
  for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) {
    Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
    Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);

    // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
    // has fewer enable_if attributes than Cand2, and vice versa.
    if (!Cand1A)
      return Comparison::Worse;
    if (!Cand2A)
      return Comparison::Better;

    Cand1ID.clear();
    Cand2ID.clear();

    (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true);
    (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true);
    if (Cand1ID != Cand2ID)
      return Comparison::Worse;
  }

  return Comparison::Equal;
}

static Comparison
isBetterMultiversionCandidate(const OverloadCandidate &Cand1,
                              const OverloadCandidate &Cand2) {
  if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function ||
      !Cand2.Function->isMultiVersion())
    return Comparison::Equal;

  // If both are invalid, they are equal. If one of them is invalid, the other
  // is better.
  if (Cand1.Function->isInvalidDecl()) {
    if (Cand2.Function->isInvalidDecl())
      return Comparison::Equal;
    return Comparison::Worse;
  }
  if (Cand2.Function->isInvalidDecl())
    return Comparison::Better;

  // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer
  // cpu_dispatch, else arbitrarily based on the identifiers.
  bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>();
  bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>();
  const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>();
  const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>();

  if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec)
    return Comparison::Equal;

  if (Cand1CPUDisp && !Cand2CPUDisp)
    return Comparison::Better;
  if (Cand2CPUDisp && !Cand1CPUDisp)
    return Comparison::Worse;

  if (Cand1CPUSpec && Cand2CPUSpec) {
    if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size())
      return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size()
                 ? Comparison::Better
                 : Comparison::Worse;

    std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator>
        FirstDiff = std::mismatch(
            Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(),
            Cand2CPUSpec->cpus_begin(),
            [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) {
              return LHS->getName() == RHS->getName();
            });

    assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&
           "Two different cpu-specific versions should not have the same "
           "identifier list, otherwise they'd be the same decl!");
    return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName()
               ? Comparison::Better
               : Comparison::Worse;
  }
  llvm_unreachable("No way to get here unless both had cpu_dispatch");
}

/// Compute the type of the implicit object parameter for the given function,
/// if any. Returns None if there is no implicit object parameter, and a null
/// QualType if there is a 'matches anything' implicit object parameter.
static Optional<QualType> getImplicitObjectParamType(ASTContext &Context,
                                                     const FunctionDecl *F) {
  if (!isa<CXXMethodDecl>(F) || isa<CXXConstructorDecl>(F))
    return llvm::None;

  auto *M = cast<CXXMethodDecl>(F);
  // Static member functions' object parameters match all types.
  if (M->isStatic())
    return QualType();

  QualType T = M->getThisObjectType();
  if (M->getRefQualifier() == RQ_RValue)
    return Context.getRValueReferenceType(T);
  return Context.getLValueReferenceType(T);
}

static bool haveSameParameterTypes(ASTContext &Context, const FunctionDecl *F1,
                                   const FunctionDecl *F2, unsigned NumParams) {
  if (declaresSameEntity(F1, F2))
    return true;

  auto NextParam = [&](const FunctionDecl *F, unsigned &I, bool First) {
    if (First) {
      if (Optional<QualType> T = getImplicitObjectParamType(Context, F))
        return *T;
    }
    assert(I < F->getNumParams());
    return F->getParamDecl(I++)->getType();
  };

  unsigned I1 = 0, I2 = 0;
  for (unsigned I = 0; I != NumParams; ++I) {
    QualType T1 = NextParam(F1, I1, I == 0);
    QualType T2 = NextParam(F2, I2, I == 0);
    assert(!T1.isNull() && !T2.isNull() && "Unexpected null param types");
    if (!Context.hasSameUnqualifiedType(T1, T2))
      return false;
  }
  return true;
}

/// isBetterOverloadCandidate - Determines whether the first overload
/// candidate is a better candidate than the second (C++ 13.3.3p1).
bool clang::isBetterOverloadCandidate(
    Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2,
    SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) {
  // Define viable functions to be better candidates than non-viable
  // functions.
  if (!Cand2.Viable)
    return Cand1.Viable;
  else if (!Cand1.Viable)
    return false;

  // [CUDA] A function with 'never' preference is marked not viable, therefore
  // is never shown up here. The worst preference shown up here is 'wrong side',
  // e.g. an H function called by a HD function in device compilation. This is
  // valid AST as long as the HD function is not emitted, e.g. it is an inline
  // function which is called only by an H function. A deferred diagnostic will
  // be triggered if it is emitted. However a wrong-sided function is still
  // a viable candidate here.
  //
  // If Cand1 can be emitted and Cand2 cannot be emitted in the current
  // context, Cand1 is better than Cand2. If Cand1 can not be emitted and Cand2
  // can be emitted, Cand1 is not better than Cand2. This rule should have
  // precedence over other rules.
  //
  // If both Cand1 and Cand2 can be emitted, or neither can be emitted, then
  // other rules should be used to determine which is better. This is because
  // host/device based overloading resolution is mostly for determining
  // viability of a function. If two functions are both viable, other factors
  // should take precedence in preference, e.g. the standard-defined preferences
  // like argument conversion ranks or enable_if partial-ordering. The
  // preference for pass-object-size parameters is probably most similar to a
  // type-based-overloading decision and so should take priority.
  //
  // If other rules cannot determine which is better, CUDA preference will be
  // used again to determine which is better.
  //
  // TODO: Currently IdentifyCUDAPreference does not return correct values
  // for functions called in global variable initializers due to missing
  // correct context about device/host. Therefore we can only enforce this
  // rule when there is a caller. We should enforce this rule for functions
  // in global variable initializers once proper context is added.
  //
  // TODO: We can only enable the hostness based overloading resolution when
  // -fgpu-exclude-wrong-side-overloads is on since this requires deferring
  // overloading resolution diagnostics.
  if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function &&
      S.getLangOpts().GPUExcludeWrongSideOverloads) {
    if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) {
      bool IsCallerImplicitHD = Sema::isCUDAImplicitHostDeviceFunction(Caller);
      bool IsCand1ImplicitHD =
          Sema::isCUDAImplicitHostDeviceFunction(Cand1.Function);
      bool IsCand2ImplicitHD =
          Sema::isCUDAImplicitHostDeviceFunction(Cand2.Function);
      auto P1 = S.IdentifyCUDAPreference(Caller, Cand1.Function);
      auto P2 = S.IdentifyCUDAPreference(Caller, Cand2.Function);
      assert(P1 != Sema::CFP_Never && P2 != Sema::CFP_Never);
      // The implicit HD function may be a function in a system header which
      // is forced by pragma. In device compilation, if we prefer HD candidates
      // over wrong-sided candidates, overloading resolution may change, which
      // may result in non-deferrable diagnostics. As a workaround, we let
      // implicit HD candidates take equal preference as wrong-sided candidates.
      // This will preserve the overloading resolution.
      // TODO: We still need special handling of implicit HD functions since
      // they may incur other diagnostics to be deferred. We should make all
      // host/device related diagnostics deferrable and remove special handling
      // of implicit HD functions.
      auto EmitThreshold =
          (S.getLangOpts().CUDAIsDevice && IsCallerImplicitHD &&
           (IsCand1ImplicitHD || IsCand2ImplicitHD))
              ? Sema::CFP_Never
              : Sema::CFP_WrongSide;
      auto Cand1Emittable = P1 > EmitThreshold;
      auto Cand2Emittable = P2 > EmitThreshold;
      if (Cand1Emittable && !Cand2Emittable)
        return true;
      if (!Cand1Emittable && Cand2Emittable)
        return false;
    }
  }

  // C++ [over.match.best]p1:
  //
  //   -- if F is a static member function, ICS1(F) is defined such
  //      that ICS1(F) is neither better nor worse than ICS1(G) for
  //      any function G, and, symmetrically, ICS1(G) is neither
  //      better nor worse than ICS1(F).
  unsigned StartArg = 0;
  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
    StartArg = 1;

  auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) {
    // We don't allow incompatible pointer conversions in C++.
    if (!S.getLangOpts().CPlusPlus)
      return ICS.isStandard() &&
             ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion;

    // The only ill-formed conversion we allow in C++ is the string literal to
    // char* conversion, which is only considered ill-formed after C++11.
    return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
           hasDeprecatedStringLiteralToCharPtrConversion(ICS);
  };

  // Define functions that don't require ill-formed conversions for a given
  // argument to be better candidates than functions that do.
  unsigned NumArgs = Cand1.Conversions.size();
  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
  bool HasBetterConversion = false;
  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
    bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]);
    bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]);
    if (Cand1Bad != Cand2Bad) {
      if (Cand1Bad)
        return false;
      HasBetterConversion = true;
    }
  }

  if (HasBetterConversion)
    return true;

  // C++ [over.match.best]p1:
  //   A viable function F1 is defined to be a better function than another
  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
  //   conversion sequence than ICSi(F2), and then...
  bool HasWorseConversion = false;
  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
    switch (CompareImplicitConversionSequences(S, Loc,
                                               Cand1.Conversions[ArgIdx],
                                               Cand2.Conversions[ArgIdx])) {
    case ImplicitConversionSequence::Better:
      // Cand1 has a better conversion sequence.
      HasBetterConversion = true;
      break;

    case ImplicitConversionSequence::Worse:
      if (Cand1.Function && Cand2.Function &&
          Cand1.isReversed() != Cand2.isReversed() &&
          haveSameParameterTypes(S.Context, Cand1.Function, Cand2.Function,
                                 NumArgs)) {
        // Work around large-scale breakage caused by considering reversed
        // forms of operator== in C++20:
        //
        // When comparing a function against a reversed function with the same
        // parameter types, if we have a better conversion for one argument and
        // a worse conversion for the other, the implicit conversion sequences
        // are treated as being equally good.
        //
        // This prevents a comparison function from being considered ambiguous
        // with a reversed form that is written in the same way.
        //
        // We diagnose this as an extension from CreateOverloadedBinOp.
        HasWorseConversion = true;
        break;
      }

      // Cand1 can't be better than Cand2.
      return false;

    case ImplicitConversionSequence::Indistinguishable:
      // Do nothing.
      break;
    }
  }

  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
  //       ICSj(F2), or, if not that,
  if (HasBetterConversion && !HasWorseConversion)
    return true;

  //   -- the context is an initialization by user-defined conversion
  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
  //      from the return type of F1 to the destination type (i.e.,
  //      the type of the entity being initialized) is a better
  //      conversion sequence than the standard conversion sequence
  //      from the return type of F2 to the destination type.
  if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion &&
      Cand1.Function && Cand2.Function &&
      isa<CXXConversionDecl>(Cand1.Function) &&
      isa<CXXConversionDecl>(Cand2.Function)) {
    // First check whether we prefer one of the conversion functions over the
    // other. This only distinguishes the results in non-standard, extension
    // cases such as the conversion from a lambda closure type to a function
    // pointer or block.
    ImplicitConversionSequence::CompareKind Result =
        compareConversionFunctions(S, Cand1.Function, Cand2.Function);
    if (Result == ImplicitConversionSequence::Indistinguishable)
      Result = CompareStandardConversionSequences(S, Loc,
                                                  Cand1.FinalConversion,
                                                  Cand2.FinalConversion);

    if (Result != ImplicitConversionSequence::Indistinguishable)
      return Result == ImplicitConversionSequence::Better;

    // FIXME: Compare kind of reference binding if conversion functions
    // convert to a reference type used in direct reference binding, per
    // C++14 [over.match.best]p1 section 2 bullet 3.
  }

  // FIXME: Work around a defect in the C++17 guaranteed copy elision wording,
  // as combined with the resolution to CWG issue 243.
  //
  // When the context is initialization by constructor ([over.match.ctor] or
  // either phase of [over.match.list]), a constructor is preferred over
  // a conversion function.
  if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 &&
      Cand1.Function && Cand2.Function &&
      isa<CXXConstructorDecl>(Cand1.Function) !=
          isa<CXXConstructorDecl>(Cand2.Function))
    return isa<CXXConstructorDecl>(Cand1.Function);

  //    -- F1 is a non-template function and F2 is a function template
  //       specialization, or, if not that,
  bool Cand1IsSpecialization = Cand1.Function &&
                               Cand1.Function->getPrimaryTemplate();
  bool Cand2IsSpecialization = Cand2.Function &&
                               Cand2.Function->getPrimaryTemplate();
  if (Cand1IsSpecialization != Cand2IsSpecialization)
    return Cand2IsSpecialization;

  //   -- F1 and F2 are function template specializations, and the function
  //      template for F1 is more specialized than the template for F2
  //      according to the partial ordering rules described in 14.5.5.2, or,
  //      if not that,
  if (Cand1IsSpecialization && Cand2IsSpecialization) {
    if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate(
            Cand1.Function->getPrimaryTemplate(),
            Cand2.Function->getPrimaryTemplate(), Loc,
            isa<CXXConversionDecl>(Cand1.Function) ? TPOC_Conversion
                                                   : TPOC_Call,
            Cand1.ExplicitCallArguments, Cand2.ExplicitCallArguments,
            Cand1.isReversed() ^ Cand2.isReversed()))
      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
  }

  //   -— F1 and F2 are non-template functions with the same
  //      parameter-type-lists, and F1 is more constrained than F2 [...],
  if (Cand1.Function && Cand2.Function && !Cand1IsSpecialization &&
      !Cand2IsSpecialization && Cand1.Function->hasPrototype() &&
      Cand2.Function->hasPrototype()) {
    auto *PT1 = cast<FunctionProtoType>(Cand1.Function->getFunctionType());
    auto *PT2 = cast<FunctionProtoType>(Cand2.Function->getFunctionType());
    if (PT1->getNumParams() == PT2->getNumParams() &&
        PT1->isVariadic() == PT2->isVariadic() &&
        S.FunctionParamTypesAreEqual(PT1, PT2)) {
      Expr *RC1 = Cand1.Function->getTrailingRequiresClause();
      Expr *RC2 = Cand2.Function->getTrailingRequiresClause();
      if (RC1 && RC2) {
        bool AtLeastAsConstrained1, AtLeastAsConstrained2;
        if (S.IsAtLeastAsConstrained(Cand1.Function, {RC1}, Cand2.Function,
                                     {RC2}, AtLeastAsConstrained1) ||
            S.IsAtLeastAsConstrained(Cand2.Function, {RC2}, Cand1.Function,
                                     {RC1}, AtLeastAsConstrained2))
          return false;
        if (AtLeastAsConstrained1 != AtLeastAsConstrained2)
          return AtLeastAsConstrained1;
      } else if (RC1 || RC2) {
        return RC1 != nullptr;
      }
    }
  }

  //   -- F1 is a constructor for a class D, F2 is a constructor for a base
  //      class B of D, and for all arguments the corresponding parameters of
  //      F1 and F2 have the same type.
  // FIXME: Implement the "all parameters have the same type" check.
  bool Cand1IsInherited =
      isa_and_nonnull<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
  bool Cand2IsInherited =
      isa_and_nonnull<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
  if (Cand1IsInherited != Cand2IsInherited)
    return Cand2IsInherited;
  else if (Cand1IsInherited) {
    assert(Cand2IsInherited);
    auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
    auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
    if (Cand1Class->isDerivedFrom(Cand2Class))
      return true;
    if (Cand2Class->isDerivedFrom(Cand1Class))
      return false;
    // Inherited from sibling base classes: still ambiguous.
  }

  //   -- F2 is a rewritten candidate (12.4.1.2) and F1 is not
  //   -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate
  //      with reversed order of parameters and F1 is not
  //
  // We rank reversed + different operator as worse than just reversed, but
  // that comparison can never happen, because we only consider reversing for
  // the maximally-rewritten operator (== or <=>).
  if (Cand1.RewriteKind != Cand2.RewriteKind)
    return Cand1.RewriteKind < Cand2.RewriteKind;

  // Check C++17 tie-breakers for deduction guides.
  {
    auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function);
    auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function);
    if (Guide1 && Guide2) {
      //  -- F1 is generated from a deduction-guide and F2 is not
      if (Guide1->isImplicit() != Guide2->isImplicit())
        return Guide2->isImplicit();

      //  -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not
      if (Guide1->isCopyDeductionCandidate())
        return true;
    }
  }

  // Check for enable_if value-based overload resolution.
  if (Cand1.Function && Cand2.Function) {
    Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
    if (Cmp != Comparison::Equal)
      return Cmp == Comparison::Better;
  }

  bool HasPS1 = Cand1.Function != nullptr &&
                functionHasPassObjectSizeParams(Cand1.Function);
  bool HasPS2 = Cand2.Function != nullptr &&
                functionHasPassObjectSizeParams(Cand2.Function);
  if (HasPS1 != HasPS2 && HasPS1)
    return true;

  auto MV = isBetterMultiversionCandidate(Cand1, Cand2);
  if (MV == Comparison::Better)
    return true;
  if (MV == Comparison::Worse)
    return false;

  // If other rules cannot determine which is better, CUDA preference is used
  // to determine which is better.
  if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
    FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
    return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
           S.IdentifyCUDAPreference(Caller, Cand2.Function);
  }

  // General member function overloading is handled above, so this only handles
  // constructors with address spaces.
  // This only handles address spaces since C++ has no other
  // qualifier that can be used with constructors.
  const auto *CD1 = dyn_cast_or_null<CXXConstructorDecl>(Cand1.Function);
  const auto *CD2 = dyn_cast_or_null<CXXConstructorDecl>(Cand2.Function);
  if (CD1 && CD2) {
    LangAS AS1 = CD1->getMethodQualifiers().getAddressSpace();
    LangAS AS2 = CD2->getMethodQualifiers().getAddressSpace();
    if (AS1 != AS2) {
      if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1))
        return true;
      if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1))
        return false;
    }
  }

  return false;
}

/// Determine whether two declarations are "equivalent" for the purposes of
/// name lookup and overload resolution. This applies when the same internal/no
/// linkage entity is defined by two modules (probably by textually including
/// the same header). In such a case, we don't consider the declarations to
/// declare the same entity, but we also don't want lookups with both
/// declarations visible to be ambiguous in some cases (this happens when using
/// a modularized libstdc++).
bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
                                                  const NamedDecl *B) {
  auto *VA = dyn_cast_or_null<ValueDecl>(A);
  auto *VB = dyn_cast_or_null<ValueDecl>(B);
  if (!VA || !VB)
    return false;

  // The declarations must be declaring the same name as an internal linkage
  // entity in different modules.
  if (!VA->getDeclContext()->getRedeclContext()->Equals(
          VB->getDeclContext()->getRedeclContext()) ||
      getOwningModule(VA) == getOwningModule(VB) ||
      VA->isExternallyVisible() || VB->isExternallyVisible())
    return false;

  // Check that the declarations appear to be equivalent.
  //
  // FIXME: Checking the type isn't really enough to resolve the ambiguity.
  // For constants and functions, we should check the initializer or body is
  // the same. For non-constant variables, we shouldn't allow it at all.
  if (Context.hasSameType(VA->getType(), VB->getType()))
    return true;

  // Enum constants within unnamed enumerations will have different types, but
  // may still be similar enough to be interchangeable for our purposes.
  if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
    if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
      // Only handle anonymous enums. If the enumerations were named and
      // equivalent, they would have been merged to the same type.
      auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
      auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
      if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
          !Context.hasSameType(EnumA->getIntegerType(),
                               EnumB->getIntegerType()))
        return false;
      // Allow this only if the value is the same for both enumerators.
      return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
    }
  }

  // Nothing else is sufficiently similar.
  return false;
}

void Sema::diagnoseEquivalentInternalLinkageDeclarations(
    SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
  assert(D && "Unknown declaration");
  Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;

  Module *M = getOwningModule(D);
  Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
      << !M << (M ? M->getFullModuleName() : "");

  for (auto *E : Equiv) {
    Module *M = getOwningModule(E);
    Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
        << !M << (M ? M->getFullModuleName() : "");
  }
}

/// Computes the best viable function (C++ 13.3.3)
/// within an overload candidate set.
///
/// \param Loc The location of the function name (or operator symbol) for
/// which overload resolution occurs.
///
/// \param Best If overload resolution was successful or found a deleted
/// function, \p Best points to the candidate function found.
///
/// \returns The result of overload resolution.
OverloadingResult
OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
                                         iterator &Best) {
  llvm::SmallVector<OverloadCandidate *, 16> Candidates;
  std::transform(begin(), end(), std::back_inserter(Candidates),
                 [](OverloadCandidate &Cand) { return &Cand; });

  // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but
  // are accepted by both clang and NVCC. However, during a particular
  // compilation mode only one call variant is viable. We need to
  // exclude non-viable overload candidates from consideration based
  // only on their host/device attributes. Specifically, if one
  // candidate call is WrongSide and the other is SameSide, we ignore
  // the WrongSide candidate.
  // We only need to remove wrong-sided candidates here if
  // -fgpu-exclude-wrong-side-overloads is off. When
  // -fgpu-exclude-wrong-side-overloads is on, all candidates are compared
  // uniformly in isBetterOverloadCandidate.
  if (S.getLangOpts().CUDA && !S.getLangOpts().GPUExcludeWrongSideOverloads) {
    const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
    bool ContainsSameSideCandidate =
        llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
          // Check viable function only.
          return Cand->Viable && Cand->Function &&
                 S.IdentifyCUDAPreference(Caller, Cand->Function) ==
                     Sema::CFP_SameSide;
        });
    if (ContainsSameSideCandidate) {
      auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
        // Check viable function only to avoid unnecessary data copying/moving.
        return Cand->Viable && Cand->Function &&
               S.IdentifyCUDAPreference(Caller, Cand->Function) ==
                   Sema::CFP_WrongSide;
      };
      llvm::erase_if(Candidates, IsWrongSideCandidate);
    }
  }

  // Find the best viable function.
  Best = end();
  for (auto *Cand : Candidates) {
    Cand->Best = false;
    if (Cand->Viable)
      if (Best == end() ||
          isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind))
        Best = Cand;
  }

  // If we didn't find any viable functions, abort.
  if (Best == end())
    return OR_No_Viable_Function;

  llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;

  llvm::SmallVector<OverloadCandidate*, 4> PendingBest;
  PendingBest.push_back(&*Best);
  Best->Best = true;

  // Make sure that this function is better than every other viable
  // function. If not, we have an ambiguity.
  while (!PendingBest.empty()) {
    auto *Curr = PendingBest.pop_back_val();
    for (auto *Cand : Candidates) {
      if (Cand->Viable && !Cand->Best &&
          !isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) {
        PendingBest.push_back(Cand);
        Cand->Best = true;

        if (S.isEquivalentInternalLinkageDeclaration(Cand->Function,
                                                     Curr->Function))
          EquivalentCands.push_back(Cand->Function);
        else
          Best = end();
      }
    }
  }

