aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang14/lib/Sema/SemaLookup.cpp
blob: af6ee24240ceb8dc749c95bb3265375e3430d470 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file implements name lookup for C, C++, Objective-C, and
//  Objective-C++.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/ASTContext.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclLookups.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/ModuleLoader.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Overload.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/TemplateDeduction.h"
#include "clang/Sema/TypoCorrection.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/ADT/edit_distance.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <iterator>
#include <list>
#include <set>
#include <utility>
#include <vector>

#include "OpenCLBuiltins.inc"

using namespace clang;
using namespace sema;

namespace {
  class UnqualUsingEntry {
    const DeclContext *Nominated;
    const DeclContext *CommonAncestor;

  public:
    UnqualUsingEntry(const DeclContext *Nominated,
                     const DeclContext *CommonAncestor)
      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
    }

    const DeclContext *getCommonAncestor() const {
      return CommonAncestor;
    }

    const DeclContext *getNominatedNamespace() const {
      return Nominated;
    }

    // Sort by the pointer value of the common ancestor.
    struct Comparator {
      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
        return L.getCommonAncestor() < R.getCommonAncestor();
      }

      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
        return E.getCommonAncestor() < DC;
      }

      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
        return DC < E.getCommonAncestor();
      }
    };
  };

  /// A collection of using directives, as used by C++ unqualified
  /// lookup.
  class UnqualUsingDirectiveSet {
    Sema &SemaRef;

    typedef SmallVector<UnqualUsingEntry, 8> ListTy;

    ListTy list;
    llvm::SmallPtrSet<DeclContext*, 8> visited;

  public:
    UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}

    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
      // C++ [namespace.udir]p1:
      //   During unqualified name lookup, the names appear as if they
      //   were declared in the nearest enclosing namespace which contains
      //   both the using-directive and the nominated namespace.
      DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
      assert(InnermostFileDC && InnermostFileDC->isFileContext());

      for (; S; S = S->getParent()) {
        // C++ [namespace.udir]p1:
        //   A using-directive shall not appear in class scope, but may
        //   appear in namespace scope or in block scope.
        DeclContext *Ctx = S->getEntity();
        if (Ctx && Ctx->isFileContext()) {
          visit(Ctx, Ctx);
        } else if (!Ctx || Ctx->isFunctionOrMethod()) {
          for (auto *I : S->using_directives())
            if (SemaRef.isVisible(I))
              visit(I, InnermostFileDC);
        }
      }
    }

    // Visits a context and collect all of its using directives
    // recursively.  Treats all using directives as if they were
    // declared in the context.
    //
    // A given context is only every visited once, so it is important
    // that contexts be visited from the inside out in order to get
    // the effective DCs right.
    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
      if (!visited.insert(DC).second)
        return;

      addUsingDirectives(DC, EffectiveDC);
    }

    // Visits a using directive and collects all of its using
    // directives recursively.  Treats all using directives as if they
    // were declared in the effective DC.
    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
      DeclContext *NS = UD->getNominatedNamespace();
      if (!visited.insert(NS).second)
        return;

      addUsingDirective(UD, EffectiveDC);
      addUsingDirectives(NS, EffectiveDC);
    }

    // Adds all the using directives in a context (and those nominated
    // by its using directives, transitively) as if they appeared in
    // the given effective context.
    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
      SmallVector<DeclContext*, 4> queue;
      while (true) {
        for (auto UD : DC->using_directives()) {
          DeclContext *NS = UD->getNominatedNamespace();
          if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
            addUsingDirective(UD, EffectiveDC);
            queue.push_back(NS);
          }
        }

        if (queue.empty())
          return;

        DC = queue.pop_back_val();
      }
    }

    // Add a using directive as if it had been declared in the given
    // context.  This helps implement C++ [namespace.udir]p3:
    //   The using-directive is transitive: if a scope contains a
    //   using-directive that nominates a second namespace that itself
    //   contains using-directives, the effect is as if the
    //   using-directives from the second namespace also appeared in
    //   the first.
    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
      // Find the common ancestor between the effective context and
      // the nominated namespace.
      DeclContext *Common = UD->getNominatedNamespace();
      while (!Common->Encloses(EffectiveDC))
        Common = Common->getParent();
      Common = Common->getPrimaryContext();

      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
    }

    void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }

    typedef ListTy::const_iterator const_iterator;

    const_iterator begin() const { return list.begin(); }
    const_iterator end() const { return list.end(); }

    llvm::iterator_range<const_iterator>
    getNamespacesFor(DeclContext *DC) const {
      return llvm::make_range(std::equal_range(begin(), end(),
                                               DC->getPrimaryContext(),
                                               UnqualUsingEntry::Comparator()));
    }
  };
} // end anonymous namespace

// Retrieve the set of identifier namespaces that correspond to a
// specific kind of name lookup.
static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
                               bool CPlusPlus,
                               bool Redeclaration) {
  unsigned IDNS = 0;
  switch (NameKind) {
  case Sema::LookupObjCImplicitSelfParam:
  case Sema::LookupOrdinaryName:
  case Sema::LookupRedeclarationWithLinkage:
  case Sema::LookupLocalFriendName:
  case Sema::LookupDestructorName:
    IDNS = Decl::IDNS_Ordinary;
    if (CPlusPlus) {
      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
      if (Redeclaration)
        IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
    }
    if (Redeclaration)
      IDNS |= Decl::IDNS_LocalExtern;
    break;

  case Sema::LookupOperatorName:
    // Operator lookup is its own crazy thing;  it is not the same
    // as (e.g.) looking up an operator name for redeclaration.
    assert(!Redeclaration && "cannot do redeclaration operator lookup");
    IDNS = Decl::IDNS_NonMemberOperator;
    break;

  case Sema::LookupTagName:
    if (CPlusPlus) {
      IDNS = Decl::IDNS_Type;

      // When looking for a redeclaration of a tag name, we add:
      // 1) TagFriend to find undeclared friend decls
      // 2) Namespace because they can't "overload" with tag decls.
      // 3) Tag because it includes class templates, which can't
      //    "overload" with tag decls.
      if (Redeclaration)
        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
    } else {
      IDNS = Decl::IDNS_Tag;
    }
    break;

  case Sema::LookupLabel:
    IDNS = Decl::IDNS_Label;
    break;

  case Sema::LookupMemberName:
    IDNS = Decl::IDNS_Member;
    if (CPlusPlus)
      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
    break;

  case Sema::LookupNestedNameSpecifierName:
    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
    break;

  case Sema::LookupNamespaceName:
    IDNS = Decl::IDNS_Namespace;
    break;

  case Sema::LookupUsingDeclName:
    assert(Redeclaration && "should only be used for redecl lookup");
    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
           Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
           Decl::IDNS_LocalExtern;
    break;

  case Sema::LookupObjCProtocolName:
    IDNS = Decl::IDNS_ObjCProtocol;
    break;

  case Sema::LookupOMPReductionName:
    IDNS = Decl::IDNS_OMPReduction;
    break;

  case Sema::LookupOMPMapperName:
    IDNS = Decl::IDNS_OMPMapper;
    break;

  case Sema::LookupAnyName:
    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
      | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
      | Decl::IDNS_Type;
    break;
  }
  return IDNS;
}

void LookupResult::configure() {
  IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
                 isForRedeclaration());

  // If we're looking for one of the allocation or deallocation
  // operators, make sure that the implicitly-declared new and delete
  // operators can be found.
  switch (NameInfo.getName().getCXXOverloadedOperator()) {
  case OO_New:
  case OO_Delete:
  case OO_Array_New:
  case OO_Array_Delete:
    getSema().DeclareGlobalNewDelete();
    break;

  default:
    break;
  }

  // Compiler builtins are always visible, regardless of where they end
  // up being declared.
  if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
    if (unsigned BuiltinID = Id->getBuiltinID()) {
      if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
        AllowHidden = true;
    }
  }
}

bool LookupResult::checkDebugAssumptions() const {
  // This function is never called by NDEBUG builds.
  assert(ResultKind != NotFound || Decls.size() == 0);
  assert(ResultKind != Found || Decls.size() == 1);
  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
         (Decls.size() == 1 &&
          isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
  assert(ResultKind != FoundUnresolvedValue || checkUnresolved());
  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
         (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
                                Ambiguity == AmbiguousBaseSubobjectTypes)));
  assert((Paths != nullptr) == (ResultKind == Ambiguous &&
                                (Ambiguity == AmbiguousBaseSubobjectTypes ||
                                 Ambiguity == AmbiguousBaseSubobjects)));
  return true;
}

// Necessary because CXXBasePaths is not complete in Sema.h
void LookupResult::deletePaths(CXXBasePaths *Paths) {
  delete Paths;
}

/// Get a representative context for a declaration such that two declarations
/// will have the same context if they were found within the same scope.
static DeclContext *getContextForScopeMatching(Decl *D) {
  // For function-local declarations, use that function as the context. This
  // doesn't account for scopes within the function; the caller must deal with
  // those.
  DeclContext *DC = D->getLexicalDeclContext();
  if (DC->isFunctionOrMethod())
    return DC;

  // Otherwise, look at the semantic context of the declaration. The
  // declaration must have been found there.
  return D->getDeclContext()->getRedeclContext();
}

/// Determine whether \p D is a better lookup result than \p Existing,
/// given that they declare the same entity.
static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
                                    NamedDecl *D, NamedDecl *Existing) {
  // When looking up redeclarations of a using declaration, prefer a using
  // shadow declaration over any other declaration of the same entity.
  if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
      !isa<UsingShadowDecl>(Existing))
    return true;

  auto *DUnderlying = D->getUnderlyingDecl();
  auto *EUnderlying = Existing->getUnderlyingDecl();

  // If they have different underlying declarations, prefer a typedef over the
  // original type (this happens when two type declarations denote the same
  // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
  // might carry additional semantic information, such as an alignment override.
  // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
  // declaration over a typedef. Also prefer a tag over a typedef for
  // destructor name lookup because in some contexts we only accept a
  // class-name in a destructor declaration.
  if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
    assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
    bool HaveTag = isa<TagDecl>(EUnderlying);
    bool WantTag =
        Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName;
    return HaveTag != WantTag;
  }

  // Pick the function with more default arguments.
  // FIXME: In the presence of ambiguous default arguments, we should keep both,
  //        so we can diagnose the ambiguity if the default argument is needed.
  //        See C++ [over.match.best]p3.
  if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
    auto *EFD = cast<FunctionDecl>(EUnderlying);
    unsigned DMin = DFD->getMinRequiredArguments();
    unsigned EMin = EFD->getMinRequiredArguments();
    // If D has more default arguments, it is preferred.
    if (DMin != EMin)
      return DMin < EMin;
    // FIXME: When we track visibility for default function arguments, check
    // that we pick the declaration with more visible default arguments.
  }

  // Pick the template with more default template arguments.
  if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
    auto *ETD = cast<TemplateDecl>(EUnderlying);
    unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
    unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
    // If D has more default arguments, it is preferred. Note that default
    // arguments (and their visibility) is monotonically increasing across the
    // redeclaration chain, so this is a quick proxy for "is more recent".
    if (DMin != EMin)
      return DMin < EMin;
    // If D has more *visible* default arguments, it is preferred. Note, an
    // earlier default argument being visible does not imply that a later
    // default argument is visible, so we can't just check the first one.
    for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
        I != N; ++I) {
      if (!S.hasVisibleDefaultArgument(
              ETD->getTemplateParameters()->getParam(I)) &&
          S.hasVisibleDefaultArgument(
              DTD->getTemplateParameters()->getParam(I)))
        return true;
    }
  }

  // VarDecl can have incomplete array types, prefer the one with more complete
  // array type.
  if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
    VarDecl *EVD = cast<VarDecl>(EUnderlying);
    if (EVD->getType()->isIncompleteType() &&
        !DVD->getType()->isIncompleteType()) {
      // Prefer the decl with a more complete type if visible.
      return S.isVisible(DVD);
    }
    return false; // Avoid picking up a newer decl, just because it was newer.
  }

  // For most kinds of declaration, it doesn't really matter which one we pick.
  if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
    // If the existing declaration is hidden, prefer the new one. Otherwise,
    // keep what we've got.
    return !S.isVisible(Existing);
  }

  // Pick the newer declaration; it might have a more precise type.
  for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
       Prev = Prev->getPreviousDecl())
    if (Prev == EUnderlying)
      return true;
  return false;
}