  // If we found more than one best candidate, this is ambiguous.
  if (Best == end())
    return OR_Ambiguous;

  // Best is the best viable function.
  if (Best->Function && Best->Function->isDeleted())
    return OR_Deleted;

  if (!EquivalentCands.empty())
    S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
                                                    EquivalentCands);

  return OR_Success;
}

namespace {

enum OverloadCandidateKind {
  oc_function,
  oc_method,
  oc_reversed_binary_operator,
  oc_constructor,
  oc_implicit_default_constructor,
  oc_implicit_copy_constructor,
  oc_implicit_move_constructor,
  oc_implicit_copy_assignment,
  oc_implicit_move_assignment,
  oc_implicit_equality_comparison,
  oc_inherited_constructor
};

enum OverloadCandidateSelect {
  ocs_non_template,
  ocs_template,
  ocs_described_template,
};

static std::pair<OverloadCandidateKind, OverloadCandidateSelect>
ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn,
                          OverloadCandidateRewriteKind CRK,
                          std::string &Description) {

  bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl();
  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
    isTemplate = true;
    Description = S.getTemplateArgumentBindingsText(
        FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
  }

  OverloadCandidateSelect Select = [&]() {
    if (!Description.empty())
      return ocs_described_template;
    return isTemplate ? ocs_template : ocs_non_template;
  }();

  OverloadCandidateKind Kind = [&]() {
    if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual)
      return oc_implicit_equality_comparison;

    if (CRK & CRK_Reversed)
      return oc_reversed_binary_operator;

    if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
      if (!Ctor->isImplicit()) {
        if (isa<ConstructorUsingShadowDecl>(Found))
          return oc_inherited_constructor;
        else
          return oc_constructor;
      }

      if (Ctor->isDefaultConstructor())
        return oc_implicit_default_constructor;

      if (Ctor->isMoveConstructor())
        return oc_implicit_move_constructor;

      assert(Ctor->isCopyConstructor() &&
             "unexpected sort of implicit constructor");
      return oc_implicit_copy_constructor;
    }

    if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
      // This actually gets spelled 'candidate function' for now, but
      // it doesn't hurt to split it out.
      if (!Meth->isImplicit())
        return oc_method;

      if (Meth->isMoveAssignmentOperator())
        return oc_implicit_move_assignment;

      if (Meth->isCopyAssignmentOperator())
        return oc_implicit_copy_assignment;

      assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
      return oc_method;
    }

    return oc_function;
  }();

  return std::make_pair(Kind, Select);
}

void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
  // FIXME: It'd be nice to only emit a note once per using-decl per overload
  // set.
  if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
    S.Diag(FoundDecl->getLocation(),
           diag::note_ovl_candidate_inherited_constructor)
      << Shadow->getNominatedBaseClass();
}

} // end anonymous namespace

static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
                                    const FunctionDecl *FD) {
  for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
    bool AlwaysTrue;
    if (EnableIf->getCond()->isValueDependent() ||
        !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
      return false;
    if (!AlwaysTrue)
      return false;
  }
  return true;
}

/// Returns true if we can take the address of the function.
///
/// \param Complain - If true, we'll emit a diagnostic
/// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
///   we in overload resolution?
/// \param Loc - The location of the statement we're complaining about. Ignored
///   if we're not complaining, or if we're in overload resolution.
static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
                                              bool Complain,
                                              bool InOverloadResolution,
                                              SourceLocation Loc) {
  if (!isFunctionAlwaysEnabled(S.Context, FD)) {
    if (Complain) {
      if (InOverloadResolution)
        S.Diag(FD->getBeginLoc(),
               diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
      else
        S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
    }
    return false;
  }

  if (FD->getTrailingRequiresClause()) {
    ConstraintSatisfaction Satisfaction;
    if (S.CheckFunctionConstraints(FD, Satisfaction, Loc))
      return false;
    if (!Satisfaction.IsSatisfied) {
      if (Complain) {
        if (InOverloadResolution)
          S.Diag(FD->getBeginLoc(),
                 diag::note_ovl_candidate_unsatisfied_constraints);
        else
          S.Diag(Loc, diag::err_addrof_function_constraints_not_satisfied)
              << FD;
        S.DiagnoseUnsatisfiedConstraint(Satisfaction);
      }
      return false;
    }
  }

  auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) {
    return P->hasAttr<PassObjectSizeAttr>();
  });
  if (I == FD->param_end())
    return true;

  if (Complain) {
    // Add one to ParamNo because it's user-facing
    unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
    if (InOverloadResolution)
      S.Diag(FD->getLocation(),
             diag::note_ovl_candidate_has_pass_object_size_params)
          << ParamNo;
    else
      S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
          << FD << ParamNo;
  }
  return false;
}

static bool checkAddressOfCandidateIsAvailable(Sema &S,
                                               const FunctionDecl *FD) {
  return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
                                           /*InOverloadResolution=*/true,
                                           /*Loc=*/SourceLocation());
}

bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
                                             bool Complain,
                                             SourceLocation Loc) {
  return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
                                             /*InOverloadResolution=*/false,
                                             Loc);
}

// Don't print candidates other than the one that matches the calling
// convention of the call operator, since that is guaranteed to exist.
static bool shouldSkipNotingLambdaConversionDecl(FunctionDecl *Fn) {
  const auto *ConvD = dyn_cast<CXXConversionDecl>(Fn);

  if (!ConvD)
    return false;
  const auto *RD = cast<CXXRecordDecl>(Fn->getParent());
  if (!RD->isLambda())
    return false;

  CXXMethodDecl *CallOp = RD->getLambdaCallOperator();
  CallingConv CallOpCC =
      CallOp->getType()->castAs<FunctionType>()->getCallConv();
  QualType ConvRTy = ConvD->getType()->castAs<FunctionType>()->getReturnType();
  CallingConv ConvToCC =
      ConvRTy->getPointeeType()->castAs<FunctionType>()->getCallConv();

  return ConvToCC != CallOpCC;
}

// Notes the location of an overload candidate.
void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
                                 OverloadCandidateRewriteKind RewriteKind,
                                 QualType DestType, bool TakingAddress) {
  if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
    return;
  if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() &&
      !Fn->getAttr<TargetAttr>()->isDefaultVersion())
    return;
  if (shouldSkipNotingLambdaConversionDecl(Fn))
    return;

  std::string FnDesc;
  std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair =
      ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc);
  PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
                         << (unsigned)KSPair.first << (unsigned)KSPair.second
                         << Fn << FnDesc;

  HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
  Diag(Fn->getLocation(), PD);
  MaybeEmitInheritedConstructorNote(*this, Found);
}

static void
MaybeDiagnoseAmbiguousConstraints(Sema &S, ArrayRef<OverloadCandidate> Cands) {
  // Perhaps the ambiguity was caused by two atomic constraints that are
  // 'identical' but not equivalent:
  //
  // void foo() requires (sizeof(T) > 4) { } // #1
  // void foo() requires (sizeof(T) > 4) && T::value { } // #2
  //
  // The 'sizeof(T) > 4' constraints are seemingly equivalent and should cause
  // #2 to subsume #1, but these constraint are not considered equivalent
  // according to the subsumption rules because they are not the same
  // source-level construct. This behavior is quite confusing and we should try
  // to help the user figure out what happened.

  SmallVector<const Expr *, 3> FirstAC, SecondAC;
  FunctionDecl *FirstCand = nullptr, *SecondCand = nullptr;
  for (auto I = Cands.begin(), E = Cands.end(); I != E; ++I) {
    if (!I->Function)
      continue;
    SmallVector<const Expr *, 3> AC;
    if (auto *Template = I->Function->getPrimaryTemplate())
      Template->getAssociatedConstraints(AC);
    else
      I->Function->getAssociatedConstraints(AC);
    if (AC.empty())
      continue;
    if (FirstCand == nullptr) {
      FirstCand = I->Function;
      FirstAC = AC;
    } else if (SecondCand == nullptr) {
      SecondCand = I->Function;
      SecondAC = AC;
    } else {
      // We have more than one pair of constrained functions - this check is
      // expensive and we'd rather not try to diagnose it.
      return;
    }
  }
  if (!SecondCand)
    return;
  // The diagnostic can only happen if there are associated constraints on
  // both sides (there needs to be some identical atomic constraint).
  if (S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(FirstCand, FirstAC,
                                                      SecondCand, SecondAC))
    // Just show the user one diagnostic, they'll probably figure it out
    // from here.
    return;
}

// Notes the location of all overload candidates designated through
// OverloadedExpr
void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
                                     bool TakingAddress) {
  assert(OverloadedExpr->getType() == Context.OverloadTy);

  OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
  OverloadExpr *OvlExpr = Ovl.Expression;

  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
                            IEnd = OvlExpr->decls_end();
       I != IEnd; ++I) {
    if (FunctionTemplateDecl *FunTmpl =
                dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
      NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType,
                            TakingAddress);
    } else if (FunctionDecl *Fun
                      = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
      NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress);
    }
  }
}

/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
/// "lead" diagnostic; it will be given two arguments, the source and
/// target types of the conversion.
void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
                                 Sema &S,
                                 SourceLocation CaretLoc,
                                 const PartialDiagnostic &PDiag) const {
  S.Diag(CaretLoc, PDiag)
    << Ambiguous.getFromType() << Ambiguous.getToType();
  unsigned CandsShown = 0;
  AmbiguousConversionSequence::const_iterator I, E;
  for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
    if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow())
      break;
    ++CandsShown;
    S.NoteOverloadCandidate(I->first, I->second);
  }
  S.Diags.overloadCandidatesShown(CandsShown);
  if (I != E)
    S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
}

static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
                                  unsigned I, bool TakingCandidateAddress) {
  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
  assert(Conv.isBad());
  assert(Cand->Function && "for now, candidate must be a function");
  FunctionDecl *Fn = Cand->Function;

  // There's a conversion slot for the object argument if this is a
  // non-constructor method.  Note that 'I' corresponds the
  // conversion-slot index.
  bool isObjectArgument = false;
  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
    if (I == 0)
      isObjectArgument = true;
    else
      I--;
  }

  std::string FnDesc;
  std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
      ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(),
                                FnDesc);

  Expr *FromExpr = Conv.Bad.FromExpr;
  QualType FromTy = Conv.Bad.getFromType();
  QualType ToTy = Conv.Bad.getToType();

  if (FromTy == S.Context.OverloadTy) {
    assert(FromExpr && "overload set argument came from implicit argument?");
    Expr *E = FromExpr->IgnoreParens();
    if (isa<UnaryOperator>(E))
      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
    DeclarationName Name = cast<OverloadExpr>(E)->getName();

    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
        << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
        << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy
        << Name << I + 1;
    MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
    return;
  }

  // Do some hand-waving analysis to see if the non-viability is due
  // to a qualifier mismatch.
  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
    CToTy = RT->getPointeeType();
  else {
    // TODO: detect and diagnose the full richness of const mismatches.
    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
        CFromTy = FromPT->getPointeeType();
        CToTy = ToPT->getPointeeType();
      }
  }

  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
    Qualifiers FromQs = CFromTy.getQualifiers();
    Qualifiers ToQs = CToTy.getQualifiers();

    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
      if (isObjectArgument)
        S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace_this)
            << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
            << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
            << FromQs.getAddressSpace() << ToQs.getAddressSpace();
      else
        S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
            << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
            << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
            << FromQs.getAddressSpace() << ToQs.getAddressSpace()
            << ToTy->isReferenceType() << I + 1;
      MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
      return;
    }

    if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
          << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
          << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
          << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
          << (unsigned)isObjectArgument << I + 1;
      MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
      return;
    }

    if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
          << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
          << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
          << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
          << (unsigned)isObjectArgument << I + 1;
      MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
      return;
    }

    if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
          << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
          << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
          << FromQs.hasUnaligned() << I + 1;
      MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
      return;
    }

    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
    assert(CVR && "expected qualifiers mismatch");

    if (isObjectArgument) {
      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
          << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
          << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
          << (CVR - 1);
    } else {
      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
          << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
          << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
          << (CVR - 1) << I + 1;
    }
    MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
    return;
  }

  if (Conv.Bad.Kind == BadConversionSequence::lvalue_ref_to_rvalue ||
      Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) {
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_value_category)
        << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
        << (unsigned)isObjectArgument << I + 1
        << (Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue)
        << (FromExpr ? FromExpr->getSourceRange() : SourceRange());
    MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
    return;
  }

  // Special diagnostic for failure to convert an initializer list, since
  // telling the user that it has type void is not useful.
  if (FromExpr && isa<InitListExpr>(FromExpr)) {
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
        << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
        << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
        << ToTy << (unsigned)isObjectArgument << I + 1
        << (Conv.Bad.Kind == BadConversionSequence::too_few_initializers ? 1
            : Conv.Bad.Kind == BadConversionSequence::too_many_initializers
                ? 2
                : 0);
    MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
    return;
  }

  // Diagnose references or pointers to incomplete types differently,
  // since it's far from impossible that the incompleteness triggered
  // the failure.
  QualType TempFromTy = FromTy.getNonReferenceType();
  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
    TempFromTy = PTy->getPointeeType();
  if (TempFromTy->isIncompleteType()) {
    // Emit the generic diagnostic and, optionally, add the hints to it.
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
        << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
        << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
        << ToTy << (unsigned)isObjectArgument << I + 1
        << (unsigned)(Cand->Fix.Kind);

    MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
    return;
  }

  // Diagnose base -> derived pointer conversions.
  unsigned BaseToDerivedConversion = 0;
  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
                                               FromPtrTy->getPointeeType()) &&
          !FromPtrTy->getPointeeType()->isIncompleteType() &&
          !ToPtrTy->getPointeeType()->isIncompleteType() &&
          S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
                          FromPtrTy->getPointeeType()))
        BaseToDerivedConversion = 1;
    }
  } else if (const ObjCObjectPointerType *FromPtrTy
                                    = FromTy->getAs<ObjCObjectPointerType>()) {
    if (const ObjCObjectPointerType *ToPtrTy
                                        = ToTy->getAs<ObjCObjectPointerType>())
      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
                                                FromPtrTy->getPointeeType()) &&
              FromIface->isSuperClassOf(ToIface))
            BaseToDerivedConversion = 2;
  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
    if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
        !FromTy->isIncompleteType() &&
        !ToRefTy->getPointeeType()->isIncompleteType() &&
        S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
      BaseToDerivedConversion = 3;
    }
  }

  if (BaseToDerivedConversion) {
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv)
        << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
        << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1;
    MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
    return;
  }

  if (isa<ObjCObjectPointerType>(CFromTy) &&
      isa<PointerType>(CToTy)) {
      Qualifiers FromQs = CFromTy.getQualifiers();
      Qualifiers ToQs = CToTy.getQualifiers();
      if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
        S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
            << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
            << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
            << FromTy << ToTy << (unsigned)isObjectArgument << I + 1;
        MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
        return;
      }
  }

  if (TakingCandidateAddress &&
      !checkAddressOfCandidateIsAvailable(S, Cand->Function))
    return;

  // Emit the generic diagnostic and, optionally, add the hints to it.
  PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
  FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
        << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
        << ToTy << (unsigned)isObjectArgument << I + 1
        << (unsigned)(Cand->Fix.Kind);

  // If we can fix the conversion, suggest the FixIts.
  for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
       HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
    FDiag << *HI;
  S.Diag(Fn->getLocation(), FDiag);

  MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
}

/// Additional arity mismatch diagnosis specific to a function overload
/// candidates. This is not covered by the more general DiagnoseArityMismatch()
/// over a candidate in any candidate set.
static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
                               unsigned NumArgs) {
  FunctionDecl *Fn = Cand->Function;
  unsigned MinParams = Fn->getMinRequiredArguments();

  // With invalid overloaded operators, it's possible that we think we
  // have an arity mismatch when in fact it looks like we have the
  // right number of arguments, because only overloaded operators have
  // the weird behavior of overloading member and non-member functions.
  // Just don't report anything.
  if (Fn->isInvalidDecl() &&
      Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
    return true;

  if (NumArgs < MinParams) {
    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
           (Cand->FailureKind == ovl_fail_bad_deduction &&
            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
  } else {
    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
           (Cand->FailureKind == ovl_fail_bad_deduction &&
            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
  }

  return false;
}

/// General arity mismatch diagnosis over a candidate in a candidate set.
static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
                                  unsigned NumFormalArgs) {
  assert(isa<FunctionDecl>(D) &&
      "The templated declaration should at least be a function"
      " when diagnosing bad template argument deduction due to too many"
      " or too few arguments");

  FunctionDecl *Fn = cast<FunctionDecl>(D);

  // TODO: treat calls to a missing default constructor as a special case
  const auto *FnTy = Fn->getType()->castAs<FunctionProtoType>();
  unsigned MinParams = Fn->getMinRequiredArguments();

  // at least / at most / exactly
  unsigned mode, modeCount;
  if (NumFormalArgs < MinParams) {
    if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
        FnTy->isTemplateVariadic())
      mode = 0; // "at least"
    else
      mode = 2; // "exactly"
    modeCount = MinParams;
  } else {
    if (MinParams != FnTy->getNumParams())
      mode = 1; // "at most"
    else
      mode = 2; // "exactly"
    modeCount = FnTy->getNumParams();
  }

  std::string Description;
  std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
      ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description);

  if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
        << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
        << Description << mode << Fn->getParamDecl(0) << NumFormalArgs;
  else
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
        << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
        << Description << mode << modeCount << NumFormalArgs;

  MaybeEmitInheritedConstructorNote(S, Found);
}

/// Arity mismatch diagnosis specific to a function overload candidate.
static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
                                  unsigned NumFormalArgs) {
  if (!CheckArityMismatch(S, Cand, NumFormalArgs))
    DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
}

static TemplateDecl *getDescribedTemplate(Decl *Templated) {
  if (TemplateDecl *TD = Templated->getDescribedTemplate())
    return TD;
  llvm_unreachable("Unsupported: Getting the described template declaration"
                   " for bad deduction diagnosis");
}

/// Diagnose a failed template-argument deduction.
static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
                                 DeductionFailureInfo &DeductionFailure,
                                 unsigned NumArgs,
                                 bool TakingCandidateAddress) {
  TemplateParameter Param = DeductionFailure.getTemplateParameter();
  NamedDecl *ParamD;
  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
  switch (DeductionFailure.Result) {
  case Sema::TDK_Success:
    llvm_unreachable("TDK_success while diagnosing bad deduction");

  case Sema::TDK_Incomplete: {
    assert(ParamD && "no parameter found for incomplete deduction result");
    S.Diag(Templated->getLocation(),
           diag::note_ovl_candidate_incomplete_deduction)
        << ParamD->getDeclName();
    MaybeEmitInheritedConstructorNote(S, Found);
    return;
  }

  case Sema::TDK_IncompletePack: {
    assert(ParamD && "no parameter found for incomplete deduction result");
    S.Diag(Templated->getLocation(),
           diag::note_ovl_candidate_incomplete_deduction_pack)
        << ParamD->getDeclName()
        << (DeductionFailure.getFirstArg()->pack_size() + 1)
        << *DeductionFailure.getFirstArg();
    MaybeEmitInheritedConstructorNote(S, Found);
    return;
  }

  case Sema::TDK_Underqualified: {
    assert(ParamD && "no parameter found for bad qualifiers deduction result");
    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);

    QualType Param = DeductionFailure.getFirstArg()->getAsType();

    // Param will have been canonicalized, but it should just be a
    // qualified version of ParamD, so move the qualifiers to that.
    QualifierCollector Qs;
    Qs.strip(Param);
    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
    assert(S.Context.hasSameType(Param, NonCanonParam));

    // Arg has also been canonicalized, but there's nothing we can do
    // about that.  It also doesn't matter as much, because it won't
    // have any template parameters in it (because deduction isn't
    // done on dependent types).
    QualType Arg = DeductionFailure.getSecondArg()->getAsType();

    S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
        << ParamD->getDeclName() << Arg << NonCanonParam;
    MaybeEmitInheritedConstructorNote(S, Found);
    return;
  }

  case Sema::TDK_Inconsistent: {
    assert(ParamD && "no parameter found for inconsistent deduction result");
    int which = 0;
    if (isa<TemplateTypeParmDecl>(ParamD))
      which = 0;
    else if (isa<NonTypeTemplateParmDecl>(ParamD)) {
      // Deduction might have failed because we deduced arguments of two
      // different types for a non-type template parameter.
      // FIXME: Use a different TDK value for this.
      QualType T1 =
          DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType();
      QualType T2 =
          DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType();
      if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) {
        S.Diag(Templated->getLocation(),
               diag::note_ovl_candidate_inconsistent_deduction_types)
          << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1
          << *DeductionFailure.getSecondArg() << T2;
        MaybeEmitInheritedConstructorNote(S, Found);
        return;
      }

      which = 1;
    } else {
      which = 2;
    }

    // Tweak the diagnostic if the problem is that we deduced packs of
    // different arities. We'll print the actual packs anyway in case that
    // includes additional useful information.
    if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack &&
        DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack &&
        DeductionFailure.getFirstArg()->pack_size() !=
            DeductionFailure.getSecondArg()->pack_size()) {
      which = 3;
    }

    S.Diag(Templated->getLocation(),
           diag::note_ovl_candidate_inconsistent_deduction)
        << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
        << *DeductionFailure.getSecondArg();
    MaybeEmitInheritedConstructorNote(S, Found);
    return;
  }

  case Sema::TDK_InvalidExplicitArguments:
    assert(ParamD && "no parameter found for invalid explicit arguments");
    if (ParamD->getDeclName())
      S.Diag(Templated->getLocation(),
             diag::note_ovl_candidate_explicit_arg_mismatch_named)
          << ParamD->getDeclName();
    else {
      int index = 0;
      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
        index = TTP->getIndex();
      else if (NonTypeTemplateParmDecl *NTTP
                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
        index = NTTP->getIndex();
      else
        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
      S.Diag(Templated->getLocation(),
             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
          << (index + 1);
    }
    MaybeEmitInheritedConstructorNote(S, Found);
    return;

  case Sema::TDK_ConstraintsNotSatisfied: {
    // Format the template argument list into the argument string.
    SmallString<128> TemplateArgString;
    TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList();
    TemplateArgString = " ";
    TemplateArgString += S.getTemplateArgumentBindingsText(
        getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
    if (TemplateArgString.size() == 1)
      TemplateArgString.clear();
    S.Diag(Templated->getLocation(),
           diag::note_ovl_candidate_unsatisfied_constraints)
        << TemplateArgString;