/// Determine whether \p D can hide a tag declaration.
static bool canHideTag(NamedDecl *D) {
  // C++ [basic.scope.declarative]p4:
  //   Given a set of declarations in a single declarative region [...]
  //   exactly one declaration shall declare a class name or enumeration name
  //   that is not a typedef name and the other declarations shall all refer to
  //   the same variable, non-static data member, or enumerator, or all refer
  //   to functions and function templates; in this case the class name or
  //   enumeration name is hidden.
  // C++ [basic.scope.hiding]p2:
  //   A class name or enumeration name can be hidden by the name of a
  //   variable, data member, function, or enumerator declared in the same
  //   scope.
  // An UnresolvedUsingValueDecl always instantiates to one of these.
  D = D->getUnderlyingDecl();
  return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
         isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
         isa<UnresolvedUsingValueDecl>(D);
}

/// Resolves the result kind of this lookup.
void LookupResult::resolveKind() {
  unsigned N = Decls.size();

  // Fast case: no possible ambiguity.
  if (N == 0) {
    assert(ResultKind == NotFound ||
           ResultKind == NotFoundInCurrentInstantiation);
    return;
  }

  // If there's a single decl, we need to examine it to decide what
  // kind of lookup this is.
  if (N == 1) {
    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
    if (isa<FunctionTemplateDecl>(D))
      ResultKind = FoundOverloaded;
    else if (isa<UnresolvedUsingValueDecl>(D))
      ResultKind = FoundUnresolvedValue;
    return;
  }

  // Don't do any extra resolution if we've already resolved as ambiguous.
  if (ResultKind == Ambiguous) return;

  llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
  llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;

  bool Ambiguous = false;
  bool HasTag = false, HasFunction = false;
  bool HasFunctionTemplate = false, HasUnresolved = false;
  NamedDecl *HasNonFunction = nullptr;

  llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;

  unsigned UniqueTagIndex = 0;

  unsigned I = 0;
  while (I < N) {
    NamedDecl *D = Decls[I]->getUnderlyingDecl();
    D = cast<NamedDecl>(D->getCanonicalDecl());

    // Ignore an invalid declaration unless it's the only one left.
    if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
      Decls[I] = Decls[--N];
      continue;
    }

    llvm::Optional<unsigned> ExistingI;

    // Redeclarations of types via typedef can occur both within a scope
    // and, through using declarations and directives, across scopes. There is
    // no ambiguity if they all refer to the same type, so unique based on the
    // canonical type.
    if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
      QualType T = getSema().Context.getTypeDeclType(TD);
      auto UniqueResult = UniqueTypes.insert(
          std::make_pair(getSema().Context.getCanonicalType(T), I));
      if (!UniqueResult.second) {
        // The type is not unique.
        ExistingI = UniqueResult.first->second;
      }
    }

    // For non-type declarations, check for a prior lookup result naming this
    // canonical declaration.
    if (!ExistingI) {
      auto UniqueResult = Unique.insert(std::make_pair(D, I));
      if (!UniqueResult.second) {
        // We've seen this entity before.
        ExistingI = UniqueResult.first->second;
      }
    }

    if (ExistingI) {
      // This is not a unique lookup result. Pick one of the results and
      // discard the other.
      if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
                                  Decls[*ExistingI]))
        Decls[*ExistingI] = Decls[I];
      Decls[I] = Decls[--N];
      continue;
    }

    // Otherwise, do some decl type analysis and then continue.

    if (isa<UnresolvedUsingValueDecl>(D)) {
      HasUnresolved = true;
    } else if (isa<TagDecl>(D)) {
      if (HasTag)
        Ambiguous = true;
      UniqueTagIndex = I;
      HasTag = true;
    } else if (isa<FunctionTemplateDecl>(D)) {
      HasFunction = true;
      HasFunctionTemplate = true;
    } else if (isa<FunctionDecl>(D)) {
      HasFunction = true;
    } else {
      if (HasNonFunction) {
        // If we're about to create an ambiguity between two declarations that
        // are equivalent, but one is an internal linkage declaration from one
        // module and the other is an internal linkage declaration from another
        // module, just skip it.
        if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
                                                             D)) {
          EquivalentNonFunctions.push_back(D);
          Decls[I] = Decls[--N];
          continue;
        }

        Ambiguous = true;
      }
      HasNonFunction = D;
    }
    I++;
  }

  // C++ [basic.scope.hiding]p2:
  //   A class name or enumeration name can be hidden by the name of
  //   an object, function, or enumerator declared in the same
  //   scope. If a class or enumeration name and an object, function,
  //   or enumerator are declared in the same scope (in any order)
  //   with the same name, the class or enumeration name is hidden
  //   wherever the object, function, or enumerator name is visible.
  // But it's still an error if there are distinct tag types found,
  // even if they're not visible. (ref?)
  if (N > 1 && HideTags && HasTag && !Ambiguous &&
      (HasFunction || HasNonFunction || HasUnresolved)) {
    NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
    if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
        getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
            getContextForScopeMatching(OtherDecl)) &&
        canHideTag(OtherDecl))
      Decls[UniqueTagIndex] = Decls[--N];
    else
      Ambiguous = true;
  }

  // FIXME: This diagnostic should really be delayed until we're done with
  // the lookup result, in case the ambiguity is resolved by the caller.
  if (!EquivalentNonFunctions.empty() && !Ambiguous)
    getSema().diagnoseEquivalentInternalLinkageDeclarations(
        getNameLoc(), HasNonFunction, EquivalentNonFunctions);

  Decls.truncate(N);

  if (HasNonFunction && (HasFunction || HasUnresolved))
    Ambiguous = true;

  if (Ambiguous)
    setAmbiguous(LookupResult::AmbiguousReference);
  else if (HasUnresolved)
    ResultKind = LookupResult::FoundUnresolvedValue;
  else if (N > 1 || HasFunctionTemplate)
    ResultKind = LookupResult::FoundOverloaded;
  else
    ResultKind = LookupResult::Found;
}

void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
  CXXBasePaths::const_paths_iterator I, E;
  for (I = P.begin(), E = P.end(); I != E; ++I)
    for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE;
         ++DI)
      addDecl(*DI);
}

void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
  Paths = new CXXBasePaths;
  Paths->swap(P);
  addDeclsFromBasePaths(*Paths);
  resolveKind();
  setAmbiguous(AmbiguousBaseSubobjects);
}

void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
  Paths = new CXXBasePaths;
  Paths->swap(P);
  addDeclsFromBasePaths(*Paths);
  resolveKind();
  setAmbiguous(AmbiguousBaseSubobjectTypes);
}

void LookupResult::print(raw_ostream &Out) {
  Out << Decls.size() << " result(s)";
  if (isAmbiguous()) Out << ", ambiguous";
  if (Paths) Out << ", base paths present";

  for (iterator I = begin(), E = end(); I != E; ++I) {
    Out << "\n";
    (*I)->print(Out, 2);
  }
}

LLVM_DUMP_METHOD void LookupResult::dump() {
  llvm::errs() << "lookup results for " << getLookupName().getAsString()
               << ":\n";
  for (NamedDecl *D : *this)
    D->dump();
}

/// Diagnose a missing builtin type.
static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass,
                                           llvm::StringRef Name) {
  S.Diag(SourceLocation(), diag::err_opencl_type_not_found)
      << TypeClass << Name;
  return S.Context.VoidTy;
}

/// Lookup an OpenCL enum type.
static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) {
  LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
                      Sema::LookupTagName);
  S.LookupName(Result, S.TUScope);
  if (Result.empty())
    return diagOpenCLBuiltinTypeError(S, "enum", Name);
  EnumDecl *Decl = Result.getAsSingle<EnumDecl>();
  if (!Decl)
    return diagOpenCLBuiltinTypeError(S, "enum", Name);
  return S.Context.getEnumType(Decl);
}

/// Lookup an OpenCL typedef type.
static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) {
  LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
                      Sema::LookupOrdinaryName);
  S.LookupName(Result, S.TUScope);
  if (Result.empty())
    return diagOpenCLBuiltinTypeError(S, "typedef", Name);
  TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>();
  if (!Decl)
    return diagOpenCLBuiltinTypeError(S, "typedef", Name);
  return S.Context.getTypedefType(Decl);
}

/// Get the QualType instances of the return type and arguments for an OpenCL
/// builtin function signature.
/// \param S (in) The Sema instance.
/// \param OpenCLBuiltin (in) The signature currently handled.
/// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
///        type used as return type or as argument.
///        Only meaningful for generic types, otherwise equals 1.
/// \param RetTypes (out) List of the possible return types.
/// \param ArgTypes (out) List of the possible argument types.  For each
///        argument, ArgTypes contains QualTypes for the Cartesian product
///        of (vector sizes) x (types) .
static void GetQualTypesForOpenCLBuiltin(
    Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt,
    SmallVector<QualType, 1> &RetTypes,
    SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
  // Get the QualType instances of the return types.
  unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
  OCL2Qual(S, TypeTable[Sig], RetTypes);
  GenTypeMaxCnt = RetTypes.size();

  // Get the QualType instances of the arguments.
  // First type is the return type, skip it.
  for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
    SmallVector<QualType, 1> Ty;
    OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]],
             Ty);
    GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
    ArgTypes.push_back(std::move(Ty));
  }
}

/// Create a list of the candidate function overloads for an OpenCL builtin
/// function.
/// \param Context (in) The ASTContext instance.
/// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
///        type used as return type or as argument.
///        Only meaningful for generic types, otherwise equals 1.
/// \param FunctionList (out) List of FunctionTypes.
/// \param RetTypes (in) List of the possible return types.
/// \param ArgTypes (in) List of the possible types for the arguments.
static void GetOpenCLBuiltinFctOverloads(
    ASTContext &Context, unsigned GenTypeMaxCnt,
    std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
    SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
  FunctionProtoType::ExtProtoInfo PI(
      Context.getDefaultCallingConvention(false, false, true));
  PI.Variadic = false;

  // Do not attempt to create any FunctionTypes if there are no return types,
  // which happens when a type belongs to a disabled extension.
  if (RetTypes.size() == 0)
    return;

  // Create FunctionTypes for each (gen)type.
  for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
    SmallVector<QualType, 5> ArgList;

    for (unsigned A = 0; A < ArgTypes.size(); A++) {
      // Bail out if there is an argument that has no available types.
      if (ArgTypes[A].size() == 0)
        return;

      // Builtins such as "max" have an "sgentype" argument that represents
      // the corresponding scalar type of a gentype.  The number of gentypes
      // must be a multiple of the number of sgentypes.
      assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
             "argument type count not compatible with gentype type count");
      unsigned Idx = IGenType % ArgTypes[A].size();
      ArgList.push_back(ArgTypes[A][Idx]);
    }

    FunctionList.push_back(Context.getFunctionType(
        RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
  }
}

/// When trying to resolve a function name, if isOpenCLBuiltin() returns a
/// non-null <Index, Len> pair, then the name is referencing an OpenCL
/// builtin function.  Add all candidate signatures to the LookUpResult.
///
/// \param S (in) The Sema instance.
/// \param LR (inout) The LookupResult instance.
/// \param II (in) The identifier being resolved.
/// \param FctIndex (in) Starting index in the BuiltinTable.
/// \param Len (in) The signature list has Len elements.
static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
                                                  IdentifierInfo *II,
                                                  const unsigned FctIndex,
                                                  const unsigned Len) {
  // The builtin function declaration uses generic types (gentype).
  bool HasGenType = false;

  // Maximum number of types contained in a generic type used as return type or
  // as argument.  Only meaningful for generic types, otherwise equals 1.
  unsigned GenTypeMaxCnt;

  ASTContext &Context = S.Context;

  for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
    const OpenCLBuiltinStruct &OpenCLBuiltin =
        BuiltinTable[FctIndex + SignatureIndex];

    // Ignore this builtin function if it is not available in the currently
    // selected language version.
    if (!isOpenCLVersionContainedInMask(Context.getLangOpts(),
                                        OpenCLBuiltin.Versions))
      continue;