    S.DiagnoseUnsatisfiedConstraint(
        static_cast<CNSInfo*>(DeductionFailure.Data)->Satisfaction);
    return;
  }
  case Sema::TDK_TooManyArguments:
  case Sema::TDK_TooFewArguments:
    DiagnoseArityMismatch(S, Found, Templated, NumArgs);
    return;

  case Sema::TDK_InstantiationDepth:
    S.Diag(Templated->getLocation(),
           diag::note_ovl_candidate_instantiation_depth);
    MaybeEmitInheritedConstructorNote(S, Found);
    return;

  case Sema::TDK_SubstitutionFailure: {
    // Format the template argument list into the argument string.
    SmallString<128> TemplateArgString;
    if (TemplateArgumentList *Args =
            DeductionFailure.getTemplateArgumentList()) {
      TemplateArgString = " ";
      TemplateArgString += S.getTemplateArgumentBindingsText(
          getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
      if (TemplateArgString.size() == 1)
        TemplateArgString.clear();
    }

    // If this candidate was disabled by enable_if, say so.
    PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
    if (PDiag && PDiag->second.getDiagID() ==
          diag::err_typename_nested_not_found_enable_if) {
      // FIXME: Use the source range of the condition, and the fully-qualified
      //        name of the enable_if template. These are both present in PDiag.
      S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
        << "'enable_if'" << TemplateArgString;
      return;
    }

    // We found a specific requirement that disabled the enable_if.
    if (PDiag && PDiag->second.getDiagID() ==
        diag::err_typename_nested_not_found_requirement) {
      S.Diag(Templated->getLocation(),
             diag::note_ovl_candidate_disabled_by_requirement)
        << PDiag->second.getStringArg(0) << TemplateArgString;
      return;
    }

    // Format the SFINAE diagnostic into the argument string.
    // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
    //        formatted message in another diagnostic.
    SmallString<128> SFINAEArgString;
    SourceRange R;
    if (PDiag) {
      SFINAEArgString = ": ";
      R = SourceRange(PDiag->first, PDiag->first);
      PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
    }

    S.Diag(Templated->getLocation(),
           diag::note_ovl_candidate_substitution_failure)
        << TemplateArgString << SFINAEArgString << R;
    MaybeEmitInheritedConstructorNote(S, Found);
    return;
  }

  case Sema::TDK_DeducedMismatch:
  case Sema::TDK_DeducedMismatchNested: {
    // Format the template argument list into the argument string.
    SmallString<128> TemplateArgString;
    if (TemplateArgumentList *Args =
            DeductionFailure.getTemplateArgumentList()) {
      TemplateArgString = " ";
      TemplateArgString += S.getTemplateArgumentBindingsText(
          getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
      if (TemplateArgString.size() == 1)
        TemplateArgString.clear();
    }

    S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
        << (*DeductionFailure.getCallArgIndex() + 1)
        << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
        << TemplateArgString
        << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested);
    break;
  }

  case Sema::TDK_NonDeducedMismatch: {
    // FIXME: Provide a source location to indicate what we couldn't match.
    TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
    TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
    if (FirstTA.getKind() == TemplateArgument::Template &&
        SecondTA.getKind() == TemplateArgument::Template) {
      TemplateName FirstTN = FirstTA.getAsTemplate();
      TemplateName SecondTN = SecondTA.getAsTemplate();
      if (FirstTN.getKind() == TemplateName::Template &&
          SecondTN.getKind() == TemplateName::Template) {
        if (FirstTN.getAsTemplateDecl()->getName() ==
            SecondTN.getAsTemplateDecl()->getName()) {
          // FIXME: This fixes a bad diagnostic where both templates are named
          // the same.  This particular case is a bit difficult since:
          // 1) It is passed as a string to the diagnostic printer.
          // 2) The diagnostic printer only attempts to find a better
          //    name for types, not decls.
          // Ideally, this should folded into the diagnostic printer.
          S.Diag(Templated->getLocation(),
                 diag::note_ovl_candidate_non_deduced_mismatch_qualified)
              << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
          return;
        }
      }
    }

    if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
        !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
      return;

    // FIXME: For generic lambda parameters, check if the function is a lambda
    // call operator, and if so, emit a prettier and more informative
    // diagnostic that mentions 'auto' and lambda in addition to
    // (or instead of?) the canonical template type parameters.
    S.Diag(Templated->getLocation(),
           diag::note_ovl_candidate_non_deduced_mismatch)
        << FirstTA << SecondTA;
    return;
  }
  // TODO: diagnose these individually, then kill off
  // note_ovl_candidate_bad_deduction, which is uselessly vague.
  case Sema::TDK_MiscellaneousDeductionFailure:
    S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
    MaybeEmitInheritedConstructorNote(S, Found);
    return;
  case Sema::TDK_CUDATargetMismatch:
    S.Diag(Templated->getLocation(),
           diag::note_cuda_ovl_candidate_target_mismatch);
    return;
  }
}

/// Diagnose a failed template-argument deduction, for function calls.
static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
                                 unsigned NumArgs,
                                 bool TakingCandidateAddress) {
  unsigned TDK = Cand->DeductionFailure.Result;
  if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
    if (CheckArityMismatch(S, Cand, NumArgs))
      return;
  }
  DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
                       Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
}

/// CUDA: diagnose an invalid call across targets.
static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
  FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
  FunctionDecl *Callee = Cand->Function;

  Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
                           CalleeTarget = S.IdentifyCUDATarget(Callee);

  std::string FnDesc;
  std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
      ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee,
                                Cand->getRewriteKind(), FnDesc);

  S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
      << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
      << FnDesc /* Ignored */
      << CalleeTarget << CallerTarget;

  // This could be an implicit constructor for which we could not infer the
  // target due to a collsion. Diagnose that case.
  CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
  if (Meth != nullptr && Meth->isImplicit()) {
    CXXRecordDecl *ParentClass = Meth->getParent();
    Sema::CXXSpecialMember CSM;

    switch (FnKindPair.first) {
    default:
      return;
    case oc_implicit_default_constructor:
      CSM = Sema::CXXDefaultConstructor;
      break;
    case oc_implicit_copy_constructor:
      CSM = Sema::CXXCopyConstructor;
      break;
    case oc_implicit_move_constructor:
      CSM = Sema::CXXMoveConstructor;
      break;
    case oc_implicit_copy_assignment:
      CSM = Sema::CXXCopyAssignment;
      break;
    case oc_implicit_move_assignment:
      CSM = Sema::CXXMoveAssignment;
      break;
    };

    bool ConstRHS = false;
    if (Meth->getNumParams()) {
      if (const ReferenceType *RT =
              Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
        ConstRHS = RT->getPointeeType().isConstQualified();
      }
    }

    S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
                                              /* ConstRHS */ ConstRHS,
                                              /* Diagnose */ true);
  }
}

static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
  FunctionDecl *Callee = Cand->Function;
  EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);

  S.Diag(Callee->getLocation(),
         diag::note_ovl_candidate_disabled_by_function_cond_attr)
      << Attr->getCond()->getSourceRange() << Attr->getMessage();
}

static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) {
  ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Cand->Function);
  assert(ES.isExplicit() && "not an explicit candidate");

  unsigned Kind;
  switch (Cand->Function->getDeclKind()) {
  case Decl::Kind::CXXConstructor:
    Kind = 0;
    break;
  case Decl::Kind::CXXConversion:
    Kind = 1;
    break;
  case Decl::Kind::CXXDeductionGuide:
    Kind = Cand->Function->isImplicit() ? 0 : 2;
    break;
  default:
    llvm_unreachable("invalid Decl");
  }

  // Note the location of the first (in-class) declaration; a redeclaration
  // (particularly an out-of-class definition) will typically lack the
  // 'explicit' specifier.
  // FIXME: This is probably a good thing to do for all 'candidate' notes.
  FunctionDecl *First = Cand->Function->getFirstDecl();
  if (FunctionDecl *Pattern = First->getTemplateInstantiationPattern())
    First = Pattern->getFirstDecl();

  S.Diag(First->getLocation(),
         diag::note_ovl_candidate_explicit)
      << Kind << (ES.getExpr() ? 1 : 0)
      << (ES.getExpr() ? ES.getExpr()->getSourceRange() : SourceRange());
}

/// Generates a 'note' diagnostic for an overload candidate.  We've
/// already generated a primary error at the call site.
///
/// It really does need to be a single diagnostic with its caret
/// pointed at the candidate declaration.  Yes, this creates some
/// major challenges of technical writing.  Yes, this makes pointing
/// out problems with specific arguments quite awkward.  It's still
/// better than generating twenty screens of text for every failed
/// overload.
///
/// It would be great to be able to express per-candidate problems
/// more richly for those diagnostic clients that cared, but we'd
/// still have to be just as careful with the default diagnostics.
/// \param CtorDestAS Addr space of object being constructed (for ctor
/// candidates only).
static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
                                  unsigned NumArgs,
                                  bool TakingCandidateAddress,
                                  LangAS CtorDestAS = LangAS::Default) {
  FunctionDecl *Fn = Cand->Function;
  if (shouldSkipNotingLambdaConversionDecl(Fn))
    return;

  // Note deleted candidates, but only if they're viable.
  if (Cand->Viable) {
    if (Fn->isDeleted()) {
      std::string FnDesc;
      std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
          ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
                                    Cand->getRewriteKind(), FnDesc);

      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
          << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
          << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
      MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
      return;
    }

    // We don't really have anything else to say about viable candidates.
    S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
    return;
  }

  switch (Cand->FailureKind) {
  case ovl_fail_too_many_arguments:
  case ovl_fail_too_few_arguments:
    return DiagnoseArityMismatch(S, Cand, NumArgs);

  case ovl_fail_bad_deduction:
    return DiagnoseBadDeduction(S, Cand, NumArgs,
                                TakingCandidateAddress);

  case ovl_fail_illegal_constructor: {
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
      << (Fn->getPrimaryTemplate() ? 1 : 0);
    MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
    return;
  }

  case ovl_fail_object_addrspace_mismatch: {
    Qualifiers QualsForPrinting;
    QualsForPrinting.setAddressSpace(CtorDestAS);
    S.Diag(Fn->getLocation(),
           diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch)
        << QualsForPrinting;
    MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
    return;
  }

  case ovl_fail_trivial_conversion:
  case ovl_fail_bad_final_conversion:
  case ovl_fail_final_conversion_not_exact:
    return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());

  case ovl_fail_bad_conversion: {
    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
      if (Cand->Conversions[I].isBad())
        return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);

    // FIXME: this currently happens when we're called from SemaInit
    // when user-conversion overload fails.  Figure out how to handle
    // those conditions and diagnose them well.
    return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
  }

  case ovl_fail_bad_target:
    return DiagnoseBadTarget(S, Cand);

  case ovl_fail_enable_if:
    return DiagnoseFailedEnableIfAttr(S, Cand);

  case ovl_fail_explicit:
    return DiagnoseFailedExplicitSpec(S, Cand);

  case ovl_fail_inhctor_slice:
    // It's generally not interesting to note copy/move constructors here.
    if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor())
      return;
    S.Diag(Fn->getLocation(),
           diag::note_ovl_candidate_inherited_constructor_slice)
      << (Fn->getPrimaryTemplate() ? 1 : 0)
      << Fn->getParamDecl(0)->getType()->isRValueReferenceType();
    MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
    return;

  case ovl_fail_addr_not_available: {
    bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
    (void)Available;
    assert(!Available);
    break;
  }
  case ovl_non_default_multiversion_function:
    // Do nothing, these should simply be ignored.
    break;

  case ovl_fail_constraints_not_satisfied: {
    std::string FnDesc;
    std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
        ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
                                  Cand->getRewriteKind(), FnDesc);

    S.Diag(Fn->getLocation(),
           diag::note_ovl_candidate_constraints_not_satisfied)
        << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
        << FnDesc /* Ignored */;
    ConstraintSatisfaction Satisfaction;
    if (S.CheckFunctionConstraints(Fn, Satisfaction))
      break;
    S.DiagnoseUnsatisfiedConstraint(Satisfaction);
  }
  }
}

static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
  if (shouldSkipNotingLambdaConversionDecl(Cand->Surrogate))
    return;

  // Desugar the type of the surrogate down to a function type,
  // retaining as many typedefs as possible while still showing
  // the function type (and, therefore, its parameter types).
  QualType FnType = Cand->Surrogate->getConversionType();
  bool isLValueReference = false;
  bool isRValueReference = false;
  bool isPointer = false;
  if (const LValueReferenceType *FnTypeRef =
        FnType->getAs<LValueReferenceType>()) {
    FnType = FnTypeRef->getPointeeType();
    isLValueReference = true;
  } else if (const RValueReferenceType *FnTypeRef =
               FnType->getAs<RValueReferenceType>()) {
    FnType = FnTypeRef->getPointeeType();
    isRValueReference = true;
  }
  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
    FnType = FnTypePtr->getPointeeType();
    isPointer = true;
  }
  // Desugar down to a function type.
  FnType = QualType(FnType->getAs<FunctionType>(), 0);
  // Reconstruct the pointer/reference as appropriate.
  if (isPointer) FnType = S.Context.getPointerType(FnType);
  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);

  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
    << FnType;
}

static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
                                         SourceLocation OpLoc,
                                         OverloadCandidate *Cand) {
  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
  std::string TypeStr("operator");
  TypeStr += Opc;
  TypeStr += "(";
  TypeStr += Cand->BuiltinParamTypes[0].getAsString();
  if (Cand->Conversions.size() == 1) {
    TypeStr += ")";
    S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
  } else {
    TypeStr += ", ";
    TypeStr += Cand->BuiltinParamTypes[1].getAsString();
    TypeStr += ")";
    S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
  }
}

static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
                                         OverloadCandidate *Cand) {
  for (const ImplicitConversionSequence &ICS : Cand->Conversions) {
    if (ICS.isBad()) break; // all meaningless after first invalid
    if (!ICS.isAmbiguous()) continue;

    ICS.DiagnoseAmbiguousConversion(
        S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
  }
}

static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
  if (Cand->Function)
    return Cand->Function->getLocation();
  if (Cand->IsSurrogate)
    return Cand->Surrogate->getLocation();
  return SourceLocation();
}

static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
  switch ((Sema::TemplateDeductionResult)DFI.Result) {
  case Sema::TDK_Success:
  case Sema::TDK_NonDependentConversionFailure:
    llvm_unreachable("non-deduction failure while diagnosing bad deduction");

  case Sema::TDK_Invalid:
  case Sema::TDK_Incomplete:
  case Sema::TDK_IncompletePack:
    return 1;

  case Sema::TDK_Underqualified:
  case Sema::TDK_Inconsistent:
    return 2;

  case Sema::TDK_SubstitutionFailure:
  case Sema::TDK_DeducedMismatch:
  case Sema::TDK_ConstraintsNotSatisfied:
  case Sema::TDK_DeducedMismatchNested:
  case Sema::TDK_NonDeducedMismatch:
  case Sema::TDK_MiscellaneousDeductionFailure:
  case Sema::TDK_CUDATargetMismatch:
    return 3;

  case Sema::TDK_InstantiationDepth:
    return 4;

  case Sema::TDK_InvalidExplicitArguments:
    return 5;

  case Sema::TDK_TooManyArguments:
  case Sema::TDK_TooFewArguments:
    return 6;
  }
  llvm_unreachable("Unhandled deduction result");
}

namespace {
struct CompareOverloadCandidatesForDisplay {
  Sema &S;
  SourceLocation Loc;
  size_t NumArgs;
  OverloadCandidateSet::CandidateSetKind CSK;

  CompareOverloadCandidatesForDisplay(
      Sema &S, SourceLocation Loc, size_t NArgs,
      OverloadCandidateSet::CandidateSetKind CSK)
      : S(S), NumArgs(NArgs), CSK(CSK) {}

  OverloadFailureKind EffectiveFailureKind(const OverloadCandidate *C) const {
    // If there are too many or too few arguments, that's the high-order bit we
    // want to sort by, even if the immediate failure kind was something else.
    if (C->FailureKind == ovl_fail_too_many_arguments ||
        C->FailureKind == ovl_fail_too_few_arguments)
      return static_cast<OverloadFailureKind>(C->FailureKind);

    if (C->Function) {
      if (NumArgs > C->Function->getNumParams() && !C->Function->isVariadic())
        return ovl_fail_too_many_arguments;
      if (NumArgs < C->Function->getMinRequiredArguments())
        return ovl_fail_too_few_arguments;
    }

    return static_cast<OverloadFailureKind>(C->FailureKind);
  }

  bool operator()(const OverloadCandidate *L,
                  const OverloadCandidate *R) {
    // Fast-path this check.
    if (L == R) return false;

    // Order first by viability.
    if (L->Viable) {
      if (!R->Viable) return true;

      // TODO: introduce a tri-valued comparison for overload
      // candidates.  Would be more worthwhile if we had a sort
      // that could exploit it.
      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK))
        return true;
      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK))
        return false;
    } else if (R->Viable)
      return false;

    assert(L->Viable == R->Viable);

    // Criteria by which we can sort non-viable candidates:
    if (!L->Viable) {
      OverloadFailureKind LFailureKind = EffectiveFailureKind(L);
      OverloadFailureKind RFailureKind = EffectiveFailureKind(R);

      // 1. Arity mismatches come after other candidates.
      if (LFailureKind == ovl_fail_too_many_arguments ||
          LFailureKind == ovl_fail_too_few_arguments) {
        if (RFailureKind == ovl_fail_too_many_arguments ||
            RFailureKind == ovl_fail_too_few_arguments) {
          int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
          int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
          if (LDist == RDist) {
            if (LFailureKind == RFailureKind)
              // Sort non-surrogates before surrogates.
              return !L->IsSurrogate && R->IsSurrogate;
            // Sort candidates requiring fewer parameters than there were
            // arguments given after candidates requiring more parameters
            // than there were arguments given.
            return LFailureKind == ovl_fail_too_many_arguments;
          }
          return LDist < RDist;
        }
        return false;
      }
      if (RFailureKind == ovl_fail_too_many_arguments ||
          RFailureKind == ovl_fail_too_few_arguments)
        return true;

      // 2. Bad conversions come first and are ordered by the number
      // of bad conversions and quality of good conversions.
      if (LFailureKind == ovl_fail_bad_conversion) {
        if (RFailureKind != ovl_fail_bad_conversion)
          return true;

        // The conversion that can be fixed with a smaller number of changes,
        // comes first.
        unsigned numLFixes = L->Fix.NumConversionsFixed;
        unsigned numRFixes = R->Fix.NumConversionsFixed;
        numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
        numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
        if (numLFixes != numRFixes) {
          return numLFixes < numRFixes;
        }

        // If there's any ordering between the defined conversions...
        // FIXME: this might not be transitive.
        assert(L->Conversions.size() == R->Conversions.size());

        int leftBetter = 0;
        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
        for (unsigned E = L->Conversions.size(); I != E; ++I) {
          switch (CompareImplicitConversionSequences(S, Loc,
                                                     L->Conversions[I],
                                                     R->Conversions[I])) {
          case ImplicitConversionSequence::Better:
            leftBetter++;
            break;

          case ImplicitConversionSequence::Worse:
            leftBetter--;
            break;

          case ImplicitConversionSequence::Indistinguishable:
            break;
          }
        }
        if (leftBetter > 0) return true;
        if (leftBetter < 0) return false;

      } else if (RFailureKind == ovl_fail_bad_conversion)
        return false;

      if (LFailureKind == ovl_fail_bad_deduction) {
        if (RFailureKind != ovl_fail_bad_deduction)
          return true;

        if (L->DeductionFailure.Result != R->DeductionFailure.Result)
          return RankDeductionFailure(L->DeductionFailure)
               < RankDeductionFailure(R->DeductionFailure);
      } else if (RFailureKind == ovl_fail_bad_deduction)
        return false;

      // TODO: others?
    }

    // Sort everything else by location.
    SourceLocation LLoc = GetLocationForCandidate(L);
    SourceLocation RLoc = GetLocationForCandidate(R);

    // Put candidates without locations (e.g. builtins) at the end.
    if (LLoc.isInvalid()) return false;
    if (RLoc.isInvalid()) return true;

    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
  }
};
}

/// CompleteNonViableCandidate - Normally, overload resolution only
/// computes up to the first bad conversion. Produces the FixIt set if
/// possible.
static void
CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
                           ArrayRef<Expr *> Args,
                           OverloadCandidateSet::CandidateSetKind CSK) {
  assert(!Cand->Viable);

  // Don't do anything on failures other than bad conversion.
  if (Cand->FailureKind != ovl_fail_bad_conversion)
    return;

  // We only want the FixIts if all the arguments can be corrected.
  bool Unfixable = false;
  // Use a implicit copy initialization to check conversion fixes.
  Cand->Fix.setConversionChecker(TryCopyInitialization);

  // Attempt to fix the bad conversion.
  unsigned ConvCount = Cand->Conversions.size();
  for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/;
       ++ConvIdx) {
    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
    if (Cand->Conversions[ConvIdx].isInitialized() &&
        Cand->Conversions[ConvIdx].isBad()) {
      Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
      break;
    }
  }

  // FIXME: this should probably be preserved from the overload
  // operation somehow.
  bool SuppressUserConversions = false;

  unsigned ConvIdx = 0;
  unsigned ArgIdx = 0;
  ArrayRef<QualType> ParamTypes;
  bool Reversed = Cand->isReversed();

  if (Cand->IsSurrogate) {
    QualType ConvType
      = Cand->Surrogate->getConversionType().getNonReferenceType();
    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
      ConvType = ConvPtrType->getPointeeType();
    ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes();
    // Conversion 0 is 'this', which doesn't have a corresponding parameter.
    ConvIdx = 1;
  } else if (Cand->Function) {
    ParamTypes =
        Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes();
    if (isa<CXXMethodDecl>(Cand->Function) &&
        !isa<CXXConstructorDecl>(Cand->Function) && !Reversed) {
      // Conversion 0 is 'this', which doesn't have a corresponding parameter.
      ConvIdx = 1;
      if (CSK == OverloadCandidateSet::CSK_Operator &&
          Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call)
        // Argument 0 is 'this', which doesn't have a corresponding parameter.
        ArgIdx = 1;
    }
  } else {
    // Builtin operator.
    assert(ConvCount <= 3);
    ParamTypes = Cand->BuiltinParamTypes;
  }