    // Ignore this builtin function if it carries an extension macro that is
    // not defined. This indicates that the extension is not supported by the
    // target, so the builtin function should not be available.
    StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension];
    if (!Extensions.empty()) {
      SmallVector<StringRef, 2> ExtVec;
      Extensions.split(ExtVec, " ");
      bool AllExtensionsDefined = true;
      for (StringRef Ext : ExtVec) {
        if (!S.getPreprocessor().isMacroDefined(Ext)) {
          AllExtensionsDefined = false;
          break;
        }
      }
      if (!AllExtensionsDefined)
        continue;
    }

    SmallVector<QualType, 1> RetTypes;
    SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;

    // Obtain QualType lists for the function signature.
    GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes,
                                 ArgTypes);
    if (GenTypeMaxCnt > 1) {
      HasGenType = true;
    }

    // Create function overload for each type combination.
    std::vector<QualType> FunctionList;
    GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
                                 ArgTypes);

    SourceLocation Loc = LR.getNameLoc();
    DeclContext *Parent = Context.getTranslationUnitDecl();
    FunctionDecl *NewOpenCLBuiltin;

    for (const auto &FTy : FunctionList) {
      NewOpenCLBuiltin = FunctionDecl::Create(
          Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern,
          S.getCurFPFeatures().isFPConstrained(), false,
          FTy->isFunctionProtoType());
      NewOpenCLBuiltin->setImplicit();

      // Create Decl objects for each parameter, adding them to the
      // FunctionDecl.
      const auto *FP = cast<FunctionProtoType>(FTy);
      SmallVector<ParmVarDecl *, 4> ParmList;
      for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
        ParmVarDecl *Parm = ParmVarDecl::Create(
            Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
            nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr);
        Parm->setScopeInfo(0, IParm);
        ParmList.push_back(Parm);
      }
      NewOpenCLBuiltin->setParams(ParmList);

      // Add function attributes.
      if (OpenCLBuiltin.IsPure)
        NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
      if (OpenCLBuiltin.IsConst)
        NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
      if (OpenCLBuiltin.IsConv)
        NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));

      if (!S.getLangOpts().OpenCLCPlusPlus)
        NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));

      LR.addDecl(NewOpenCLBuiltin);
    }
  }

  // If we added overloads, need to resolve the lookup result.
  if (Len > 1 || HasGenType)
    LR.resolveKind();
}

/// Lookup a builtin function, when name lookup would otherwise
/// fail.
bool Sema::LookupBuiltin(LookupResult &R) {
  Sema::LookupNameKind NameKind = R.getLookupKind();

  // If we didn't find a use of this identifier, and if the identifier
  // corresponds to a compiler builtin, create the decl object for the builtin
  // now, injecting it into translation unit scope, and return it.
  if (NameKind == Sema::LookupOrdinaryName ||
      NameKind == Sema::LookupRedeclarationWithLinkage) {
    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
    if (II) {
      if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
        if (II == getASTContext().getMakeIntegerSeqName()) {
          R.addDecl(getASTContext().getMakeIntegerSeqDecl());
          return true;
        } else if (II == getASTContext().getTypePackElementName()) {
          R.addDecl(getASTContext().getTypePackElementDecl());
          return true;
        }
      }

      // Check if this is an OpenCL Builtin, and if so, insert its overloads.
      if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
        auto Index = isOpenCLBuiltin(II->getName());
        if (Index.first) {
          InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
                                                Index.second);
          return true;
        }
      }

      // If this is a builtin on this (or all) targets, create the decl.
      if (unsigned BuiltinID = II->getBuiltinID()) {
        // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
        // library functions like 'malloc'. Instead, we'll just error.
        if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
          return false;

        if (NamedDecl *D =
                LazilyCreateBuiltin(II, BuiltinID, TUScope,
                                    R.isForRedeclaration(), R.getNameLoc())) {
          R.addDecl(D);
          return true;
        }
      }
    }
  }

  return false;
}

/// Looks up the declaration of "struct objc_super" and
/// saves it for later use in building builtin declaration of
/// objc_msgSendSuper and objc_msgSendSuper_stret.
static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) {
  ASTContext &Context = Sema.Context;
  LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(),
                      Sema::LookupTagName);
  Sema.LookupName(Result, S);
  if (Result.getResultKind() == LookupResult::Found)
    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
      Context.setObjCSuperType(Context.getTagDeclType(TD));
}

void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) {
  if (ID == Builtin::BIobjc_msgSendSuper)
    LookupPredefedObjCSuperType(*this, S);
}

/// Determine whether we can declare a special member function within
/// the class at this point.
static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
  // We need to have a definition for the class.
  if (!Class->getDefinition() || Class->isDependentContext())
    return false;

  // We can't be in the middle of defining the class.
  return !Class->isBeingDefined();
}

void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
  if (!CanDeclareSpecialMemberFunction(Class))
    return;

  // If the default constructor has not yet been declared, do so now.
  if (Class->needsImplicitDefaultConstructor())
    DeclareImplicitDefaultConstructor(Class);

  // If the copy constructor has not yet been declared, do so now.
  if (Class->needsImplicitCopyConstructor())
    DeclareImplicitCopyConstructor(Class);

  // If the copy assignment operator has not yet been declared, do so now.
  if (Class->needsImplicitCopyAssignment())
    DeclareImplicitCopyAssignment(Class);

  if (getLangOpts().CPlusPlus11) {
    // If the move constructor has not yet been declared, do so now.
    if (Class->needsImplicitMoveConstructor())
      DeclareImplicitMoveConstructor(Class);

    // If the move assignment operator has not yet been declared, do so now.
    if (Class->needsImplicitMoveAssignment())
      DeclareImplicitMoveAssignment(Class);
  }

  // If the destructor has not yet been declared, do so now.
  if (Class->needsImplicitDestructor())
    DeclareImplicitDestructor(Class);
}

/// Determine whether this is the name of an implicitly-declared
/// special member function.
static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
  switch (Name.getNameKind()) {
  case DeclarationName::CXXConstructorName:
  case DeclarationName::CXXDestructorName:
    return true;

  case DeclarationName::CXXOperatorName:
    return Name.getCXXOverloadedOperator() == OO_Equal;

  default:
    break;
  }

  return false;
}

/// If there are any implicit member functions with the given name
/// that need to be declared in the given declaration context, do so.
static void DeclareImplicitMemberFunctionsWithName(Sema &S,
                                                   DeclarationName Name,
                                                   SourceLocation Loc,
                                                   const DeclContext *DC) {
  if (!DC)
    return;

  switch (Name.getNameKind()) {
  case DeclarationName::CXXConstructorName:
    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
        if (Record->needsImplicitDefaultConstructor())
          S.DeclareImplicitDefaultConstructor(Class);
        if (Record->needsImplicitCopyConstructor())
          S.DeclareImplicitCopyConstructor(Class);
        if (S.getLangOpts().CPlusPlus11 &&
            Record->needsImplicitMoveConstructor())
          S.DeclareImplicitMoveConstructor(Class);
      }
    break;

  case DeclarationName::CXXDestructorName:
    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
      if (Record->getDefinition() && Record->needsImplicitDestructor() &&
          CanDeclareSpecialMemberFunction(Record))
        S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
    break;

  case DeclarationName::CXXOperatorName:
    if (Name.getCXXOverloadedOperator() != OO_Equal)
      break;

    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
        if (Record->needsImplicitCopyAssignment())
          S.DeclareImplicitCopyAssignment(Class);
        if (S.getLangOpts().CPlusPlus11 &&
            Record->needsImplicitMoveAssignment())
          S.DeclareImplicitMoveAssignment(Class);
      }
    }
    break;

  case DeclarationName::CXXDeductionGuideName:
    S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
    break;

  default:
    break;
  }
}

// Adds all qualifying matches for a name within a decl context to the
// given lookup result.  Returns true if any matches were found.
static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
  bool Found = false;

  // Lazily declare C++ special member functions.
  if (S.getLangOpts().CPlusPlus)
    DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
                                           DC);

  // Perform lookup into this declaration context.
  DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
  for (NamedDecl *D : DR) {
    if ((D = R.getAcceptableDecl(D))) {
      R.addDecl(D);
      Found = true;
    }
  }

  if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
    return true;

  if (R.getLookupName().getNameKind()
        != DeclarationName::CXXConversionFunctionName ||
      R.getLookupName().getCXXNameType()->isDependentType() ||
      !isa<CXXRecordDecl>(DC))
    return Found;

  // C++ [temp.mem]p6:
  //   A specialization of a conversion function template is not found by
  //   name lookup. Instead, any conversion function templates visible in the
  //   context of the use are considered. [...]
  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
  if (!Record->isCompleteDefinition())
    return Found;

  // For conversion operators, 'operator auto' should only match
  // 'operator auto'.  Since 'auto' is not a type, it shouldn't be considered
  // as a candidate for template substitution.
  auto *ContainedDeducedType =
      R.getLookupName().getCXXNameType()->getContainedDeducedType();
  if (R.getLookupName().getNameKind() ==
          DeclarationName::CXXConversionFunctionName &&
      ContainedDeducedType && ContainedDeducedType->isUndeducedType())
    return Found;

  for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
         UEnd = Record->conversion_end(); U != UEnd; ++U) {
    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
    if (!ConvTemplate)
      continue;

    // When we're performing lookup for the purposes of redeclaration, just
    // add the conversion function template. When we deduce template
    // arguments for specializations, we'll end up unifying the return
    // type of the new declaration with the type of the function template.
    if (R.isForRedeclaration()) {
      R.addDecl(ConvTemplate);
      Found = true;
      continue;
    }

    // C++ [temp.mem]p6:
    //   [...] For each such operator, if argument deduction succeeds
    //   (14.9.2.3), the resulting specialization is used as if found by
    //   name lookup.
    //
    // When referencing a conversion function for any purpose other than
    // a redeclaration (such that we'll be building an expression with the
    // result), perform template argument deduction and place the
    // specialization into the result set. We do this to avoid forcing all
    // callers to perform special deduction for conversion functions.
    TemplateDeductionInfo Info(R.getNameLoc());
    FunctionDecl *Specialization = nullptr;

    const FunctionProtoType *ConvProto
      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
    assert(ConvProto && "Nonsensical conversion function template type");

    // Compute the type of the function that we would expect the conversion
    // function to have, if it were to match the name given.
    // FIXME: Calling convention!
    FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
    EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
    EPI.ExceptionSpec = EST_None;
    QualType ExpectedType
      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
                                            None, EPI);

    // Perform template argument deduction against the type that we would
    // expect the function to have.
    if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
                                            Specialization, Info)
          == Sema::TDK_Success) {
      R.addDecl(Specialization);
      Found = true;
    }
  }

  return Found;
}

// Performs C++ unqualified lookup into the given file context.
static bool
CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {

  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");

  // Perform direct name lookup into the LookupCtx.
  bool Found = LookupDirect(S, R, NS);

  // Perform direct name lookup into the namespaces nominated by the
  // using directives whose common ancestor is this namespace.
  for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
    if (LookupDirect(S, R, UUE.getNominatedNamespace()))
      Found = true;

  R.resolveKind();

  return Found;
}

static bool isNamespaceOrTranslationUnitScope(Scope *S) {
  if (DeclContext *Ctx = S->getEntity())
    return Ctx->isFileContext();
  return false;
}

/// Find the outer declaration context from this scope. This indicates the
/// context that we should search up to (exclusive) before considering the
/// parent of the specified scope.
static DeclContext *findOuterContext(Scope *S) {
  for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent())
    if (DeclContext *DC = OuterS->getLookupEntity())
      return DC;
  return nullptr;
}

namespace {
/// An RAII object to specify that we want to find block scope extern
/// declarations.
struct FindLocalExternScope {
  FindLocalExternScope(LookupResult &R)
      : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
                                 Decl::IDNS_LocalExtern) {
    R.setFindLocalExtern(R.getIdentifierNamespace() &
                         (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
  }
  void restore() {
    R.setFindLocalExtern(OldFindLocalExtern);
  }
  ~FindLocalExternScope() {
    restore();
  }
  LookupResult &R;
  bool OldFindLocalExtern;
};
} // end anonymous namespace

bool Sema::CppLookupName(LookupResult &R, Scope *S) {
  assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");

  DeclarationName Name = R.getLookupName();
  Sema::LookupNameKind NameKind = R.getLookupKind();

  // If this is the name of an implicitly-declared special member function,
  // go through the scope stack to implicitly declare
  if (isImplicitlyDeclaredMemberFunctionName(Name)) {
    for (Scope *PreS = S; PreS; PreS = PreS->getParent())
      if (DeclContext *DC = PreS->getEntity())
        DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
  }

  // Implicitly declare member functions with the name we're looking for, if in
  // fact we are in a scope where it matters.