  // Fill in the rest of the conversions.
  for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0;
       ConvIdx != ConvCount;
       ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) {
    assert(ArgIdx < Args.size() && "no argument for this arg conversion");
    if (Cand->Conversions[ConvIdx].isInitialized()) {
      // We've already checked this conversion.
    } else if (ParamIdx < ParamTypes.size()) {
      if (ParamTypes[ParamIdx]->isDependentType())
        Cand->Conversions[ConvIdx].setAsIdentityConversion(
            Args[ArgIdx]->getType());
      else {
        Cand->Conversions[ConvIdx] =
            TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx],
                                  SuppressUserConversions,
                                  /*InOverloadResolution=*/true,
                                  /*AllowObjCWritebackConversion=*/
                                  S.getLangOpts().ObjCAutoRefCount);
        // Store the FixIt in the candidate if it exists.
        if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
          Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
      }
    } else
      Cand->Conversions[ConvIdx].setEllipsis();
  }
}

SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates(
    Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
    SourceLocation OpLoc,
    llvm::function_ref<bool(OverloadCandidate &)> Filter) {
  // Sort the candidates by viability and position.  Sorting directly would
  // be prohibitive, so we make a set of pointers and sort those.
  SmallVector<OverloadCandidate*, 32> Cands;
  if (OCD == OCD_AllCandidates) Cands.reserve(size());
  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
    if (!Filter(*Cand))
      continue;
    switch (OCD) {
    case OCD_AllCandidates:
      if (!Cand->Viable) {
        if (!Cand->Function && !Cand->IsSurrogate) {
          // This a non-viable builtin candidate.  We do not, in general,
          // want to list every possible builtin candidate.
          continue;
        }
        CompleteNonViableCandidate(S, Cand, Args, Kind);
      }
      break;

    case OCD_ViableCandidates:
      if (!Cand->Viable)
        continue;
      break;

    case OCD_AmbiguousCandidates:
      if (!Cand->Best)
        continue;
      break;
    }

    Cands.push_back(Cand);
  }

  llvm::stable_sort(
      Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind));

  return Cands;
}

bool OverloadCandidateSet::shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args,
                                            SourceLocation OpLoc) {
  bool DeferHint = false;
  if (S.getLangOpts().CUDA && S.getLangOpts().GPUDeferDiag) {
    // Defer diagnostic for CUDA/HIP if there are wrong-sided candidates or
    // host device candidates.
    auto WrongSidedCands =
        CompleteCandidates(S, OCD_AllCandidates, Args, OpLoc, [](auto &Cand) {
          return (Cand.Viable == false &&
                  Cand.FailureKind == ovl_fail_bad_target) ||
                 (Cand.Function &&
                  Cand.Function->template hasAttr<CUDAHostAttr>() &&
                  Cand.Function->template hasAttr<CUDADeviceAttr>());
        });
    DeferHint = !WrongSidedCands.empty();
  }
  return DeferHint;
}

/// When overload resolution fails, prints diagnostic messages containing the
/// candidates in the candidate set.
void OverloadCandidateSet::NoteCandidates(
    PartialDiagnosticAt PD, Sema &S, OverloadCandidateDisplayKind OCD,
    ArrayRef<Expr *> Args, StringRef Opc, SourceLocation OpLoc,
    llvm::function_ref<bool(OverloadCandidate &)> Filter) {

  auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter);

  S.Diag(PD.first, PD.second, shouldDeferDiags(S, Args, OpLoc));

  NoteCandidates(S, Args, Cands, Opc, OpLoc);

  if (OCD == OCD_AmbiguousCandidates)
    MaybeDiagnoseAmbiguousConstraints(S, {begin(), end()});
}

void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
                                          ArrayRef<OverloadCandidate *> Cands,
                                          StringRef Opc, SourceLocation OpLoc) {
  bool ReportedAmbiguousConversions = false;

  const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
  unsigned CandsShown = 0;
  auto I = Cands.begin(), E = Cands.end();
  for (; I != E; ++I) {
    OverloadCandidate *Cand = *I;

    if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow() &&
        ShowOverloads == Ovl_Best) {
      break;
    }
    ++CandsShown;

    if (Cand->Function)
      NoteFunctionCandidate(S, Cand, Args.size(),
                            /*TakingCandidateAddress=*/false, DestAS);
    else if (Cand->IsSurrogate)
      NoteSurrogateCandidate(S, Cand);
    else {
      assert(Cand->Viable &&
             "Non-viable built-in candidates are not added to Cands.");
      // Generally we only see ambiguities including viable builtin
      // operators if overload resolution got screwed up by an
      // ambiguous user-defined conversion.
      //
      // FIXME: It's quite possible for different conversions to see
      // different ambiguities, though.
      if (!ReportedAmbiguousConversions) {
        NoteAmbiguousUserConversions(S, OpLoc, Cand);
        ReportedAmbiguousConversions = true;
      }

      // If this is a viable builtin, print it.
      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
    }
  }

  // Inform S.Diags that we've shown an overload set with N elements.  This may
  // inform the future value of S.Diags.getNumOverloadCandidatesToShow().
  S.Diags.overloadCandidatesShown(CandsShown);

  if (I != E)
    S.Diag(OpLoc, diag::note_ovl_too_many_candidates,
           shouldDeferDiags(S, Args, OpLoc))
        << int(E - I);
}

static SourceLocation
GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
  return Cand->Specialization ? Cand->Specialization->getLocation()
                              : SourceLocation();
}

namespace {
struct CompareTemplateSpecCandidatesForDisplay {
  Sema &S;
  CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}

  bool operator()(const TemplateSpecCandidate *L,
                  const TemplateSpecCandidate *R) {
    // Fast-path this check.
    if (L == R)
      return false;

    // Assuming that both candidates are not matches...

    // Sort by the ranking of deduction failures.
    if (L->DeductionFailure.Result != R->DeductionFailure.Result)
      return RankDeductionFailure(L->DeductionFailure) <
             RankDeductionFailure(R->DeductionFailure);

    // Sort everything else by location.
    SourceLocation LLoc = GetLocationForCandidate(L);
    SourceLocation RLoc = GetLocationForCandidate(R);

    // Put candidates without locations (e.g. builtins) at the end.
    if (LLoc.isInvalid())
      return false;
    if (RLoc.isInvalid())
      return true;

    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
  }
};
}

/// Diagnose a template argument deduction failure.
/// We are treating these failures as overload failures due to bad
/// deductions.
void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
                                                 bool ForTakingAddress) {
  DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
                       DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
}

void TemplateSpecCandidateSet::destroyCandidates() {
  for (iterator i = begin(), e = end(); i != e; ++i) {
    i->DeductionFailure.Destroy();
  }
}

void TemplateSpecCandidateSet::clear() {
  destroyCandidates();
  Candidates.clear();
}

/// NoteCandidates - When no template specialization match is found, prints
/// diagnostic messages containing the non-matching specializations that form
/// the candidate set.
/// This is analoguous to OverloadCandidateSet::NoteCandidates() with
/// OCD == OCD_AllCandidates and Cand->Viable == false.
void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
  // Sort the candidates by position (assuming no candidate is a match).
  // Sorting directly would be prohibitive, so we make a set of pointers
  // and sort those.
  SmallVector<TemplateSpecCandidate *, 32> Cands;
  Cands.reserve(size());
  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
    if (Cand->Specialization)
      Cands.push_back(Cand);
    // Otherwise, this is a non-matching builtin candidate.  We do not,
    // in general, want to list every possible builtin candidate.
  }

  llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S));

  // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
  // for generalization purposes (?).
  const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();

  SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
  unsigned CandsShown = 0;
  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
    TemplateSpecCandidate *Cand = *I;

    // Set an arbitrary limit on the number of candidates we'll spam
    // the user with.  FIXME: This limit should depend on details of the
    // candidate list.
    if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
      break;
    ++CandsShown;

    assert(Cand->Specialization &&
           "Non-matching built-in candidates are not added to Cands.");
    Cand->NoteDeductionFailure(S, ForTakingAddress);
  }

  if (I != E)
    S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
}

// [PossiblyAFunctionType]  -->   [Return]
// NonFunctionType --> NonFunctionType
// R (A) --> R(A)
// R (*)(A) --> R (A)
// R (&)(A) --> R (A)
// R (S::*)(A) --> R (A)
QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
  QualType Ret = PossiblyAFunctionType;
  if (const PointerType *ToTypePtr =
    PossiblyAFunctionType->getAs<PointerType>())
    Ret = ToTypePtr->getPointeeType();
  else if (const ReferenceType *ToTypeRef =
    PossiblyAFunctionType->getAs<ReferenceType>())
    Ret = ToTypeRef->getPointeeType();
  else if (const MemberPointerType *MemTypePtr =
    PossiblyAFunctionType->getAs<MemberPointerType>())
    Ret = MemTypePtr->getPointeeType();
  Ret =
    Context.getCanonicalType(Ret).getUnqualifiedType();
  return Ret;
}

static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc,
                                 bool Complain = true) {
  if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
      S.DeduceReturnType(FD, Loc, Complain))
    return true;

  auto *FPT = FD->getType()->castAs<FunctionProtoType>();
  if (S.getLangOpts().CPlusPlus17 &&
      isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
      !S.ResolveExceptionSpec(Loc, FPT))
    return true;

  return false;
}

namespace {
// A helper class to help with address of function resolution
// - allows us to avoid passing around all those ugly parameters
class AddressOfFunctionResolver {
  Sema& S;
  Expr* SourceExpr;
  const QualType& TargetType;
  QualType TargetFunctionType; // Extracted function type from target type

  bool Complain;
  //DeclAccessPair& ResultFunctionAccessPair;
  ASTContext& Context;

  bool TargetTypeIsNonStaticMemberFunction;
  bool FoundNonTemplateFunction;
  bool StaticMemberFunctionFromBoundPointer;
  bool HasComplained;

  OverloadExpr::FindResult OvlExprInfo;
  OverloadExpr *OvlExpr;
  TemplateArgumentListInfo OvlExplicitTemplateArgs;
  SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
  TemplateSpecCandidateSet FailedCandidates;

public:
  AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
                            const QualType &TargetType, bool Complain)
      : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
        Complain(Complain), Context(S.getASTContext()),
        TargetTypeIsNonStaticMemberFunction(
            !!TargetType->getAs<MemberPointerType>()),
        FoundNonTemplateFunction(false),
        StaticMemberFunctionFromBoundPointer(false),
        HasComplained(false),
        OvlExprInfo(OverloadExpr::find(SourceExpr)),
        OvlExpr(OvlExprInfo.Expression),
        FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
    ExtractUnqualifiedFunctionTypeFromTargetType();

    if (TargetFunctionType->isFunctionType()) {
      if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
        if (!UME->isImplicitAccess() &&
            !S.ResolveSingleFunctionTemplateSpecialization(UME))
          StaticMemberFunctionFromBoundPointer = true;
    } else if (OvlExpr->hasExplicitTemplateArgs()) {
      DeclAccessPair dap;
      if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
              OvlExpr, false, &dap)) {
        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
          if (!Method->isStatic()) {
            // If the target type is a non-function type and the function found
            // is a non-static member function, pretend as if that was the
            // target, it's the only possible type to end up with.
            TargetTypeIsNonStaticMemberFunction = true;

            // And skip adding the function if its not in the proper form.
            // We'll diagnose this due to an empty set of functions.
            if (!OvlExprInfo.HasFormOfMemberPointer)
              return;
          }

        Matches.push_back(std::make_pair(dap, Fn));
      }
      return;
    }

    if (OvlExpr->hasExplicitTemplateArgs())
      OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);

    if (FindAllFunctionsThatMatchTargetTypeExactly()) {
      // C++ [over.over]p4:
      //   If more than one function is selected, [...]
      if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
        if (FoundNonTemplateFunction)
          EliminateAllTemplateMatches();
        else
          EliminateAllExceptMostSpecializedTemplate();
      }
    }

    if (S.getLangOpts().CUDA && Matches.size() > 1)
      EliminateSuboptimalCudaMatches();
  }

  bool hasComplained() const { return HasComplained; }

private:
  bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
    QualType Discard;
    return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
           S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard);
  }

  /// \return true if A is considered a better overload candidate for the
  /// desired type than B.
  bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
    // If A doesn't have exactly the correct type, we don't want to classify it
    // as "better" than anything else. This way, the user is required to
    // disambiguate for us if there are multiple candidates and no exact match.
    return candidateHasExactlyCorrectType(A) &&
           (!candidateHasExactlyCorrectType(B) ||
            compareEnableIfAttrs(S, A, B) == Comparison::Better);
  }

  /// \return true if we were able to eliminate all but one overload candidate,
  /// false otherwise.
  bool eliminiateSuboptimalOverloadCandidates() {
    // Same algorithm as overload resolution -- one pass to pick the "best",
    // another pass to be sure that nothing is better than the best.
    auto Best = Matches.begin();
    for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
      if (isBetterCandidate(I->second, Best->second))
        Best = I;

    const FunctionDecl *BestFn = Best->second;
    auto IsBestOrInferiorToBest = [this, BestFn](
        const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
      return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
    };

    // Note: We explicitly leave Matches unmodified if there isn't a clear best
    // option, so we can potentially give the user a better error
    if (!llvm::all_of(Matches, IsBestOrInferiorToBest))
      return false;
    Matches[0] = *Best;
    Matches.resize(1);
    return true;
  }

  bool isTargetTypeAFunction() const {
    return TargetFunctionType->isFunctionType();
  }

  // [ToType]     [Return]

  // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
  // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
  // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
  void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
    TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
  }

  // return true if any matching specializations were found
  bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
                                   const DeclAccessPair& CurAccessFunPair) {
    if (CXXMethodDecl *Method
              = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
      // Skip non-static function templates when converting to pointer, and
      // static when converting to member pointer.
      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
        return false;
    }
    else if (TargetTypeIsNonStaticMemberFunction)
      return false;

    // C++ [over.over]p2:
    //   If the name is a function template, template argument deduction is
    //   done (14.8.2.2), and if the argument deduction succeeds, the
    //   resulting template argument list is used to generate a single
    //   function template specialization, which is added to the set of
    //   overloaded functions considered.
    FunctionDecl *Specialization = nullptr;
    TemplateDeductionInfo Info(FailedCandidates.getLocation());
    if (Sema::TemplateDeductionResult Result
          = S.DeduceTemplateArguments(FunctionTemplate,
                                      &OvlExplicitTemplateArgs,
                                      TargetFunctionType, Specialization,
                                      Info, /*IsAddressOfFunction*/true)) {
      // Make a note of the failed deduction for diagnostics.
      FailedCandidates.addCandidate()
          .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
               MakeDeductionFailureInfo(Context, Result, Info));
      return false;
    }

    // Template argument deduction ensures that we have an exact match or
    // compatible pointer-to-function arguments that would be adjusted by ICS.
    // This function template specicalization works.
    assert(S.isSameOrCompatibleFunctionType(
              Context.getCanonicalType(Specialization->getType()),
              Context.getCanonicalType(TargetFunctionType)));

    if (!S.checkAddressOfFunctionIsAvailable(Specialization))
      return false;

    Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
    return true;
  }

  bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
                                      const DeclAccessPair& CurAccessFunPair) {
    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
      // Skip non-static functions when converting to pointer, and static
      // when converting to member pointer.
      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
        return false;
    }
    else if (TargetTypeIsNonStaticMemberFunction)
      return false;

    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
      if (S.getLangOpts().CUDA)
        if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
          if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl))
            return false;
      if (FunDecl->isMultiVersion()) {
        const auto *TA = FunDecl->getAttr<TargetAttr>();
        if (TA && !TA->isDefaultVersion())
          return false;
      }

      // If any candidate has a placeholder return type, trigger its deduction
      // now.
      if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(),
                               Complain)) {
        HasComplained |= Complain;
        return false;
      }

      if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
        return false;

      // If we're in C, we need to support types that aren't exactly identical.
      if (!S.getLangOpts().CPlusPlus ||
          candidateHasExactlyCorrectType(FunDecl)) {
        Matches.push_back(std::make_pair(
            CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
        FoundNonTemplateFunction = true;
        return true;
      }
    }

    return false;
  }

  bool FindAllFunctionsThatMatchTargetTypeExactly() {
    bool Ret = false;

    // If the overload expression doesn't have the form of a pointer to
    // member, don't try to convert it to a pointer-to-member type.
    if (IsInvalidFormOfPointerToMemberFunction())
      return false;

    for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
                               E = OvlExpr->decls_end();
         I != E; ++I) {
      // Look through any using declarations to find the underlying function.
      NamedDecl *Fn = (*I)->getUnderlyingDecl();

      // C++ [over.over]p3:
      //   Non-member functions and static member functions match
      //   targets of type "pointer-to-function" or "reference-to-function."
      //   Nonstatic member functions match targets of
      //   type "pointer-to-member-function."
      // Note that according to DR 247, the containing class does not matter.
      if (FunctionTemplateDecl *FunctionTemplate
                                        = dyn_cast<FunctionTemplateDecl>(Fn)) {
        if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
          Ret = true;
      }
      // If we have explicit template arguments supplied, skip non-templates.
      else if (!OvlExpr->hasExplicitTemplateArgs() &&
               AddMatchingNonTemplateFunction(Fn, I.getPair()))
        Ret = true;
    }
    assert(Ret || Matches.empty());
    return Ret;
  }

  void EliminateAllExceptMostSpecializedTemplate() {
    //   [...] and any given function template specialization F1 is
    //   eliminated if the set contains a second function template
    //   specialization whose function template is more specialized
    //   than the function template of F1 according to the partial
    //   ordering rules of 14.5.5.2.

    // The algorithm specified above is quadratic. We instead use a
    // two-pass algorithm (similar to the one used to identify the
    // best viable function in an overload set) that identifies the
    // best function template (if it exists).

    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());

    // TODO: It looks like FailedCandidates does not serve much purpose
    // here, since the no_viable diagnostic has index 0.
    UnresolvedSetIterator Result = S.getMostSpecialized(
        MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
        SourceExpr->getBeginLoc(), S.PDiag(),
        S.PDiag(diag::err_addr_ovl_ambiguous)
            << Matches[0].second->getDeclName(),
        S.PDiag(diag::note_ovl_candidate)
            << (unsigned)oc_function << (unsigned)ocs_described_template,
        Complain, TargetFunctionType);

    if (Result != MatchesCopy.end()) {
      // Make it the first and only element
      Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
      Matches[0].second = cast<FunctionDecl>(*Result);
      Matches.resize(1);
    } else
      HasComplained |= Complain;
  }

  void EliminateAllTemplateMatches() {
    //   [...] any function template specializations in the set are
    //   eliminated if the set also contains a non-template function, [...]
    for (unsigned I = 0, N = Matches.size(); I != N; ) {
      if (Matches[I].second->getPrimaryTemplate() == nullptr)
        ++I;
      else {
        Matches[I] = Matches[--N];
        Matches.resize(N);
      }
    }
  }

  void EliminateSuboptimalCudaMatches() {
    S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
  }

public:
  void ComplainNoMatchesFound() const {
    assert(Matches.empty());
    S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable)
        << OvlExpr->getName() << TargetFunctionType
        << OvlExpr->getSourceRange();
    if (FailedCandidates.empty())
      S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
                                  /*TakingAddress=*/true);
    else {
      // We have some deduction failure messages. Use them to diagnose
      // the function templates, and diagnose the non-template candidates
      // normally.
      for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
                                 IEnd = OvlExpr->decls_end();
           I != IEnd; ++I)
        if (FunctionDecl *Fun =
                dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
          if (!functionHasPassObjectSizeParams(Fun))
            S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType,
                                    /*TakingAddress=*/true);
      FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc());
    }
  }

  bool IsInvalidFormOfPointerToMemberFunction() const {
    return TargetTypeIsNonStaticMemberFunction &&
      !OvlExprInfo.HasFormOfMemberPointer;
  }

  void ComplainIsInvalidFormOfPointerToMemberFunction() const {
      // TODO: Should we condition this on whether any functions might
      // have matched, or is it more appropriate to do that in callers?
      // TODO: a fixit wouldn't hurt.
      S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
        << TargetType << OvlExpr->getSourceRange();
  }

  bool IsStaticMemberFunctionFromBoundPointer() const {
    return StaticMemberFunctionFromBoundPointer;
  }

  void ComplainIsStaticMemberFunctionFromBoundPointer() const {
    S.Diag(OvlExpr->getBeginLoc(),
           diag::err_invalid_form_pointer_member_function)
        << OvlExpr->getSourceRange();
  }

  void ComplainOfInvalidConversion() const {
    S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref)
        << OvlExpr->getName() << TargetType;
  }

  void ComplainMultipleMatchesFound() const {
    assert(Matches.size() > 1);
    S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous)
        << OvlExpr->getName() << OvlExpr->getSourceRange();
    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
                                /*TakingAddress=*/true);
  }

  bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }

  int getNumMatches() const { return Matches.size(); }

  FunctionDecl* getMatchingFunctionDecl() const {
    if (Matches.size() != 1) return nullptr;
    return Matches[0].second;
  }

  const DeclAccessPair* getMatchingFunctionAccessPair() const {
    if (Matches.size() != 1) return nullptr;
    return &Matches[0].first;
  }
};
}

/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
/// an overloaded function (C++ [over.over]), where @p From is an
/// expression with overloaded function type and @p ToType is the type
/// we're trying to resolve to. For example:
///
/// @code
/// int f(double);
/// int f(int);
///
/// int (*pfd)(double) = f; // selects f(double)
/// @endcode
///
/// This routine returns the resulting FunctionDecl if it could be
/// resolved, and NULL otherwise. When @p Complain is true, this
/// routine will emit diagnostics if there is an error.
FunctionDecl *
Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
                                         QualType TargetType,
                                         bool Complain,
                                         DeclAccessPair &FoundResult,
                                         bool *pHadMultipleCandidates) {
  assert(AddressOfExpr->getType() == Context.OverloadTy);

  AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
                                     Complain);
  int NumMatches = Resolver.getNumMatches();
  FunctionDecl *Fn = nullptr;
  bool ShouldComplain = Complain && !Resolver.hasComplained();
  if (NumMatches == 0 && ShouldComplain) {
    if (Resolver.IsInvalidFormOfPointerToMemberFunction())
      Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
    else
      Resolver.ComplainNoMatchesFound();
  }
  else if (NumMatches > 1 && ShouldComplain)
    Resolver.ComplainMultipleMatchesFound();
  else if (NumMatches == 1) {
    Fn = Resolver.getMatchingFunctionDecl();
    assert(Fn);
    if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
      ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT);
    FoundResult = *Resolver.getMatchingFunctionAccessPair();
    if (Complain) {
      if (Resolver.IsStaticMemberFunctionFromBoundPointer())
        Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
      else
        CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
    }
  }

  if (pHadMultipleCandidates)
    *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
  return Fn;
}