  Scope *Initial = S;
  IdentifierResolver::iterator
    I = IdResolver.begin(Name),
    IEnd = IdResolver.end();

  // First we lookup local scope.
  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
  // ...During unqualified name lookup (3.4.1), the names appear as if
  // they were declared in the nearest enclosing namespace which contains
  // both the using-directive and the nominated namespace.
  // [Note: in this context, "contains" means "contains directly or
  // indirectly".
  //
  // For example:
  // namespace A { int i; }
  // void foo() {
  //   int i;
  //   {
  //     using namespace A;
  //     ++i; // finds local 'i', A::i appears at global scope
  //   }
  // }
  //
  UnqualUsingDirectiveSet UDirs(*this);
  bool VisitedUsingDirectives = false;
  bool LeftStartingScope = false;

  // When performing a scope lookup, we want to find local extern decls.
  FindLocalExternScope FindLocals(R);

  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
    bool SearchNamespaceScope = true;
    // Check whether the IdResolver has anything in this scope.
    for (; I != IEnd && S->isDeclScope(*I); ++I) {
      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
        if (NameKind == LookupRedeclarationWithLinkage &&
            !(*I)->isTemplateParameter()) {
          // If it's a template parameter, we still find it, so we can diagnose
          // the invalid redeclaration.

          // Determine whether this (or a previous) declaration is
          // out-of-scope.
          if (!LeftStartingScope && !Initial->isDeclScope(*I))
            LeftStartingScope = true;

          // If we found something outside of our starting scope that
          // does not have linkage, skip it.
          if (LeftStartingScope && !((*I)->hasLinkage())) {
            R.setShadowed();
            continue;
          }
        } else {
          // We found something in this scope, we should not look at the
          // namespace scope
          SearchNamespaceScope = false;
        }
        R.addDecl(ND);
      }
    }
    if (!SearchNamespaceScope) {
      R.resolveKind();
      if (S->isClassScope())
        if (CXXRecordDecl *Record =
                dyn_cast_or_null<CXXRecordDecl>(S->getEntity()))
          R.setNamingClass(Record);
      return true;
    }

    if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
      // C++11 [class.friend]p11:
      //   If a friend declaration appears in a local class and the name
      //   specified is an unqualified name, a prior declaration is
      //   looked up without considering scopes that are outside the
      //   innermost enclosing non-class scope.
      return false;
    }

    if (DeclContext *Ctx = S->getLookupEntity()) {
      DeclContext *OuterCtx = findOuterContext(S);
      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
        // We do not directly look into transparent contexts, since
        // those entities will be found in the nearest enclosing
        // non-transparent context.
        if (Ctx->isTransparentContext())
          continue;

        // We do not look directly into function or method contexts,
        // since all of the local variables and parameters of the
        // function/method are present within the Scope.
        if (Ctx->isFunctionOrMethod()) {
          // If we have an Objective-C instance method, look for ivars
          // in the corresponding interface.
          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
                ObjCInterfaceDecl *ClassDeclared;
                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
                                                 Name.getAsIdentifierInfo(),
                                                             ClassDeclared)) {
                  if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
                    R.addDecl(ND);
                    R.resolveKind();
                    return true;
                  }
                }
              }
          }

          continue;
        }

        // If this is a file context, we need to perform unqualified name
        // lookup considering using directives.
        if (Ctx->isFileContext()) {
          // If we haven't handled using directives yet, do so now.
          if (!VisitedUsingDirectives) {
            // Add using directives from this context up to the top level.
            for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
              if (UCtx->isTransparentContext())
                continue;

              UDirs.visit(UCtx, UCtx);
            }

            // Find the innermost file scope, so we can add using directives
            // from local scopes.
            Scope *InnermostFileScope = S;
            while (InnermostFileScope &&
                   !isNamespaceOrTranslationUnitScope(InnermostFileScope))
              InnermostFileScope = InnermostFileScope->getParent();
            UDirs.visitScopeChain(Initial, InnermostFileScope);

            UDirs.done();

            VisitedUsingDirectives = true;
          }

          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
            R.resolveKind();
            return true;
          }

          continue;
        }

        // Perform qualified name lookup into this context.
        // FIXME: In some cases, we know that every name that could be found by
        // this qualified name lookup will also be on the identifier chain. For
        // example, inside a class without any base classes, we never need to
        // perform qualified lookup because all of the members are on top of the
        // identifier chain.
        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
          return true;
      }
    }
  }

  // Stop if we ran out of scopes.
  // FIXME:  This really, really shouldn't be happening.
  if (!S) return false;

  // If we are looking for members, no need to look into global/namespace scope.
  if (NameKind == LookupMemberName)
    return false;

  // Collect UsingDirectiveDecls in all scopes, and recursively all
  // nominated namespaces by those using-directives.
  //
  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
  // don't build it for each lookup!
  if (!VisitedUsingDirectives) {
    UDirs.visitScopeChain(Initial, S);
    UDirs.done();
  }

  // If we're not performing redeclaration lookup, do not look for local
  // extern declarations outside of a function scope.
  if (!R.isForRedeclaration())
    FindLocals.restore();

  // Lookup namespace scope, and global scope.
  // Unqualified name lookup in C++ requires looking into scopes
  // that aren't strictly lexical, and therefore we walk through the
  // context as well as walking through the scopes.
  for (; S; S = S->getParent()) {
    // Check whether the IdResolver has anything in this scope.
    bool Found = false;
    for (; I != IEnd && S->isDeclScope(*I); ++I) {
      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
        // We found something.  Look for anything else in our scope
        // with this same name and in an acceptable identifier
        // namespace, so that we can construct an overload set if we
        // need to.
        Found = true;
        R.addDecl(ND);
      }
    }

    if (Found && S->isTemplateParamScope()) {
      R.resolveKind();
      return true;
    }

    DeclContext *Ctx = S->getLookupEntity();
    if (Ctx) {
      DeclContext *OuterCtx = findOuterContext(S);
      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
        // We do not directly look into transparent contexts, since
        // those entities will be found in the nearest enclosing
        // non-transparent context.
        if (Ctx->isTransparentContext())
          continue;