/// Given an expression that refers to an overloaded function, try to
/// resolve that function to a single function that can have its address taken.
/// This will modify `Pair` iff it returns non-null.
///
/// This routine can only succeed if from all of the candidates in the overload
/// set for SrcExpr that can have their addresses taken, there is one candidate
/// that is more constrained than the rest.
FunctionDecl *
Sema::resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &Pair) {
  OverloadExpr::FindResult R = OverloadExpr::find(E);
  OverloadExpr *Ovl = R.Expression;
  bool IsResultAmbiguous = false;
  FunctionDecl *Result = nullptr;
  DeclAccessPair DAP;
  SmallVector<FunctionDecl *, 2> AmbiguousDecls;

  auto CheckMoreConstrained =
      [&] (FunctionDecl *FD1, FunctionDecl *FD2) -> Optional<bool> {
        SmallVector<const Expr *, 1> AC1, AC2;
        FD1->getAssociatedConstraints(AC1);
        FD2->getAssociatedConstraints(AC2);
        bool AtLeastAsConstrained1, AtLeastAsConstrained2;
        if (IsAtLeastAsConstrained(FD1, AC1, FD2, AC2, AtLeastAsConstrained1))
          return None;
        if (IsAtLeastAsConstrained(FD2, AC2, FD1, AC1, AtLeastAsConstrained2))
          return None;
        if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
          return None;
        return AtLeastAsConstrained1;
      };

  // Don't use the AddressOfResolver because we're specifically looking for
  // cases where we have one overload candidate that lacks
  // enable_if/pass_object_size/...
  for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
    auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
    if (!FD)
      return nullptr;

    if (!checkAddressOfFunctionIsAvailable(FD))
      continue;

    // We have more than one result - see if it is more constrained than the
    // previous one.
    if (Result) {
      Optional<bool> MoreConstrainedThanPrevious = CheckMoreConstrained(FD,
                                                                        Result);
      if (!MoreConstrainedThanPrevious) {
        IsResultAmbiguous = true;
        AmbiguousDecls.push_back(FD);
        continue;
      }
      if (!*MoreConstrainedThanPrevious)
        continue;
      // FD is more constrained - replace Result with it.
    }
    IsResultAmbiguous = false;
    DAP = I.getPair();
    Result = FD;
  }

  if (IsResultAmbiguous)
    return nullptr;

  if (Result) {
    SmallVector<const Expr *, 1> ResultAC;
    // We skipped over some ambiguous declarations which might be ambiguous with
    // the selected result.
    for (FunctionDecl *Skipped : AmbiguousDecls)
      if (!CheckMoreConstrained(Skipped, Result).hasValue())
        return nullptr;
    Pair = DAP;
  }
  return Result;
}

/// Given an overloaded function, tries to turn it into a non-overloaded
/// function reference using resolveAddressOfSingleOverloadCandidate. This
/// will perform access checks, diagnose the use of the resultant decl, and, if
/// requested, potentially perform a function-to-pointer decay.
///
/// Returns false if resolveAddressOfSingleOverloadCandidate fails.
/// Otherwise, returns true. This may emit diagnostics and return true.
bool Sema::resolveAndFixAddressOfSingleOverloadCandidate(
    ExprResult &SrcExpr, bool DoFunctionPointerConverion) {
  Expr *E = SrcExpr.get();
  assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload");

  DeclAccessPair DAP;
  FunctionDecl *Found = resolveAddressOfSingleOverloadCandidate(E, DAP);
  if (!Found || Found->isCPUDispatchMultiVersion() ||
      Found->isCPUSpecificMultiVersion())
    return false;

  // Emitting multiple diagnostics for a function that is both inaccessible and
  // unavailable is consistent with our behavior elsewhere. So, always check
  // for both.
  DiagnoseUseOfDecl(Found, E->getExprLoc());
  CheckAddressOfMemberAccess(E, DAP);
  Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
  if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType())
    SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
  else
    SrcExpr = Fixed;
  return true;
}

/// Given an expression that refers to an overloaded function, try to
/// resolve that overloaded function expression down to a single function.
///
/// This routine can only resolve template-ids that refer to a single function
/// template, where that template-id refers to a single template whose template
/// arguments are either provided by the template-id or have defaults,
/// as described in C++0x [temp.arg.explicit]p3.
///
/// If no template-ids are found, no diagnostics are emitted and NULL is
/// returned.
FunctionDecl *
Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
                                                  bool Complain,
                                                  DeclAccessPair *FoundResult) {
  // C++ [over.over]p1:
  //   [...] [Note: any redundant set of parentheses surrounding the
  //   overloaded function name is ignored (5.1). ]
  // C++ [over.over]p1:
  //   [...] The overloaded function name can be preceded by the &
  //   operator.

  // If we didn't actually find any template-ids, we're done.
  if (!ovl->hasExplicitTemplateArgs())
    return nullptr;

  TemplateArgumentListInfo ExplicitTemplateArgs;
  ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
  TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());

  // Look through all of the overloaded functions, searching for one
  // whose type matches exactly.
  FunctionDecl *Matched = nullptr;
  for (UnresolvedSetIterator I = ovl->decls_begin(),
         E = ovl->decls_end(); I != E; ++I) {
    // C++0x [temp.arg.explicit]p3:
    //   [...] In contexts where deduction is done and fails, or in contexts
    //   where deduction is not done, if a template argument list is
    //   specified and it, along with any default template arguments,
    //   identifies a single function template specialization, then the
    //   template-id is an lvalue for the function template specialization.
    FunctionTemplateDecl *FunctionTemplate
      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());

    // C++ [over.over]p2:
    //   If the name is a function template, template argument deduction is
    //   done (14.8.2.2), and if the argument deduction succeeds, the
    //   resulting template argument list is used to generate a single
    //   function template specialization, which is added to the set of
    //   overloaded functions considered.
    FunctionDecl *Specialization = nullptr;
    TemplateDeductionInfo Info(FailedCandidates.getLocation());
    if (TemplateDeductionResult Result
          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
                                    Specialization, Info,
                                    /*IsAddressOfFunction*/true)) {
      // Make a note of the failed deduction for diagnostics.
      // TODO: Actually use the failed-deduction info?
      FailedCandidates.addCandidate()
          .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
               MakeDeductionFailureInfo(Context, Result, Info));
      continue;
    }

    assert(Specialization && "no specialization and no error?");

    // Multiple matches; we can't resolve to a single declaration.
    if (Matched) {
      if (Complain) {
        Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
          << ovl->getName();
        NoteAllOverloadCandidates(ovl);
      }
      return nullptr;
    }

    Matched = Specialization;
    if (FoundResult) *FoundResult = I.getPair();
  }

  if (Matched &&
      completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain))
    return nullptr;

  return Matched;
}

// Resolve and fix an overloaded expression that can be resolved
// because it identifies a single function template specialization.
//
// Last three arguments should only be supplied if Complain = true
//
// Return true if it was logically possible to so resolve the
// expression, regardless of whether or not it succeeded.  Always
// returns true if 'complain' is set.
bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
                      ExprResult &SrcExpr, bool doFunctionPointerConverion,
                      bool complain, SourceRange OpRangeForComplaining,
                                           QualType DestTypeForComplaining,
                                            unsigned DiagIDForComplaining) {
  assert(SrcExpr.get()->getType() == Context.OverloadTy);

  OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());

  DeclAccessPair found;
  ExprResult SingleFunctionExpression;
  if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
                           ovl.Expression, /*complain*/ false, &found)) {
    if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) {
      SrcExpr = ExprError();
      return true;
    }

    // It is only correct to resolve to an instance method if we're
    // resolving a form that's permitted to be a pointer to member.
    // Otherwise we'll end up making a bound member expression, which
    // is illegal in all the contexts we resolve like this.
    if (!ovl.HasFormOfMemberPointer &&
        isa<CXXMethodDecl>(fn) &&
        cast<CXXMethodDecl>(fn)->isInstance()) {
      if (!complain) return false;

      Diag(ovl.Expression->getExprLoc(),
           diag::err_bound_member_function)
        << 0 << ovl.Expression->getSourceRange();

      // TODO: I believe we only end up here if there's a mix of
      // static and non-static candidates (otherwise the expression
      // would have 'bound member' type, not 'overload' type).
      // Ideally we would note which candidate was chosen and why
      // the static candidates were rejected.
      SrcExpr = ExprError();
      return true;
    }

    // Fix the expression to refer to 'fn'.
    SingleFunctionExpression =
        FixOverloadedFunctionReference(SrcExpr.get(), found, fn);

    // If desired, do function-to-pointer decay.
    if (doFunctionPointerConverion) {
      SingleFunctionExpression =
        DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
      if (SingleFunctionExpression.isInvalid()) {
        SrcExpr = ExprError();
        return true;
      }
    }
  }

  if (!SingleFunctionExpression.isUsable()) {
    if (complain) {
      Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
        << ovl.Expression->getName()
        << DestTypeForComplaining
        << OpRangeForComplaining
        << ovl.Expression->getQualifierLoc().getSourceRange();
      NoteAllOverloadCandidates(SrcExpr.get());

      SrcExpr = ExprError();
      return true;
    }

    return false;
  }

  SrcExpr = SingleFunctionExpression;
  return true;
}

/// Add a single candidate to the overload set.
static void AddOverloadedCallCandidate(Sema &S,
                                       DeclAccessPair FoundDecl,
                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
                                       ArrayRef<Expr *> Args,
                                       OverloadCandidateSet &CandidateSet,
                                       bool PartialOverloading,
                                       bool KnownValid) {
  NamedDecl *Callee = FoundDecl.getDecl();
  if (isa<UsingShadowDecl>(Callee))
    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();

  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
    if (ExplicitTemplateArgs) {
      assert(!KnownValid && "Explicit template arguments?");
      return;
    }
    // Prevent ill-formed function decls to be added as overload candidates.
    if (!isa<FunctionProtoType>(Func->getType()->getAs<FunctionType>()))
      return;

    S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
                           /*SuppressUserConversions=*/false,
                           PartialOverloading);
    return;
  }

  if (FunctionTemplateDecl *FuncTemplate
      = dyn_cast<FunctionTemplateDecl>(Callee)) {
    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
                                   ExplicitTemplateArgs, Args, CandidateSet,
                                   /*SuppressUserConversions=*/false,
                                   PartialOverloading);
    return;
  }

  assert(!KnownValid && "unhandled case in overloaded call candidate");
}

/// Add the overload candidates named by callee and/or found by argument
/// dependent lookup to the given overload set.
void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
                                       ArrayRef<Expr *> Args,
                                       OverloadCandidateSet &CandidateSet,
                                       bool PartialOverloading) {

#ifndef NDEBUG
  // Verify that ArgumentDependentLookup is consistent with the rules
  // in C++0x [basic.lookup.argdep]p3:
  //
  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
  //   and let Y be the lookup set produced by argument dependent
  //   lookup (defined as follows). If X contains
  //
  //     -- a declaration of a class member, or
  //
  //     -- a block-scope function declaration that is not a
  //        using-declaration, or
  //
  //     -- a declaration that is neither a function or a function
  //        template
  //
  //   then Y is empty.

  if (ULE->requiresADL()) {
    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
           E = ULE->decls_end(); I != E; ++I) {
      assert(!(*I)->getDeclContext()->isRecord());
      assert(isa<UsingShadowDecl>(*I) ||
             !(*I)->getDeclContext()->isFunctionOrMethod());
      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
    }
  }
#endif

  // It would be nice to avoid this copy.
  TemplateArgumentListInfo TABuffer;
  TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
  if (ULE->hasExplicitTemplateArgs()) {
    ULE->copyTemplateArgumentsInto(TABuffer);
    ExplicitTemplateArgs = &TABuffer;
  }

  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
         E = ULE->decls_end(); I != E; ++I)
    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
                               CandidateSet, PartialOverloading,
                               /*KnownValid*/ true);

  if (ULE->requiresADL())
    AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
                                         Args, ExplicitTemplateArgs,
                                         CandidateSet, PartialOverloading);
}

/// Add the call candidates from the given set of lookup results to the given
/// overload set. Non-function lookup results are ignored.
void Sema::AddOverloadedCallCandidates(
    LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs,
    ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet) {
  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
                               CandidateSet, false, /*KnownValid*/ false);
}

/// Determine whether a declaration with the specified name could be moved into
/// a different namespace.
static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
  switch (Name.getCXXOverloadedOperator()) {
  case OO_New: case OO_Array_New:
  case OO_Delete: case OO_Array_Delete:
    return false;

  default:
    return true;
  }
}

/// Attempt to recover from an ill-formed use of a non-dependent name in a
/// template, where the non-dependent name was declared after the template
/// was defined. This is common in code written for a compilers which do not
/// correctly implement two-stage name lookup.
///
/// Returns true if a viable candidate was found and a diagnostic was issued.
static bool DiagnoseTwoPhaseLookup(
    Sema &SemaRef, SourceLocation FnLoc, const CXXScopeSpec &SS,
    LookupResult &R, OverloadCandidateSet::CandidateSetKind CSK,
    TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
    CXXRecordDecl **FoundInClass = nullptr) {
  if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty())
    return false;

  for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
    if (DC->isTransparentContext())
      continue;

    SemaRef.LookupQualifiedName(R, DC);

    if (!R.empty()) {
      R.suppressDiagnostics();

      OverloadCandidateSet Candidates(FnLoc, CSK);
      SemaRef.AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args,
                                          Candidates);

      OverloadCandidateSet::iterator Best;
      OverloadingResult OR =
          Candidates.BestViableFunction(SemaRef, FnLoc, Best);

      if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) {
        // We either found non-function declarations or a best viable function
        // at class scope. A class-scope lookup result disables ADL. Don't
        // look past this, but let the caller know that we found something that
        // either is, or might be, usable in this class.
        if (FoundInClass) {
          *FoundInClass = RD;
          if (OR == OR_Success) {
            R.clear();
            R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
            R.resolveKind();
          }
        }
        return false;
      }

      if (OR != OR_Success) {
        // There wasn't a unique best function or function template.
        return false;
      }

      // Find the namespaces where ADL would have looked, and suggest
      // declaring the function there instead.
      Sema::AssociatedNamespaceSet AssociatedNamespaces;
      Sema::AssociatedClassSet AssociatedClasses;
      SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
                                                 AssociatedNamespaces,
                                                 AssociatedClasses);
      Sema::AssociatedNamespaceSet SuggestedNamespaces;
      if (canBeDeclaredInNamespace(R.getLookupName())) {
        DeclContext *Std = SemaRef.getStdNamespace();
        for (Sema::AssociatedNamespaceSet::iterator
               it = AssociatedNamespaces.begin(),
               end = AssociatedNamespaces.end(); it != end; ++it) {
          // Never suggest declaring a function within namespace 'std'.
          if (Std && Std->Encloses(*it))
            continue;

          // Never suggest declaring a function within a namespace with a
          // reserved name, like __gnu_cxx.
          NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
          if (NS &&
              NS->getQualifiedNameAsString().find("__") != std::string::npos)
            continue;

          SuggestedNamespaces.insert(*it);
        }
      }

      SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
        << R.getLookupName();
      if (SuggestedNamespaces.empty()) {
        SemaRef.Diag(Best->Function->getLocation(),
                     diag::note_not_found_by_two_phase_lookup)
          << R.getLookupName() << 0;
      } else if (SuggestedNamespaces.size() == 1) {
        SemaRef.Diag(Best->Function->getLocation(),
                     diag::note_not_found_by_two_phase_lookup)
          << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
      } else {
        // FIXME: It would be useful to list the associated namespaces here,
        // but the diagnostics infrastructure doesn't provide a way to produce
        // a localized representation of a list of items.
        SemaRef.Diag(Best->Function->getLocation(),
                     diag::note_not_found_by_two_phase_lookup)
          << R.getLookupName() << 2;
      }

      // Try to recover by calling this function.
      return true;
    }

    R.clear();
  }

  return false;
}

/// Attempt to recover from ill-formed use of a non-dependent operator in a
/// template, where the non-dependent operator was declared after the template
/// was defined.
///
/// Returns true if a viable candidate was found and a diagnostic was issued.
static bool
DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
                               SourceLocation OpLoc,
                               ArrayRef<Expr *> Args) {
  DeclarationName OpName =
    SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
  LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
  return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
                                OverloadCandidateSet::CSK_Operator,
                                /*ExplicitTemplateArgs=*/nullptr, Args);
}

namespace {
class BuildRecoveryCallExprRAII {
  Sema &SemaRef;
public:
  BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
    assert(SemaRef.IsBuildingRecoveryCallExpr == false);
    SemaRef.IsBuildingRecoveryCallExpr = true;
  }

  ~BuildRecoveryCallExprRAII() {
    SemaRef.IsBuildingRecoveryCallExpr = false;
  }
};

}

/// Attempts to recover from a call where no functions were found.
///
/// This function will do one of three things:
///  * Diagnose, recover, and return a recovery expression.
///  * Diagnose, fail to recover, and return ExprError().
///  * Do not diagnose, do not recover, and return ExprResult(). The caller is
///    expected to diagnose as appropriate.
static ExprResult
BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
                      UnresolvedLookupExpr *ULE,
                      SourceLocation LParenLoc,
                      MutableArrayRef<Expr *> Args,
                      SourceLocation RParenLoc,
                      bool EmptyLookup, bool AllowTypoCorrection) {
  // Do not try to recover if it is already building a recovery call.
  // This stops infinite loops for template instantiations like
  //
  // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
  // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
  if (SemaRef.IsBuildingRecoveryCallExpr)
    return ExprResult();
  BuildRecoveryCallExprRAII RCE(SemaRef);

  CXXScopeSpec SS;
  SS.Adopt(ULE->getQualifierLoc());
  SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();

  TemplateArgumentListInfo TABuffer;
  TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
  if (ULE->hasExplicitTemplateArgs()) {
    ULE->copyTemplateArgumentsInto(TABuffer);
    ExplicitTemplateArgs = &TABuffer;
  }

  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
                 Sema::LookupOrdinaryName);
  CXXRecordDecl *FoundInClass = nullptr;
  if (DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
                             OverloadCandidateSet::CSK_Normal,
                             ExplicitTemplateArgs, Args, &FoundInClass)) {
    // OK, diagnosed a two-phase lookup issue.
  } else if (EmptyLookup) {
    // Try to recover from an empty lookup with typo correction.
    R.clear();
    NoTypoCorrectionCCC NoTypoValidator{};
    FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(),
                                                ExplicitTemplateArgs != nullptr,
                                                dyn_cast<MemberExpr>(Fn));
    CorrectionCandidateCallback &Validator =
        AllowTypoCorrection
            ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator)
            : static_cast<CorrectionCandidateCallback &>(NoTypoValidator);
    if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs,
                                    Args))
      return ExprError();
  } else if (FoundInClass && SemaRef.getLangOpts().MSVCCompat) {
    // We found a usable declaration of the name in a dependent base of some
    // enclosing class.
    // FIXME: We should also explain why the candidates found by name lookup
    // were not viable.
    if (SemaRef.DiagnoseDependentMemberLookup(R))
      return ExprError();
  } else {
    // We had viable candidates and couldn't recover; let the caller diagnose
    // this.
    return ExprResult();
  }

  // If we get here, we should have issued a diagnostic and formed a recovery
  // lookup result.
  assert(!R.empty() && "lookup results empty despite recovery");

  // If recovery created an ambiguity, just bail out.
  if (R.isAmbiguous()) {
    R.suppressDiagnostics();
    return ExprError();
  }

  // Build an implicit member call if appropriate.  Just drop the
  // casts and such from the call, we don't really care.
  ExprResult NewFn = ExprError();
  if ((*R.begin())->isCXXClassMember())
    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
                                                    ExplicitTemplateArgs, S);
  else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
    NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
                                        ExplicitTemplateArgs);
  else
    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);

  if (NewFn.isInvalid())
    return ExprError();

  // This shouldn't cause an infinite loop because we're giving it
  // an expression with viable lookup results, which should never
  // end up here.
  return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
                               MultiExprArg(Args.data(), Args.size()),
                               RParenLoc);
}

/// Constructs and populates an OverloadedCandidateSet from
/// the given function.
/// \returns true when an the ExprResult output parameter has been set.
bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
                                  UnresolvedLookupExpr *ULE,
                                  MultiExprArg Args,
                                  SourceLocation RParenLoc,
                                  OverloadCandidateSet *CandidateSet,
                                  ExprResult *Result) {
#ifndef NDEBUG
  if (ULE->requiresADL()) {
    // To do ADL, we must have found an unqualified name.
    assert(!ULE->getQualifier() && "qualified name with ADL");

    // We don't perform ADL for implicit declarations of builtins.
    // Verify that this was correctly set up.
    FunctionDecl *F;
    if (ULE->decls_begin() != ULE->decls_end() &&
        ULE->decls_begin() + 1 == ULE->decls_end() &&
        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
        F->getBuiltinID() && F->isImplicit())
      llvm_unreachable("performing ADL for builtin");

    // We don't perform ADL in C.
    assert(getLangOpts().CPlusPlus && "ADL enabled in C");
  }
#endif

  UnbridgedCastsSet UnbridgedCasts;
  if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
    *Result = ExprError();
    return true;
  }

  // Add the functions denoted by the callee to the set of candidate
  // functions, including those from argument-dependent lookup.
  AddOverloadedCallCandidates(ULE, Args, *CandidateSet);

  if (getLangOpts().MSVCCompat &&
      CurContext->isDependentContext() && !isSFINAEContext() &&
      (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {

    OverloadCandidateSet::iterator Best;
    if (CandidateSet->empty() ||
        CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) ==
            OR_No_Viable_Function) {
      // In Microsoft mode, if we are inside a template class member function
      // then create a type dependent CallExpr. The goal is to postpone name
      // lookup to instantiation time to be able to search into type dependent
      // base classes.
      CallExpr *CE =
          CallExpr::Create(Context, Fn, Args, Context.DependentTy, VK_PRValue,
                           RParenLoc, CurFPFeatureOverrides());
      CE->markDependentForPostponedNameLookup();
      *Result = CE;
      return true;
    }
  }

  if (CandidateSet->empty())
    return false;

  UnbridgedCasts.restore();
  return false;
}

// Guess at what the return type for an unresolvable overload should be.
static QualType chooseRecoveryType(OverloadCandidateSet &CS,
                                   OverloadCandidateSet::iterator *Best) {
  llvm::Optional<QualType> Result;
  // Adjust Type after seeing a candidate.
  auto ConsiderCandidate = [&](const OverloadCandidate &Candidate) {
    if (!Candidate.Function)
      return;
    if (Candidate.Function->isInvalidDecl())
      return;
    QualType T = Candidate.Function->getReturnType();
    if (T.isNull())
      return;
    if (!Result)
      Result = T;
    else if (Result != T)
      Result = QualType();
  };

  // Look for an unambiguous type from a progressively larger subset.
  // e.g. if types disagree, but all *viable* overloads return int, choose int.
  //
  // First, consider only the best candidate.
  if (Best && *Best != CS.end())
    ConsiderCandidate(**Best);
  // Next, consider only viable candidates.
  if (!Result)
    for (const auto &C : CS)
      if (C.Viable)
        ConsiderCandidate(C);
  // Finally, consider all candidates.
  if (!Result)
    for (const auto &C : CS)
      ConsiderCandidate(C);

  if (!Result)
    return QualType();
  auto Value = Result.getValue();
  if (Value.isNull() || Value->isUndeducedType())
    return QualType();
  return Value;
}

/// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
/// the completed call expression. If overload resolution fails, emits
/// diagnostics and returns ExprError()
static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
                                           UnresolvedLookupExpr *ULE,
                                           SourceLocation LParenLoc,
                                           MultiExprArg Args,
                                           SourceLocation RParenLoc,
                                           Expr *ExecConfig,
                                           OverloadCandidateSet *CandidateSet,
                                           OverloadCandidateSet::iterator *Best,
                                           OverloadingResult OverloadResult,
                                           bool AllowTypoCorrection) {
  switch (OverloadResult) {
  case OR_Success: {
    FunctionDecl *FDecl = (*Best)->Function;
    SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
    if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
      return ExprError();
    Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
    return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
                                         ExecConfig, /*IsExecConfig=*/false,
                                         (*Best)->IsADLCandidate);
  }

  case OR_No_Viable_Function: {
    // Try to recover by looking for viable functions which the user might
    // have meant to call.
    ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
                                                Args, RParenLoc,
                                                CandidateSet->empty(),
                                                AllowTypoCorrection);
    if (Recovery.isInvalid() || Recovery.isUsable())
      return Recovery;

    // If the user passes in a function that we can't take the address of, we
    // generally end up emitting really bad error messages. Here, we attempt to
    // emit better ones.
    for (const Expr *Arg : Args) {
      if (!Arg->getType()->isFunctionType())
        continue;
      if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
        auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
        if (FD &&
            !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
                                                       Arg->getExprLoc()))
          return ExprError();
      }
    }

    CandidateSet->NoteCandidates(
        PartialDiagnosticAt(
            Fn->getBeginLoc(),
            SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call)
                << ULE->getName() << Fn->getSourceRange()),
        SemaRef, OCD_AllCandidates, Args);
    break;
  }

  case OR_Ambiguous:
    CandidateSet->NoteCandidates(
        PartialDiagnosticAt(Fn->getBeginLoc(),
                            SemaRef.PDiag(diag::err_ovl_ambiguous_call)
                                << ULE->getName() << Fn->getSourceRange()),
        SemaRef, OCD_AmbiguousCandidates, Args);
    break;

  case OR_Deleted: {
    CandidateSet->NoteCandidates(
        PartialDiagnosticAt(Fn->getBeginLoc(),
                            SemaRef.PDiag(diag::err_ovl_deleted_call)
                                << ULE->getName() << Fn->getSourceRange()),
        SemaRef, OCD_AllCandidates, Args);

    // We emitted an error for the unavailable/deleted function call but keep
    // the call in the AST.
    FunctionDecl *FDecl = (*Best)->Function;
    Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
    return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
                                         ExecConfig, /*IsExecConfig=*/false,
                                         (*Best)->IsADLCandidate);
  }
  }

  // Overload resolution failed, try to recover.
  SmallVector<Expr *, 8> SubExprs = {Fn};
  SubExprs.append(Args.begin(), Args.end());
  return SemaRef.CreateRecoveryExpr(Fn->getBeginLoc(), RParenLoc, SubExprs,
                                    chooseRecoveryType(*CandidateSet, Best));
}

static void markUnaddressableCandidatesUnviable(Sema &S,
                                                OverloadCandidateSet &CS) {
  for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
    if (I->Viable &&
        !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
      I->Viable = false;
      I->FailureKind = ovl_fail_addr_not_available;
    }
  }
}

/// BuildOverloadedCallExpr - Given the call expression that calls Fn
/// (which eventually refers to the declaration Func) and the call
/// arguments Args/NumArgs, attempt to resolve the function call down
/// to a specific function. If overload resolution succeeds, returns
/// the call expression produced by overload resolution.
/// Otherwise, emits diagnostics and returns ExprError.
ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
                                         UnresolvedLookupExpr *ULE,
                                         SourceLocation LParenLoc,
                                         MultiExprArg Args,
                                         SourceLocation RParenLoc,
                                         Expr *ExecConfig,
                                         bool AllowTypoCorrection,
                                         bool CalleesAddressIsTaken) {
  OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
                                    OverloadCandidateSet::CSK_Normal);
  ExprResult result;

  if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
                             &result))
    return result;

  // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
  // functions that aren't addressible are considered unviable.
  if (CalleesAddressIsTaken)
    markUnaddressableCandidatesUnviable(*this, CandidateSet);

  OverloadCandidateSet::iterator Best;
  OverloadingResult OverloadResult =
      CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best);

  return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc,
                                  ExecConfig, &CandidateSet, &Best,
                                  OverloadResult, AllowTypoCorrection);
}

static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
  return Functions.size() > 1 ||
         (Functions.size() == 1 &&
          isa<FunctionTemplateDecl>((*Functions.begin())->getUnderlyingDecl()));
}

ExprResult Sema::CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass,
                                            NestedNameSpecifierLoc NNSLoc,
                                            DeclarationNameInfo DNI,
                                            const UnresolvedSetImpl &Fns,
                                            bool PerformADL) {
  return UnresolvedLookupExpr::Create(Context, NamingClass, NNSLoc, DNI,
                                      PerformADL, IsOverloaded(Fns),
                                      Fns.begin(), Fns.end());
}

/// Create a unary operation that may resolve to an overloaded
/// operator.
///
/// \param OpLoc The location of the operator itself (e.g., '*').
///
/// \param Opc The UnaryOperatorKind that describes this operator.
///
/// \param Fns The set of non-member functions that will be
/// considered by overload resolution. The caller needs to build this
/// set based on the context using, e.g.,
/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
/// set should not contain any member functions; those will be added
/// by CreateOverloadedUnaryOp().
///
/// \param Input The input argument.
ExprResult
Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
                              const UnresolvedSetImpl &Fns,
                              Expr *Input, bool PerformADL) {
  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
  // TODO: provide better source location info.
  DeclarationNameInfo OpNameInfo(OpName, OpLoc);

  if (checkPlaceholderForOverload(*this, Input))
    return ExprError();

  Expr *Args[2] = { Input, nullptr };
  unsigned NumArgs = 1;

  // For post-increment and post-decrement, add the implicit '0' as
  // the second argument, so that we know this is a post-increment or
  // post-decrement.
  if (Opc == UO_PostInc || Opc == UO_PostDec) {
    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
                                     SourceLocation());
    NumArgs = 2;
  }

  ArrayRef<Expr *> ArgsArray(Args, NumArgs);

  if (Input->isTypeDependent()) {
    if (Fns.empty())
      return UnaryOperator::Create(Context, Input, Opc, Context.DependentTy,
                                   VK_PRValue, OK_Ordinary, OpLoc, false,
                                   CurFPFeatureOverrides());

    CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
    ExprResult Fn = CreateUnresolvedLookupExpr(
        NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns);
    if (Fn.isInvalid())
      return ExprError();
    return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), ArgsArray,
                                       Context.DependentTy, VK_PRValue, OpLoc,
                                       CurFPFeatureOverrides());
  }

  // Build an empty overload set.
  OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);

  // Add the candidates from the given function set.
  AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet);

  // Add operator candidates that are member functions.
  AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);

  // Add candidates from ADL.
  if (PerformADL) {
    AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
                                         /*ExplicitTemplateArgs*/nullptr,
                                         CandidateSet);
  }

  // Add builtin operator candidates.
  AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);

  bool HadMultipleCandidates = (CandidateSet.size() > 1);

  // Perform overload resolution.
  OverloadCandidateSet::iterator Best;
  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
  case OR_Success: {
    // We found a built-in operator or an overloaded operator.
    FunctionDecl *FnDecl = Best->Function;

    if (FnDecl) {
      Expr *Base = nullptr;
      // We matched an overloaded operator. Build a call to that
      // operator.

      // Convert the arguments.
      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
        CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);

        ExprResult InputRes =
          PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
                                              Best->FoundDecl, Method);
        if (InputRes.isInvalid())
          return ExprError();
        Base = Input = InputRes.get();
      } else {
        // Convert the arguments.
        ExprResult InputInit
          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
                                                      Context,
                                                      FnDecl->getParamDecl(0)),
                                      SourceLocation(),
                                      Input);
        if (InputInit.isInvalid())
          return ExprError();
        Input = InputInit.get();
      }

      // Build the actual expression node.
      ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
                                                Base, HadMultipleCandidates,
                                                OpLoc);
      if (FnExpr.isInvalid())
        return ExprError();

      // Determine the result type.
      QualType ResultTy = FnDecl->getReturnType();
      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
      ResultTy = ResultTy.getNonLValueExprType(Context);

      Args[0] = Input;
      CallExpr *TheCall = CXXOperatorCallExpr::Create(
          Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc,
          CurFPFeatureOverrides(), Best->IsADLCandidate);

      if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
        return ExprError();

      if (CheckFunctionCall(FnDecl, TheCall,
                            FnDecl->getType()->castAs<FunctionProtoType>()))
        return ExprError();
      return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FnDecl);
    } else {
      // We matched a built-in operator. Convert the arguments, then
      // break out so that we will build the appropriate built-in
      // operator node.
      ExprResult InputRes = PerformImplicitConversion(
          Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing,
          CCK_ForBuiltinOverloadedOp);
      if (InputRes.isInvalid())
        return ExprError();
      Input = InputRes.get();
      break;
    }
  }

  case OR_No_Viable_Function:
    // This is an erroneous use of an operator which can be overloaded by
    // a non-member function. Check for non-member operators which were
    // defined too late to be candidates.
    if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
      // FIXME: Recover by calling the found function.
      return ExprError();

    // No viable function; fall through to handling this as a
    // built-in operator, which will produce an error message for us.
    break;

  case OR_Ambiguous:
    CandidateSet.NoteCandidates(
        PartialDiagnosticAt(OpLoc,
                            PDiag(diag::err_ovl_ambiguous_oper_unary)
                                << UnaryOperator::getOpcodeStr(Opc)
                                << Input->getType() << Input->getSourceRange()),
        *this, OCD_AmbiguousCandidates, ArgsArray,
        UnaryOperator::getOpcodeStr(Opc), OpLoc);
    return ExprError();

  case OR_Deleted:
    CandidateSet.NoteCandidates(
        PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
                                       << UnaryOperator::getOpcodeStr(Opc)
                                       << Input->getSourceRange()),
        *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc),
        OpLoc);
    return ExprError();
  }

  // Either we found no viable overloaded operator or we matched a
  // built-in operator. In either case, fall through to trying to
  // build a built-in operation.
  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
}

/// Perform lookup for an overloaded binary operator.
void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
                                 OverloadedOperatorKind Op,
                                 const UnresolvedSetImpl &Fns,
                                 ArrayRef<Expr *> Args, bool PerformADL) {
  SourceLocation OpLoc = CandidateSet.getLocation();

  OverloadedOperatorKind ExtraOp =
      CandidateSet.getRewriteInfo().AllowRewrittenCandidates
          ? getRewrittenOverloadedOperator(Op)
          : OO_None;

  // Add the candidates from the given function set. This also adds the
  // rewritten candidates using these functions if necessary.
  AddNonMemberOperatorCandidates(Fns, Args, CandidateSet);

  // Add operator candidates that are member functions.
  AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
  if (CandidateSet.getRewriteInfo().shouldAddReversed(Op))
    AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet,
                                OverloadCandidateParamOrder::Reversed);

  // In C++20, also add any rewritten member candidates.
  if (ExtraOp) {
    AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet);
    if (CandidateSet.getRewriteInfo().shouldAddReversed(ExtraOp))
      AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]},
                                  CandidateSet,
                                  OverloadCandidateParamOrder::Reversed);
  }

  // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
  // performed for an assignment operator (nor for operator[] nor operator->,
  // which don't get here).
  if (Op != OO_Equal && PerformADL) {
    DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
    AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
                                         /*ExplicitTemplateArgs*/ nullptr,
                                         CandidateSet);
    if (ExtraOp) {
      DeclarationName ExtraOpName =
          Context.DeclarationNames.getCXXOperatorName(ExtraOp);
      AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args,
                                           /*ExplicitTemplateArgs*/ nullptr,
                                           CandidateSet);
    }
  }

  // Add builtin operator candidates.
  //
  // FIXME: We don't add any rewritten candidates here. This is strictly
  // incorrect; a builtin candidate could be hidden by a non-viable candidate,
  // resulting in our selecting a rewritten builtin candidate. For example:
  //
  //   enum class E { e };
  //   bool operator!=(E, E) requires false;
  //   bool k = E::e != E::e;
  //
  // ... should select the rewritten builtin candidate 'operator==(E, E)'. But
  // it seems unreasonable to consider rewritten builtin candidates. A core
  // issue has been filed proposing to removed this requirement.
  AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
}

/// Create a binary operation that may resolve to an overloaded
/// operator.
///
/// \param OpLoc The location of the operator itself (e.g., '+').
///
/// \param Opc The BinaryOperatorKind that describes this operator.
///
/// \param Fns The set of non-member functions that will be
/// considered by overload resolution. The caller needs to build this
/// set based on the context using, e.g.,
/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
/// set should not contain any member functions; those will be added
/// by CreateOverloadedBinOp().
///
/// \param LHS Left-hand argument.
/// \param RHS Right-hand argument.
/// \param PerformADL Whether to consider operator candidates found by ADL.
/// \param AllowRewrittenCandidates Whether to consider candidates found by
///        C++20 operator rewrites.
/// \param DefaultedFn If we are synthesizing a defaulted operator function,
///        the function in question. Such a function is never a candidate in
///        our overload resolution. This also enables synthesizing a three-way
///        comparison from < and == as described in C++20 [class.spaceship]p1.
ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
                                       BinaryOperatorKind Opc,
                                       const UnresolvedSetImpl &Fns, Expr *LHS,
                                       Expr *RHS, bool PerformADL,
                                       bool AllowRewrittenCandidates,
                                       FunctionDecl *DefaultedFn) {
  Expr *Args[2] = { LHS, RHS };
  LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple

  if (!getLangOpts().CPlusPlus20)
    AllowRewrittenCandidates = false;

  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);

  // If either side is type-dependent, create an appropriate dependent
  // expression.
  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
    if (Fns.empty()) {
      // If there are no functions to store, just build a dependent
      // BinaryOperator or CompoundAssignment.
      if (BinaryOperator::isCompoundAssignmentOp(Opc))
        return CompoundAssignOperator::Create(
            Context, Args[0], Args[1], Opc, Context.DependentTy, VK_LValue,
            OK_Ordinary, OpLoc, CurFPFeatureOverrides(), Context.DependentTy,
            Context.DependentTy);
      return BinaryOperator::Create(
          Context, Args[0], Args[1], Opc, Context.DependentTy, VK_PRValue,
          OK_Ordinary, OpLoc, CurFPFeatureOverrides());
    }

    // FIXME: save results of ADL from here?
    CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
    // TODO: provide better source location info in DNLoc component.
    DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
    ExprResult Fn = CreateUnresolvedLookupExpr(
        NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns, PerformADL);
    if (Fn.isInvalid())
      return ExprError();
    return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), Args,
                                       Context.DependentTy, VK_PRValue, OpLoc,
                                       CurFPFeatureOverrides());
  }

  // Always do placeholder-like conversions on the RHS.
  if (checkPlaceholderForOverload(*this, Args[1]))
    return ExprError();

  // Do placeholder-like conversion on the LHS; note that we should
  // not get here with a PseudoObject LHS.
  assert(Args[0]->getObjectKind() != OK_ObjCProperty);
  if (checkPlaceholderForOverload(*this, Args[0]))
    return ExprError();

  // If this is the assignment operator, we only perform overload resolution
  // if the left-hand side is a class or enumeration type. This is actually
  // a hack. The standard requires that we do overload resolution between the
  // various built-in candidates, but as DR507 points out, this can lead to
  // problems. So we do it this way, which pretty much follows what GCC does.
  // Note that we go the traditional code path for compound assignment forms.
  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);

  // If this is the .* operator, which is not overloadable, just
  // create a built-in binary operator.
  if (Opc == BO_PtrMemD)
    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);

  // Build the overload set.
  OverloadCandidateSet CandidateSet(
      OpLoc, OverloadCandidateSet::CSK_Operator,
      OverloadCandidateSet::OperatorRewriteInfo(Op, AllowRewrittenCandidates));
  if (DefaultedFn)
    CandidateSet.exclude(DefaultedFn);
  LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL);

  bool HadMultipleCandidates = (CandidateSet.size() > 1);

  // Perform overload resolution.
  OverloadCandidateSet::iterator Best;
  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
    case OR_Success: {
      // We found a built-in operator or an overloaded operator.
      FunctionDecl *FnDecl = Best->Function;

      bool IsReversed = Best->isReversed();
      if (IsReversed)
        std::swap(Args[0], Args[1]);

      if (FnDecl) {
        Expr *Base = nullptr;
        // We matched an overloaded operator. Build a call to that
        // operator.

        OverloadedOperatorKind ChosenOp =
            FnDecl->getDeclName().getCXXOverloadedOperator();

        // C++2a [over.match.oper]p9:
        //   If a rewritten operator== candidate is selected by overload
        //   resolution for an operator@, its return type shall be cv bool
        if (Best->RewriteKind && ChosenOp == OO_EqualEqual &&
            !FnDecl->getReturnType()->isBooleanType()) {
          bool IsExtension =
              FnDecl->getReturnType()->isIntegralOrUnscopedEnumerationType();
          Diag(OpLoc, IsExtension ? diag::ext_ovl_rewrite_equalequal_not_bool
                                  : diag::err_ovl_rewrite_equalequal_not_bool)
              << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc)
              << Args[0]->getSourceRange() << Args[1]->getSourceRange();
          Diag(FnDecl->getLocation(), diag::note_declared_at);
          if (!IsExtension)
            return ExprError();
        }

        if (AllowRewrittenCandidates && !IsReversed &&
            CandidateSet.getRewriteInfo().isReversible()) {
          // We could have reversed this operator, but didn't. Check if some
          // reversed form was a viable candidate, and if so, if it had a
          // better conversion for either parameter. If so, this call is
          // formally ambiguous, and allowing it is an extension.
          llvm::SmallVector<FunctionDecl*, 4> AmbiguousWith;
          for (OverloadCandidate &Cand : CandidateSet) {
            if (Cand.Viable && Cand.Function && Cand.isReversed() &&
                haveSameParameterTypes(Context, Cand.Function, FnDecl, 2)) {
              for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
                if (CompareImplicitConversionSequences(
                        *this, OpLoc, Cand.Conversions[ArgIdx],
                        Best->Conversions[ArgIdx]) ==
                    ImplicitConversionSequence::Better) {
                  AmbiguousWith.push_back(Cand.Function);
                  break;
                }
              }
            }
          }

          if (!AmbiguousWith.empty()) {
            bool AmbiguousWithSelf =
                AmbiguousWith.size() == 1 &&
                declaresSameEntity(AmbiguousWith.front(), FnDecl);
            Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed)
                << BinaryOperator::getOpcodeStr(Opc)
                << Args[0]->getType() << Args[1]->getType() << AmbiguousWithSelf
                << Args[0]->getSourceRange() << Args[1]->getSourceRange();
            if (AmbiguousWithSelf) {
              Diag(FnDecl->getLocation(),
                   diag::note_ovl_ambiguous_oper_binary_reversed_self);
            } else {
              Diag(FnDecl->getLocation(),
                   diag::note_ovl_ambiguous_oper_binary_selected_candidate);
              for (auto *F : AmbiguousWith)
                Diag(F->getLocation(),
                     diag::note_ovl_ambiguous_oper_binary_reversed_candidate);
            }
          }
        }

        // Convert the arguments.
        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
          // Best->Access is only meaningful for class members.
          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);

          ExprResult Arg1 =
            PerformCopyInitialization(
              InitializedEntity::InitializeParameter(Context,
                                                     FnDecl->getParamDecl(0)),
              SourceLocation(), Args[1]);
          if (Arg1.isInvalid())
            return ExprError();

          ExprResult Arg0 =
            PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
                                                Best->FoundDecl, Method);
          if (Arg0.isInvalid())
            return ExprError();
          Base = Args[0] = Arg0.getAs<Expr>();
          Args[1] = RHS = Arg1.getAs<Expr>();
        } else {
          // Convert the arguments.
          ExprResult Arg0 = PerformCopyInitialization(
            InitializedEntity::InitializeParameter(Context,
                                                   FnDecl->getParamDecl(0)),
            SourceLocation(), Args[0]);
          if (Arg0.isInvalid())
            return ExprError();

          ExprResult Arg1 =
            PerformCopyInitialization(
              InitializedEntity::InitializeParameter(Context,
                                                     FnDecl->getParamDecl(1)),
              SourceLocation(), Args[1]);
          if (Arg1.isInvalid())
            return ExprError();
          Args[0] = LHS = Arg0.getAs<Expr>();
          Args[1] = RHS = Arg1.getAs<Expr>();
        }

        // Build the actual expression node.
        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
                                                  Best->FoundDecl, Base,
                                                  HadMultipleCandidates, OpLoc);
        if (FnExpr.isInvalid())
          return ExprError();

        // Determine the result type.
        QualType ResultTy = FnDecl->getReturnType();
        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
        ResultTy = ResultTy.getNonLValueExprType(Context);

        CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
            Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc,
            CurFPFeatureOverrides(), Best->IsADLCandidate);

        if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
                                FnDecl))
          return ExprError();

        ArrayRef<const Expr *> ArgsArray(Args, 2);
        const Expr *ImplicitThis = nullptr;
        // Cut off the implicit 'this'.
        if (isa<CXXMethodDecl>(FnDecl)) {
          ImplicitThis = ArgsArray[0];
          ArgsArray = ArgsArray.slice(1);
        }

        // Check for a self move.
        if (Op == OO_Equal)
          DiagnoseSelfMove(Args[0], Args[1], OpLoc);

        if (ImplicitThis) {
          QualType ThisType = Context.getPointerType(ImplicitThis->getType());
          QualType ThisTypeFromDecl = Context.getPointerType(
              cast<CXXMethodDecl>(FnDecl)->getThisObjectType());

          CheckArgAlignment(OpLoc, FnDecl, "'this'", ThisType,
                            ThisTypeFromDecl);
        }

        checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray,
                  isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(),
                  VariadicDoesNotApply);

        ExprResult R = MaybeBindToTemporary(TheCall);
        if (R.isInvalid())
          return ExprError();

        R = CheckForImmediateInvocation(R, FnDecl);
        if (R.isInvalid())
          return ExprError();

        // For a rewritten candidate, we've already reversed the arguments
        // if needed. Perform the rest of the rewrite now.
        if ((Best->RewriteKind & CRK_DifferentOperator) ||
            (Op == OO_Spaceship && IsReversed)) {
          if (Op == OO_ExclaimEqual) {
            assert(ChosenOp == OO_EqualEqual && "unexpected operator name");
            R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get());
          } else {
            assert(ChosenOp == OO_Spaceship && "unexpected operator name");
            llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
            Expr *ZeroLiteral =
                IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc);

            Sema::CodeSynthesisContext Ctx;
            Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship;
            Ctx.Entity = FnDecl;
            pushCodeSynthesisContext(Ctx);

            R = CreateOverloadedBinOp(
                OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(),
                IsReversed ? R.get() : ZeroLiteral, PerformADL,
                /*AllowRewrittenCandidates=*/false);

            popCodeSynthesisContext();
          }
          if (R.isInvalid())
            return ExprError();
        } else {
          assert(ChosenOp == Op && "unexpected operator name");
        }

        // Make a note in the AST if we did any rewriting.
        if (Best->RewriteKind != CRK_None)
          R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed);

        return R;
      } else {
        // We matched a built-in operator. Convert the arguments, then
        // break out so that we will build the appropriate built-in
        // operator node.
        ExprResult ArgsRes0 = PerformImplicitConversion(
            Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
            AA_Passing, CCK_ForBuiltinOverloadedOp);
        if (ArgsRes0.isInvalid())
          return ExprError();
        Args[0] = ArgsRes0.get();

        ExprResult ArgsRes1 = PerformImplicitConversion(
            Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
            AA_Passing, CCK_ForBuiltinOverloadedOp);
        if (ArgsRes1.isInvalid())
          return ExprError();
        Args[1] = ArgsRes1.get();
        break;
      }
    }

    case OR_No_Viable_Function: {
      // C++ [over.match.oper]p9:
      //   If the operator is the operator , [...] and there are no
      //   viable functions, then the operator is assumed to be the
      //   built-in operator and interpreted according to clause 5.
      if (Opc == BO_Comma)
        break;

      // When defaulting an 'operator<=>', we can try to synthesize a three-way
      // compare result using '==' and '<'.
      if (DefaultedFn && Opc == BO_Cmp) {
        ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, Args[0],
                                                          Args[1], DefaultedFn);
        if (E.isInvalid() || E.isUsable())
          return E;
      }

      // For class as left operand for assignment or compound assignment
      // operator do not fall through to handling in built-in, but report that
      // no overloaded assignment operator found
      ExprResult Result = ExprError();
      StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc);
      auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates,
                                                   Args, OpLoc);
      DeferDiagsRAII DDR(*this,
                         CandidateSet.shouldDeferDiags(*this, Args, OpLoc));
      if (Args[0]->getType()->isRecordType() &&
          Opc >= BO_Assign && Opc <= BO_OrAssign) {
        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
             << BinaryOperator::getOpcodeStr(Opc)
             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
        if (Args[0]->getType()->isIncompleteType()) {
          Diag(OpLoc, diag::note_assign_lhs_incomplete)
            << Args[0]->getType()
            << Args[0]->getSourceRange() << Args[1]->getSourceRange();
        }
      } else {
        // This is an erroneous use of an operator which can be overloaded by
        // a non-member function. Check for non-member operators which were
        // defined too late to be candidates.
        if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
          // FIXME: Recover by calling the found function.
          return ExprError();

        // No viable function; try to create a built-in operation, which will
        // produce an error. Then, show the non-viable candidates.
        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
      }
      assert(Result.isInvalid() &&
             "C++ binary operator overloading is missing candidates!");
      CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc);
      return Result;
    }

    case OR_Ambiguous:
      CandidateSet.NoteCandidates(
          PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
                                         << BinaryOperator::getOpcodeStr(Opc)
                                         << Args[0]->getType()
                                         << Args[1]->getType()
                                         << Args[0]->getSourceRange()
                                         << Args[1]->getSourceRange()),
          *this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
          OpLoc);
      return ExprError();

    case OR_Deleted:
      if (isImplicitlyDeleted(Best->Function)) {
        FunctionDecl *DeletedFD = Best->Function;
        DefaultedFunctionKind DFK = getDefaultedFunctionKind(DeletedFD);
        if (DFK.isSpecialMember()) {
          Diag(OpLoc, diag::err_ovl_deleted_special_oper)
            << Args[0]->getType() << DFK.asSpecialMember();
        } else {
          assert(DFK.isComparison());
          Diag(OpLoc, diag::err_ovl_deleted_comparison)
            << Args[0]->getType() << DeletedFD;
        }

        // The user probably meant to call this special member. Just
        // explain why it's deleted.
        NoteDeletedFunction(DeletedFD);
        return ExprError();
      }
      CandidateSet.NoteCandidates(
          PartialDiagnosticAt(
              OpLoc, PDiag(diag::err_ovl_deleted_oper)
                         << getOperatorSpelling(Best->Function->getDeclName()
                                                    .getCXXOverloadedOperator())
                         << Args[0]->getSourceRange()
                         << Args[1]->getSourceRange()),
          *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
          OpLoc);
      return ExprError();
  }

  // We matched a built-in operator; build it.
  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
}

ExprResult Sema::BuildSynthesizedThreeWayComparison(
    SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS,
    FunctionDecl *DefaultedFn) {
  const ComparisonCategoryInfo *Info =
      Context.CompCategories.lookupInfoForType(DefaultedFn->getReturnType());
  // If we're not producing a known comparison category type, we can't
  // synthesize a three-way comparison. Let the caller diagnose this.
  if (!Info)
    return ExprResult((Expr*)nullptr);

  // If we ever want to perform this synthesis more generally, we will need to
  // apply the temporary materialization conversion to the operands.
  assert(LHS->isGLValue() && RHS->isGLValue() &&
         "cannot use prvalue expressions more than once");
  Expr *OrigLHS = LHS;
  Expr *OrigRHS = RHS;

  // Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to
  // each of them multiple times below.
  LHS = new (Context)
      OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(),
                      LHS->getObjectKind(), LHS);
  RHS = new (Context)
      OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(),
                      RHS->getObjectKind(), RHS);

  ExprResult Eq = CreateOverloadedBinOp(OpLoc, BO_EQ, Fns, LHS, RHS, true, true,
                                        DefaultedFn);
  if (Eq.isInvalid())
    return ExprError();

  ExprResult Less = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, LHS, RHS, true,
                                          true, DefaultedFn);
  if (Less.isInvalid())
    return ExprError();

  ExprResult Greater;
  if (Info->isPartial()) {
    Greater = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, RHS, LHS, true, true,
                                    DefaultedFn);
    if (Greater.isInvalid())
      return ExprError();
  }

  // Form the list of comparisons we're going to perform.
  struct Comparison {
    ExprResult Cmp;
    ComparisonCategoryResult Result;
  } Comparisons[4] =
  { {Eq, Info->isStrong() ? ComparisonCategoryResult::Equal
                          : ComparisonCategoryResult::Equivalent},
    {Less, ComparisonCategoryResult::Less},
    {Greater, ComparisonCategoryResult::Greater},
    {ExprResult(), ComparisonCategoryResult::Unordered},
  };

  int I = Info->isPartial() ? 3 : 2;

  // Combine the comparisons with suitable conditional expressions.
  ExprResult Result;
  for (; I >= 0; --I) {
    // Build a reference to the comparison category constant.
    auto *VI = Info->lookupValueInfo(Comparisons[I].Result);
    // FIXME: Missing a constant for a comparison category. Diagnose this?
    if (!VI)
      return ExprResult((Expr*)nullptr);
    ExprResult ThisResult =
        BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(), VI->VD);
    if (ThisResult.isInvalid())
      return ExprError();

    // Build a conditional unless this is the final case.
    if (Result.get()) {
      Result = ActOnConditionalOp(OpLoc, OpLoc, Comparisons[I].Cmp.get(),
                                  ThisResult.get(), Result.get());
      if (Result.isInvalid())
        return ExprError();
    } else {
      Result = ThisResult;
    }
  }

  // Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to
  // bind the OpaqueValueExprs before they're (repeatedly) used.
  Expr *SyntacticForm = BinaryOperator::Create(
      Context, OrigLHS, OrigRHS, BO_Cmp, Result.get()->getType(),
      Result.get()->getValueKind(), Result.get()->getObjectKind(), OpLoc,
      CurFPFeatureOverrides());
  Expr *SemanticForm[] = {LHS, RHS, Result.get()};
  return PseudoObjectExpr::Create(Context, SyntacticForm, SemanticForm, 2);
}

ExprResult
Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
                                         SourceLocation RLoc,
                                         Expr *Base, Expr *Idx) {
  Expr *Args[2] = { Base, Idx };
  DeclarationName OpName =
      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);

  // If either side is type-dependent, create an appropriate dependent
  // expression.
  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {

    CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
    // CHECKME: no 'operator' keyword?
    DeclarationNameInfo OpNameInfo(OpName, LLoc);
    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
    ExprResult Fn = CreateUnresolvedLookupExpr(
        NamingClass, NestedNameSpecifierLoc(), OpNameInfo, UnresolvedSet<0>());
    if (Fn.isInvalid())
      return ExprError();
    // Can't add any actual overloads yet

    return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn.get(), Args,
                                       Context.DependentTy, VK_PRValue, RLoc,
                                       CurFPFeatureOverrides());
  }

  // Handle placeholders on both operands.
  if (checkPlaceholderForOverload(*this, Args[0]))
    return ExprError();
  if (checkPlaceholderForOverload(*this, Args[1]))
    return ExprError();

  // Build an empty overload set.
  OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);

  // Subscript can only be overloaded as a member function.

  // Add operator candidates that are member functions.
  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);

  // Add builtin operator candidates.
  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);

  bool HadMultipleCandidates = (CandidateSet.size() > 1);

  // Perform overload resolution.
  OverloadCandidateSet::iterator Best;
  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
    case OR_Success: {
      // We found a built-in operator or an overloaded operator.
      FunctionDecl *FnDecl = Best->Function;

      if (FnDecl) {
        // We matched an overloaded operator. Build a call to that
        // operator.

        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);

        // Convert the arguments.
        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
        ExprResult Arg0 =
          PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
                                              Best->FoundDecl, Method);
        if (Arg0.isInvalid())
          return ExprError();
        Args[0] = Arg0.get();

        // Convert the arguments.
        ExprResult InputInit
          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
                                                      Context,
                                                      FnDecl->getParamDecl(0)),
                                      SourceLocation(),
                                      Args[1]);
        if (InputInit.isInvalid())
          return ExprError();

        Args[1] = InputInit.getAs<Expr>();

        // Build the actual expression node.
        DeclarationNameInfo OpLocInfo(OpName, LLoc);
        OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
                                                  Best->FoundDecl,
                                                  Base,
                                                  HadMultipleCandidates,
                                                  OpLocInfo.getLoc(),
                                                  OpLocInfo.getInfo());
        if (FnExpr.isInvalid())
          return ExprError();

        // Determine the result type
        QualType ResultTy = FnDecl->getReturnType();
        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
        ResultTy = ResultTy.getNonLValueExprType(Context);

        CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
            Context, OO_Subscript, FnExpr.get(), Args, ResultTy, VK, RLoc,
            CurFPFeatureOverrides());
        if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
          return ExprError();

        if (CheckFunctionCall(Method, TheCall,
                              Method->getType()->castAs<FunctionProtoType>()))
          return ExprError();

        return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall),
                                           FnDecl);
      } else {
        // We matched a built-in operator. Convert the arguments, then
        // break out so that we will build the appropriate built-in
        // operator node.
        ExprResult ArgsRes0 = PerformImplicitConversion(
            Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
            AA_Passing, CCK_ForBuiltinOverloadedOp);
        if (ArgsRes0.isInvalid())
          return ExprError();
        Args[0] = ArgsRes0.get();

        ExprResult ArgsRes1 = PerformImplicitConversion(
            Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
            AA_Passing, CCK_ForBuiltinOverloadedOp);
        if (ArgsRes1.isInvalid())
          return ExprError();
        Args[1] = ArgsRes1.get();

        break;
      }
    }

    case OR_No_Viable_Function: {
      PartialDiagnostic PD = CandidateSet.empty()
          ? (PDiag(diag::err_ovl_no_oper)
             << Args[0]->getType() << /*subscript*/ 0
             << Args[0]->getSourceRange() << Args[1]->getSourceRange())
          : (PDiag(diag::err_ovl_no_viable_subscript)
             << Args[0]->getType() << Args[0]->getSourceRange()
             << Args[1]->getSourceRange());
      CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this,
                                  OCD_AllCandidates, Args, "[]", LLoc);
      return ExprError();
    }

    case OR_Ambiguous:
      CandidateSet.NoteCandidates(
          PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
                                        << "[]" << Args[0]->getType()
                                        << Args[1]->getType()
                                        << Args[0]->getSourceRange()
                                        << Args[1]->getSourceRange()),
          *this, OCD_AmbiguousCandidates, Args, "[]", LLoc);
      return ExprError();

    case OR_Deleted:
      CandidateSet.NoteCandidates(
          PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper)
                                        << "[]" << Args[0]->getSourceRange()
                                        << Args[1]->getSourceRange()),
          *this, OCD_AllCandidates, Args, "[]", LLoc);
      return ExprError();
    }

  // We matched a built-in operator; build it.
  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
}

/// BuildCallToMemberFunction - Build a call to a member
/// function. MemExpr is the expression that refers to the member
/// function (and includes the object parameter), Args/NumArgs are the
/// arguments to the function call (not including the object
/// parameter). The caller needs to validate that the member
/// expression refers to a non-static member function or an overloaded
/// member function.
ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
                                           SourceLocation LParenLoc,
                                           MultiExprArg Args,
                                           SourceLocation RParenLoc,
                                           Expr *ExecConfig, bool IsExecConfig,
                                           bool AllowRecovery) {
  assert(MemExprE->getType() == Context.BoundMemberTy ||
         MemExprE->getType() == Context.OverloadTy);

  // Dig out the member expression. This holds both the object
  // argument and the member function we're referring to.
  Expr *NakedMemExpr = MemExprE->IgnoreParens();

  // Determine whether this is a call to a pointer-to-member function.
  if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
    assert(op->getType() == Context.BoundMemberTy);
    assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);

    QualType fnType =
      op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();

    const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
    QualType resultType = proto->getCallResultType(Context);
    ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());

    // Check that the object type isn't more qualified than the
    // member function we're calling.
    Qualifiers funcQuals = proto->getMethodQuals();

    QualType objectType = op->getLHS()->getType();
    if (op->getOpcode() == BO_PtrMemI)
      objectType = objectType->castAs<PointerType>()->getPointeeType();
    Qualifiers objectQuals = objectType.getQualifiers();

    Qualifiers difference = objectQuals - funcQuals;
    difference.removeObjCGCAttr();
    difference.removeAddressSpace();
    if (difference) {
      std::string qualsString = difference.getAsString();
      Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
        << fnType.getUnqualifiedType()
        << qualsString
        << (qualsString.find(' ') == std::string::npos ? 1 : 2);
    }

    CXXMemberCallExpr *call = CXXMemberCallExpr::Create(
        Context, MemExprE, Args, resultType, valueKind, RParenLoc,
        CurFPFeatureOverrides(), proto->getNumParams());

    if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(),
                            call, nullptr))
      return ExprError();

    if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
      return ExprError();

    if (CheckOtherCall(call, proto))
      return ExprError();

    return MaybeBindToTemporary(call);
  }

  // We only try to build a recovery expr at this level if we can preserve
  // the return type, otherwise we return ExprError() and let the caller
  // recover.
  auto BuildRecoveryExpr = [&](QualType Type) {
    if (!AllowRecovery)
      return ExprError();
    std::vector<Expr *> SubExprs = {MemExprE};
    llvm::for_each(Args, [&SubExprs](Expr *E) { SubExprs.push_back(E); });
    return CreateRecoveryExpr(MemExprE->getBeginLoc(), RParenLoc, SubExprs,
                              Type);
  };
  if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
    return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_PRValue,
                            RParenLoc, CurFPFeatureOverrides());

  UnbridgedCastsSet UnbridgedCasts;
  if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
    return ExprError();

  MemberExpr *MemExpr;
  CXXMethodDecl *Method = nullptr;
  DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
  NestedNameSpecifier *Qualifier = nullptr;
  if (isa<MemberExpr>(NakedMemExpr)) {
    MemExpr = cast<MemberExpr>(NakedMemExpr);
    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
    FoundDecl = MemExpr->getFoundDecl();
    Qualifier = MemExpr->getQualifier();
    UnbridgedCasts.restore();
  } else {
    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
    Qualifier = UnresExpr->getQualifier();

    QualType ObjectType = UnresExpr->getBaseType();
    Expr::Classification ObjectClassification
      = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
                            : UnresExpr->getBase()->Classify(Context);

    // Add overload candidates
    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
                                      OverloadCandidateSet::CSK_Normal);

    // FIXME: avoid copy.
    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
    if (UnresExpr->hasExplicitTemplateArgs()) {
      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
      TemplateArgs = &TemplateArgsBuffer;
    }

    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
           E = UnresExpr->decls_end(); I != E; ++I) {

      NamedDecl *Func = *I;
      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
      if (isa<UsingShadowDecl>(Func))
        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();


      // Microsoft supports direct constructor calls.
      if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args,
                             CandidateSet,
                             /*SuppressUserConversions*/ false);
      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
        // If explicit template arguments were provided, we can't call a
        // non-template member function.
        if (TemplateArgs)
          continue;

        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
                           ObjectClassification, Args, CandidateSet,
                           /*SuppressUserConversions=*/false);
      } else {
        AddMethodTemplateCandidate(
            cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC,
            TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet,
            /*SuppressUserConversions=*/false);
      }
    }

    DeclarationName DeclName = UnresExpr->getMemberName();

    UnbridgedCasts.restore();

    OverloadCandidateSet::iterator Best;
    bool Succeeded = false;
    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(),
                                            Best)) {
    case OR_Success:
      Method = cast<CXXMethodDecl>(Best->Function);
      FoundDecl = Best->FoundDecl;
      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
      if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
        break;
      // If FoundDecl is different from Method (such as if one is a template
      // and the other a specialization), make sure DiagnoseUseOfDecl is
      // called on both.
      // FIXME: This would be more comprehensively addressed by modifying
      // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
      // being used.
      if (Method != FoundDecl.getDecl() &&
                      DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
        break;
      Succeeded = true;
      break;

    case OR_No_Viable_Function:
      CandidateSet.NoteCandidates(
          PartialDiagnosticAt(
              UnresExpr->getMemberLoc(),
              PDiag(diag::err_ovl_no_viable_member_function_in_call)
                  << DeclName << MemExprE->getSourceRange()),
          *this, OCD_AllCandidates, Args);
      break;
    case OR_Ambiguous:
      CandidateSet.NoteCandidates(
          PartialDiagnosticAt(UnresExpr->getMemberLoc(),
                              PDiag(diag::err_ovl_ambiguous_member_call)
                                  << DeclName << MemExprE->getSourceRange()),
          *this, OCD_AmbiguousCandidates, Args);
      break;
    case OR_Deleted:
      CandidateSet.NoteCandidates(
          PartialDiagnosticAt(UnresExpr->getMemberLoc(),
                              PDiag(diag::err_ovl_deleted_member_call)
                                  << DeclName << MemExprE->getSourceRange()),
          *this, OCD_AllCandidates, Args);
      break;
    }
    // Overload resolution fails, try to recover.
    if (!Succeeded)
      return BuildRecoveryExpr(chooseRecoveryType(CandidateSet, &Best));

    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);

    // If overload resolution picked a static member, build a
    // non-member call based on that function.
    if (Method->isStatic()) {
      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args, RParenLoc,
                                   ExecConfig, IsExecConfig);
    }

    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
  }

  QualType ResultType = Method->getReturnType();
  ExprValueKind VK = Expr::getValueKindForType(ResultType);
  ResultType = ResultType.getNonLValueExprType(Context);

  assert(Method && "Member call to something that isn't a method?");
  const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
  CXXMemberCallExpr *TheCall = CXXMemberCallExpr::Create(
      Context, MemExprE, Args, ResultType, VK, RParenLoc,
      CurFPFeatureOverrides(), Proto->getNumParams());

  // Check for a valid return type.
  if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
                          TheCall, Method))
    return BuildRecoveryExpr(ResultType);

  // Convert the object argument (for a non-static member function call).
  // We only need to do this if there was actually an overload; otherwise
  // it was done at lookup.
  if (!Method->isStatic()) {
    ExprResult ObjectArg =
      PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
                                          FoundDecl, Method);
    if (ObjectArg.isInvalid())
      return ExprError();
    MemExpr->setBase(ObjectArg.get());
  }

  // Convert the rest of the arguments
  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
                              RParenLoc))
    return BuildRecoveryExpr(ResultType);

  DiagnoseSentinelCalls(Method, LParenLoc, Args);

  if (CheckFunctionCall(Method, TheCall, Proto))
    return ExprError();

  // In the case the method to call was not selected by the overloading
  // resolution process, we still need to handle the enable_if attribute. Do
  // that here, so it will not hide previous -- and more relevant -- errors.
  if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) {
    if (const EnableIfAttr *Attr =
            CheckEnableIf(Method, LParenLoc, Args, true)) {
      Diag(MemE->getMemberLoc(),
           diag::err_ovl_no_viable_member_function_in_call)
          << Method << Method->getSourceRange();
      Diag(Method->getLocation(),
           diag::note_ovl_candidate_disabled_by_function_cond_attr)
          << Attr->getCond()->getSourceRange() << Attr->getMessage();
      return ExprError();
    }
  }

  if ((isa<CXXConstructorDecl>(CurContext) ||
       isa<CXXDestructorDecl>(CurContext)) &&
      TheCall->getMethodDecl()->isPure()) {
    const CXXMethodDecl *MD = TheCall->getMethodDecl();

    if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
        MemExpr->performsVirtualDispatch(getLangOpts())) {
      Diag(MemExpr->getBeginLoc(),
           diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
          << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
          << MD->getParent();

      Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName();
      if (getLangOpts().AppleKext)
        Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext)
            << MD->getParent() << MD->getDeclName();
    }
  }

  if (CXXDestructorDecl *DD =
          dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
    // a->A::f() doesn't go through the vtable, except in AppleKext mode.
    bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
    CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false,
                         CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
                         MemExpr->getMemberLoc());
  }

  return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall),
                                     TheCall->getMethodDecl());
}

/// BuildCallToObjectOfClassType - Build a call to an object of class
/// type (C++ [over.call.object]), which can end up invoking an
/// overloaded function call operator (@c operator()) or performing a
/// user-defined conversion on the object argument.
ExprResult
Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
                                   SourceLocation LParenLoc,
                                   MultiExprArg Args,
                                   SourceLocation RParenLoc) {
  if (checkPlaceholderForOverload(*this, Obj))
    return ExprError();
  ExprResult Object = Obj;

  UnbridgedCastsSet UnbridgedCasts;
  if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
    return ExprError();

  assert(Object.get()->getType()->isRecordType() &&
         "Requires object type argument");

  // C++ [over.call.object]p1:
  //  If the primary-expression E in the function call syntax
  //  evaluates to a class object of type "cv T", then the set of
  //  candidate functions includes at least the function call
  //  operators of T. The function call operators of T are obtained by
  //  ordinary lookup of the name operator() in the context of
  //  (E).operator().
  OverloadCandidateSet CandidateSet(LParenLoc,
                                    OverloadCandidateSet::CSK_Operator);
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);

  if (RequireCompleteType(LParenLoc, Object.get()->getType(),
                          diag::err_incomplete_object_call, Object.get()))
    return true;

  const auto *Record = Object.get()->getType()->castAs<RecordType>();
  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
  LookupQualifiedName(R, Record->getDecl());
  R.suppressDiagnostics();

  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
       Oper != OperEnd; ++Oper) {
    AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
                       Object.get()->Classify(Context), Args, CandidateSet,
                       /*SuppressUserConversion=*/false);
  }

  // C++ [over.call.object]p2:
  //   In addition, for each (non-explicit in C++0x) conversion function
  //   declared in T of the form
  //
  //        operator conversion-type-id () cv-qualifier;
  //
  //   where cv-qualifier is the same cv-qualification as, or a
  //   greater cv-qualification than, cv, and where conversion-type-id
  //   denotes the type "pointer to function of (P1,...,Pn) returning
  //   R", or the type "reference to pointer to function of
  //   (P1,...,Pn) returning R", or the type "reference to function
  //   of (P1,...,Pn) returning R", a surrogate call function [...]
  //   is also considered as a candidate function. Similarly,
  //   surrogate call functions are added to the set of candidate
  //   functions for each conversion function declared in an
  //   accessible base class provided the function is not hidden
  //   within T by another intervening declaration.
  const auto &Conversions =
      cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
  for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
    NamedDecl *D = *I;
    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
    if (isa<UsingShadowDecl>(D))
      D = cast<UsingShadowDecl>(D)->getTargetDecl();

    // Skip over templated conversion functions; they aren't
    // surrogates.
    if (isa<FunctionTemplateDecl>(D))
      continue;

    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
    if (!Conv->isExplicit()) {
      // Strip the reference type (if any) and then the pointer type (if
      // any) to get down to what might be a function type.
      QualType ConvType = Conv->getConversionType().getNonReferenceType();
      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
        ConvType = ConvPtrType->getPointeeType();

      if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
      {
        AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
                              Object.get(), Args, CandidateSet);
      }
    }
  }

  bool HadMultipleCandidates = (CandidateSet.size() > 1);

  // Perform overload resolution.
  OverloadCandidateSet::iterator Best;
  switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(),
                                          Best)) {
  case OR_Success:
    // Overload resolution succeeded; we'll build the appropriate call
    // below.
    break;

  case OR_No_Viable_Function: {
    PartialDiagnostic PD =
        CandidateSet.empty()
            ? (PDiag(diag::err_ovl_no_oper)
               << Object.get()->getType() << /*call*/ 1
               << Object.get()->getSourceRange())
            : (PDiag(diag::err_ovl_no_viable_object_call)
               << Object.get()->getType() << Object.get()->getSourceRange());
    CandidateSet.NoteCandidates(
        PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this,
        OCD_AllCandidates, Args);
    break;
  }
  case OR_Ambiguous:
    CandidateSet.NoteCandidates(
        PartialDiagnosticAt(Object.get()->getBeginLoc(),
                            PDiag(diag::err_ovl_ambiguous_object_call)
                                << Object.get()->getType()
                                << Object.get()->getSourceRange()),
        *this, OCD_AmbiguousCandidates, Args);
    break;

  case OR_Deleted:
    CandidateSet.NoteCandidates(
        PartialDiagnosticAt(Object.get()->getBeginLoc(),
                            PDiag(diag::err_ovl_deleted_object_call)
                                << Object.get()->getType()
                                << Object.get()->getSourceRange()),
        *this, OCD_AllCandidates, Args);
    break;
  }

  if (Best == CandidateSet.end())
    return true;

  UnbridgedCasts.restore();

  if (Best->Function == nullptr) {
    // Since there is no function declaration, this is one of the
    // surrogate candidates. Dig out the conversion function.
    CXXConversionDecl *Conv
      = cast<CXXConversionDecl>(
                         Best->Conversions[0].UserDefined.ConversionFunction);

    CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
                              Best->FoundDecl);
    if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
      return ExprError();
    assert(Conv == Best->FoundDecl.getDecl() &&
             "Found Decl & conversion-to-functionptr should be same, right?!");
    // We selected one of the surrogate functions that converts the
    // object parameter to a function pointer. Perform the conversion
    // on the object argument, then let BuildCallExpr finish the job.

    // Create an implicit member expr to refer to the conversion operator.
    // and then call it.
    ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
                                             Conv, HadMultipleCandidates);
    if (Call.isInvalid())
      return ExprError();
    // Record usage of conversion in an implicit cast.
    Call = ImplicitCastExpr::Create(
        Context, Call.get()->getType(), CK_UserDefinedConversion, Call.get(),
        nullptr, VK_PRValue, CurFPFeatureOverrides());

    return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
  }

  CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);

  // We found an overloaded operator(). Build a CXXOperatorCallExpr
  // that calls this method, using Object for the implicit object
  // parameter and passing along the remaining arguments.
  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);

  // An error diagnostic has already been printed when parsing the declaration.
  if (Method->isInvalidDecl())
    return ExprError();

  const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
  unsigned NumParams = Proto->getNumParams();

  DeclarationNameInfo OpLocInfo(
               Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
  OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
  ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
                                           Obj, HadMultipleCandidates,
                                           OpLocInfo.getLoc(),
                                           OpLocInfo.getInfo());
  if (NewFn.isInvalid())
    return true;

  // The number of argument slots to allocate in the call. If we have default
  // arguments we need to allocate space for them as well. We additionally
  // need one more slot for the object parameter.
  unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams);

  // Build the full argument list for the method call (the implicit object
  // parameter is placed at the beginning of the list).
  SmallVector<Expr *, 8> MethodArgs(NumArgsSlots);

  bool IsError = false;

  // Initialize the implicit object parameter.
  ExprResult ObjRes =
    PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
                                        Best->FoundDecl, Method);
  if (ObjRes.isInvalid())
    IsError = true;
  else
    Object = ObjRes;
  MethodArgs[0] = Object.get();

  // Check the argument types.
  for (unsigned i = 0; i != NumParams; i++) {
    Expr *Arg;
    if (i < Args.size()) {
      Arg = Args[i];

      // Pass the argument.

      ExprResult InputInit
        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
                                                    Context,
                                                    Method->getParamDecl(i)),
                                    SourceLocation(), Arg);

      IsError |= InputInit.isInvalid();
      Arg = InputInit.getAs<Expr>();
    } else {
      ExprResult DefArg
        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
      if (DefArg.isInvalid()) {
        IsError = true;
        break;
      }

      Arg = DefArg.getAs<Expr>();
    }

    MethodArgs[i + 1] = Arg;
  }

  // If this is a variadic call, handle args passed through "...".
  if (Proto->isVariadic()) {
    // Promote the arguments (C99 6.5.2.2p7).
    for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
      ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
                                                        nullptr);
      IsError |= Arg.isInvalid();
      MethodArgs[i + 1] = Arg.get();
    }
  }

  if (IsError)
    return true;

  DiagnoseSentinelCalls(Method, LParenLoc, Args);

  // Once we've built TheCall, all of the expressions are properly owned.
  QualType ResultTy = Method->getReturnType();
  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
  ResultTy = ResultTy.getNonLValueExprType(Context);

  CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
      Context, OO_Call, NewFn.get(), MethodArgs, ResultTy, VK, RParenLoc,
      CurFPFeatureOverrides());

  if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
    return true;

  if (CheckFunctionCall(Method, TheCall, Proto))
    return true;

  return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method);
}

/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
///  (if one exists), where @c Base is an expression of class type and
/// @c Member is the name of the member we're trying to find.
ExprResult
Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
                               bool *NoArrowOperatorFound) {
  assert(Base->getType()->isRecordType() &&
         "left-hand side must have class type");

  if (checkPlaceholderForOverload(*this, Base))
    return ExprError();

  SourceLocation Loc = Base->getExprLoc();

  // C++ [over.ref]p1:
  //
  //   [...] An expression x->m is interpreted as (x.operator->())->m
  //   for a class object x of type T if T::operator->() exists and if
  //   the operator is selected as the best match function by the
  //   overload resolution mechanism (13.3).
  DeclarationName OpName =
    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
  OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);

  if (RequireCompleteType(Loc, Base->getType(),
                          diag::err_typecheck_incomplete_tag, Base))
    return ExprError();

  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
  LookupQualifiedName(R, Base->getType()->castAs<RecordType>()->getDecl());
  R.suppressDiagnostics();

  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
       Oper != OperEnd; ++Oper) {
    AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
                       None, CandidateSet, /*SuppressUserConversion=*/false);
  }

  bool HadMultipleCandidates = (CandidateSet.size() > 1);

  // Perform overload resolution.
  OverloadCandidateSet::iterator Best;
  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
  case OR_Success:
    // Overload resolution succeeded; we'll build the call below.
    break;

  case OR_No_Viable_Function: {
    auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base);
    if (CandidateSet.empty()) {
      QualType BaseType = Base->getType();
      if (NoArrowOperatorFound) {
        // Report this specific error to the caller instead of emitting a
        // diagnostic, as requested.
        *NoArrowOperatorFound = true;
        return ExprError();
      }
      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
        << BaseType << Base->getSourceRange();
      if (BaseType->isRecordType() && !BaseType->isPointerType()) {
        Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
          << FixItHint::CreateReplacement(OpLoc, ".");
      }
    } else
      Diag(OpLoc, diag::err_ovl_no_viable_oper)
        << "operator->" << Base->getSourceRange();
    CandidateSet.NoteCandidates(*this, Base, Cands);
    return ExprError();
  }
  case OR_Ambiguous:
    CandidateSet.NoteCandidates(
        PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary)
                                       << "->" << Base->getType()
                                       << Base->getSourceRange()),
        *this, OCD_AmbiguousCandidates, Base);
    return ExprError();

  case OR_Deleted:
    CandidateSet.NoteCandidates(
        PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
                                       << "->" << Base->getSourceRange()),
        *this, OCD_AllCandidates, Base);
    return ExprError();
  }

  CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);

  // Convert the object parameter.
  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
  ExprResult BaseResult =
    PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
                                        Best->FoundDecl, Method);
  if (BaseResult.isInvalid())
    return ExprError();
  Base = BaseResult.get();

  // Build the operator call.
  ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
                                            Base, HadMultipleCandidates, OpLoc);
  if (FnExpr.isInvalid())
    return ExprError();

  QualType ResultTy = Method->getReturnType();
  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
  ResultTy = ResultTy.getNonLValueExprType(Context);
  CXXOperatorCallExpr *TheCall =
      CXXOperatorCallExpr::Create(Context, OO_Arrow, FnExpr.get(), Base,
                                  ResultTy, VK, OpLoc, CurFPFeatureOverrides());

  if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
    return ExprError();

  if (CheckFunctionCall(Method, TheCall,
                        Method->getType()->castAs<FunctionProtoType>()))
    return ExprError();

  return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method);
}

/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
/// a literal operator described by the provided lookup results.
ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
                                          DeclarationNameInfo &SuffixInfo,
                                          ArrayRef<Expr*> Args,
                                          SourceLocation LitEndLoc,
                                       TemplateArgumentListInfo *TemplateArgs) {
  SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();

  OverloadCandidateSet CandidateSet(UDSuffixLoc,
                                    OverloadCandidateSet::CSK_Normal);
  AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet,
                                 TemplateArgs);

  bool HadMultipleCandidates = (CandidateSet.size() > 1);

  // Perform overload resolution. This will usually be trivial, but might need
  // to perform substitutions for a literal operator template.
  OverloadCandidateSet::iterator Best;
  switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
  case OR_Success:
  case OR_Deleted:
    break;

  case OR_No_Viable_Function:
    CandidateSet.NoteCandidates(
        PartialDiagnosticAt(UDSuffixLoc,
                            PDiag(diag::err_ovl_no_viable_function_in_call)
                                << R.getLookupName()),
        *this, OCD_AllCandidates, Args);
    return ExprError();

  case OR_Ambiguous:
    CandidateSet.NoteCandidates(
        PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call)
                                                << R.getLookupName()),
        *this, OCD_AmbiguousCandidates, Args);
    return ExprError();
  }

  FunctionDecl *FD = Best->Function;
  ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
                                        nullptr, HadMultipleCandidates,
                                        SuffixInfo.getLoc(),
                                        SuffixInfo.getInfo());
  if (Fn.isInvalid())
    return true;

  // Check the argument types. This should almost always be a no-op, except
  // that array-to-pointer decay is applied to string literals.
  Expr *ConvArgs[2];
  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
    ExprResult InputInit = PerformCopyInitialization(
      InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
      SourceLocation(), Args[ArgIdx]);
    if (InputInit.isInvalid())
      return true;
    ConvArgs[ArgIdx] = InputInit.get();
  }

  QualType ResultTy = FD->getReturnType();
  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
  ResultTy = ResultTy.getNonLValueExprType(Context);

  UserDefinedLiteral *UDL = UserDefinedLiteral::Create(
      Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy,
      VK, LitEndLoc, UDSuffixLoc, CurFPFeatureOverrides());

  if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
    return ExprError();

  if (CheckFunctionCall(FD, UDL, nullptr))
    return ExprError();

  return CheckForImmediateInvocation(MaybeBindToTemporary(UDL), FD);
}

/// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
/// given LookupResult is non-empty, it is assumed to describe a member which
/// will be invoked. Otherwise, the function will be found via argument
/// dependent lookup.
/// CallExpr is set to a valid expression and FRS_Success returned on success,
/// otherwise CallExpr is set to ExprError() and some non-success value
/// is returned.
Sema::ForRangeStatus
Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
                                SourceLocation RangeLoc,
                                const DeclarationNameInfo &NameInfo,
                                LookupResult &MemberLookup,
                                OverloadCandidateSet *CandidateSet,
                                Expr *Range, ExprResult *CallExpr) {
  Scope *S = nullptr;

  CandidateSet->clear(OverloadCandidateSet::CSK_Normal);
  if (!MemberLookup.empty()) {
    ExprResult MemberRef =
        BuildMemberReferenceExpr(Range, Range->getType(), Loc,
                                 /*IsPtr=*/false, CXXScopeSpec(),
                                 /*TemplateKWLoc=*/SourceLocation(),
                                 /*FirstQualifierInScope=*/nullptr,
                                 MemberLookup,
                                 /*TemplateArgs=*/nullptr, S);
    if (MemberRef.isInvalid()) {
      *CallExpr = ExprError();
      return FRS_DiagnosticIssued;
    }
    *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
    if (CallExpr->isInvalid()) {
      *CallExpr = ExprError();
      return FRS_DiagnosticIssued;
    }
  } else {
    ExprResult FnR = CreateUnresolvedLookupExpr(/*NamingClass=*/nullptr,
                                                NestedNameSpecifierLoc(),
                                                NameInfo, UnresolvedSet<0>());
    if (FnR.isInvalid())
      return FRS_DiagnosticIssued;
    UnresolvedLookupExpr *Fn = cast<UnresolvedLookupExpr>(FnR.get());

    bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
                                                    CandidateSet, CallExpr);
    if (CandidateSet->empty() || CandidateSetError) {
      *CallExpr = ExprError();
      return FRS_NoViableFunction;
    }
    OverloadCandidateSet::iterator Best;
    OverloadingResult OverloadResult =
        CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best);

    if (OverloadResult == OR_No_Viable_Function) {
      *CallExpr = ExprError();
      return FRS_NoViableFunction;
    }
    *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
                                         Loc, nullptr, CandidateSet, &Best,
                                         OverloadResult,
                                         /*AllowTypoCorrection=*/false);
    if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
      *CallExpr = ExprError();
      return FRS_DiagnosticIssued;
    }
  }
  return FRS_Success;
}


/// FixOverloadedFunctionReference - E is an expression that refers to
/// a C++ overloaded function (possibly with some parentheses and
/// perhaps a '&' around it). We have resolved the overloaded function
/// to the function declaration Fn, so patch up the expression E to
/// refer (possibly indirectly) to Fn. Returns the new expr.
Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
                                           FunctionDecl *Fn) {
  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
                                                   Found, Fn);
    if (SubExpr == PE->getSubExpr())
      return PE;

    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
  }

  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
                                                   Found, Fn);
    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
                               SubExpr->getType()) &&
           "Implicit cast type cannot be determined from overload");
    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
    if (SubExpr == ICE->getSubExpr())
      return ICE;

    return ImplicitCastExpr::Create(Context, ICE->getType(), ICE->getCastKind(),
                                    SubExpr, nullptr, ICE->getValueKind(),
                                    CurFPFeatureOverrides());
  }

  if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
    if (!GSE->isResultDependent()) {
      Expr *SubExpr =
          FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn);
      if (SubExpr == GSE->getResultExpr())
        return GSE;

      // Replace the resulting type information before rebuilding the generic
      // selection expression.
      ArrayRef<Expr *> A = GSE->getAssocExprs();
      SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end());
      unsigned ResultIdx = GSE->getResultIndex();
      AssocExprs[ResultIdx] = SubExpr;

      return GenericSelectionExpr::Create(
          Context, GSE->getGenericLoc(), GSE->getControllingExpr(),
          GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(),
          GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(),
          ResultIdx);
    }
    // Rather than fall through to the unreachable, return the original generic
    // selection expression.
    return GSE;
  }

  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
    assert(UnOp->getOpcode() == UO_AddrOf &&
           "Can only take the address of an overloaded function");
    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
      if (Method->isStatic()) {
        // Do nothing: static member functions aren't any different
        // from non-member functions.
      } else {
        // Fix the subexpression, which really has to be an
        // UnresolvedLookupExpr holding an overloaded member function
        // or template.
        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
                                                       Found, Fn);
        if (SubExpr == UnOp->getSubExpr())
          return UnOp;

        assert(isa<DeclRefExpr>(SubExpr)
               && "fixed to something other than a decl ref");
        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
               && "fixed to a member ref with no nested name qualifier");

        // We have taken the address of a pointer to member
        // function. Perform the computation here so that we get the
        // appropriate pointer to member type.
        QualType ClassType
          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
        QualType MemPtrType
          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
        // Under the MS ABI, lock down the inheritance model now.
        if (Context.getTargetInfo().getCXXABI().isMicrosoft())
          (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);

        return UnaryOperator::Create(
            Context, SubExpr, UO_AddrOf, MemPtrType, VK_PRValue, OK_Ordinary,
            UnOp->getOperatorLoc(), false, CurFPFeatureOverrides());
      }
    }
    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
                                                   Found, Fn);
    if (SubExpr == UnOp->getSubExpr())
      return UnOp;

    return UnaryOperator::Create(
        Context, SubExpr, UO_AddrOf, Context.getPointerType(SubExpr->getType()),
        VK_PRValue, OK_Ordinary, UnOp->getOperatorLoc(), false,
        CurFPFeatureOverrides());
  }

  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
    // FIXME: avoid copy.
    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
    if (ULE->hasExplicitTemplateArgs()) {
      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
      TemplateArgs = &TemplateArgsBuffer;
    }

    DeclRefExpr *DRE =
        BuildDeclRefExpr(Fn, Fn->getType(), VK_LValue, ULE->getNameInfo(),
                         ULE->getQualifierLoc(), Found.getDecl(),
                         ULE->getTemplateKeywordLoc(), TemplateArgs);
    DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
    return DRE;
  }

  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
    // FIXME: avoid copy.
    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
    if (MemExpr->hasExplicitTemplateArgs()) {
      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
      TemplateArgs = &TemplateArgsBuffer;
    }

    Expr *Base;

    // If we're filling in a static method where we used to have an
    // implicit member access, rewrite to a simple decl ref.
    if (MemExpr->isImplicitAccess()) {
      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
        DeclRefExpr *DRE = BuildDeclRefExpr(
            Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(),
            MemExpr->getQualifierLoc(), Found.getDecl(),
            MemExpr->getTemplateKeywordLoc(), TemplateArgs);
        DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
        return DRE;
      } else {
        SourceLocation Loc = MemExpr->getMemberLoc();
        if (MemExpr->getQualifier())
          Loc = MemExpr->getQualifierLoc().getBeginLoc();
        Base =
            BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true);
      }
    } else
      Base = MemExpr->getBase();

    ExprValueKind valueKind;
    QualType type;
    if (cast<CXXMethodDecl>(Fn)->isStatic()) {
      valueKind = VK_LValue;
      type = Fn->getType();
    } else {
      valueKind = VK_PRValue;
      type = Context.BoundMemberTy;
    }

    return BuildMemberExpr(
        Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
        MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
        /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(),
        type, valueKind, OK_Ordinary, TemplateArgs);
  }

  llvm_unreachable("Invalid reference to overloaded function");
}

ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
                                                DeclAccessPair Found,
                                                FunctionDecl *Fn) {
  return FixOverloadedFunctionReference(E.get(), Found, Fn);
}

bool clang::shouldEnforceArgLimit(bool PartialOverloading,
                                  FunctionDecl *Function) {
  if (!PartialOverloading || !Function)
    return true;
  if (Function->isVariadic())
    return false;
  if (const auto *Proto =
          dyn_cast<FunctionProtoType>(Function->getFunctionType()))
    if (Proto->isTemplateVariadic())
      return false;
  if (auto *Pattern = Function->getTemplateInstantiationPattern())
    if (const auto *Proto =
            dyn_cast<FunctionProtoType>(Pattern->getFunctionType()))
      if (Proto->isTemplateVariadic())
        return false;
  return true;
}