        // If we have a context, and it's not a context stashed in the
        // template parameter scope for an out-of-line definition, also
        // look into that context.
        if (!(Found && S->isTemplateParamScope())) {
          assert(Ctx->isFileContext() &&
              "We should have been looking only at file context here already.");

          // Look into context considering using-directives.
          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
            Found = true;
        }

        if (Found) {
          R.resolveKind();
          return true;
        }

        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
          return false;
      }
    }

    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
      return false;
  }

  return !R.empty();
}

void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
  if (auto *M = getCurrentModule())
    Context.mergeDefinitionIntoModule(ND, M);
  else
    // We're not building a module; just make the definition visible.
    ND->setVisibleDespiteOwningModule();

  // If ND is a template declaration, make the template parameters
  // visible too. They're not (necessarily) within a mergeable DeclContext.
  if (auto *TD = dyn_cast<TemplateDecl>(ND))
    for (auto *Param : *TD->getTemplateParameters())
      makeMergedDefinitionVisible(Param);
}

/// Find the module in which the given declaration was defined.
static Module *getDefiningModule(Sema &S, Decl *Entity) {
  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
    // If this function was instantiated from a template, the defining module is
    // the module containing the pattern.
    if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
      Entity = Pattern;
  } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
    if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
      Entity = Pattern;
  } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
    if (auto *Pattern = ED->getTemplateInstantiationPattern())
      Entity = Pattern;
  } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
    if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
      Entity = Pattern;
  }

  // Walk up to the containing context. That might also have been instantiated
  // from a template.
  DeclContext *Context = Entity->getLexicalDeclContext();
  if (Context->isFileContext())
    return S.getOwningModule(Entity);
  return getDefiningModule(S, cast<Decl>(Context));
}

llvm::DenseSet<Module*> &Sema::getLookupModules() {
  unsigned N = CodeSynthesisContexts.size();
  for (unsigned I = CodeSynthesisContextLookupModules.size();
       I != N; ++I) {
    Module *M = CodeSynthesisContexts[I].Entity ?
                getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
                nullptr;
    if (M && !LookupModulesCache.insert(M).second)
      M = nullptr;
    CodeSynthesisContextLookupModules.push_back(M);
  }
  return LookupModulesCache;
}

/// Determine whether the module M is part of the current module from the
/// perspective of a module-private visibility check.
static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts) {
  // If M is the global module fragment of a module that we've not yet finished
  // parsing, then it must be part of the current module.
  return M->getTopLevelModuleName() == LangOpts.CurrentModule ||
         (M->Kind == Module::GlobalModuleFragment && !M->Parent);
}

bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
  for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
    if (isModuleVisible(Merged))
      return true;
  return false;
}

bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
  for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
    if (isInCurrentModule(Merged, getLangOpts()))
      return true;
  return false;
}

template<typename ParmDecl>
static bool
hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
                          llvm::SmallVectorImpl<Module *> *Modules) {
  if (!D->hasDefaultArgument())
    return false;

  while (D) {
    auto &DefaultArg = D->getDefaultArgStorage();
    if (!DefaultArg.isInherited() && S.isVisible(D))
      return true;

    if (!DefaultArg.isInherited() && Modules) {
      auto *NonConstD = const_cast<ParmDecl*>(D);
      Modules->push_back(S.getOwningModule(NonConstD));
    }

    // If there was a previous default argument, maybe its parameter is visible.
    D = DefaultArg.getInheritedFrom();
  }
  return false;
}

bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
                                     llvm::SmallVectorImpl<Module *> *Modules) {
  if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
    return ::hasVisibleDefaultArgument(*this, P, Modules);
  if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
    return ::hasVisibleDefaultArgument(*this, P, Modules);
  return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
                                     Modules);
}

template<typename Filter>
static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
                                      llvm::SmallVectorImpl<Module *> *Modules,
                                      Filter F) {
  bool HasFilteredRedecls = false;

  for (auto *Redecl : D->redecls()) {
    auto *R = cast<NamedDecl>(Redecl);
    if (!F(R))
      continue;

    if (S.isVisible(R))
      return true;

    HasFilteredRedecls = true;

    if (Modules)
      Modules->push_back(R->getOwningModule());
  }

  // Only return false if there is at least one redecl that is not filtered out.
  if (HasFilteredRedecls)
    return false;

  return true;
}

bool Sema::hasVisibleExplicitSpecialization(
    const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
  return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
    if (auto *RD = dyn_cast<CXXRecordDecl>(D))
      return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
    if (auto *FD = dyn_cast<FunctionDecl>(D))
      return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
    if (auto *VD = dyn_cast<VarDecl>(D))
      return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
    llvm_unreachable("unknown explicit specialization kind");
  });
}

bool Sema::hasVisibleMemberSpecialization(
    const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
  assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
         "not a member specialization");
  return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
    // If the specialization is declared at namespace scope, then it's a member
    // specialization declaration. If it's lexically inside the class
    // definition then it was instantiated.
    //
    // FIXME: This is a hack. There should be a better way to determine this.
    // FIXME: What about MS-style explicit specializations declared within a
    //        class definition?
    return D->getLexicalDeclContext()->isFileContext();
  });
}

/// Determine whether a declaration is visible to name lookup.
///
/// This routine determines whether the declaration D is visible in the current
/// lookup context, taking into account the current template instantiation
/// stack. During template instantiation, a declaration is visible if it is
/// visible from a module containing any entity on the template instantiation
/// path (by instantiating a template, you allow it to see the declarations that
/// your module can see, including those later on in your module).
bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
  assert(!D->isUnconditionallyVisible() &&
         "should not call this: not in slow case");

  Module *DeclModule = SemaRef.getOwningModule(D);
  assert(DeclModule && "hidden decl has no owning module");

  // If the owning module is visible, the decl is visible.
  if (SemaRef.isModuleVisible(DeclModule, D->isModulePrivate()))
    return true;

  // Determine whether a decl context is a file context for the purpose of
  // visibility. This looks through some (export and linkage spec) transparent
  // contexts, but not others (enums).
  auto IsEffectivelyFileContext = [](const DeclContext *DC) {
    return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
           isa<ExportDecl>(DC);
  };

  // If this declaration is not at namespace scope
  // then it is visible if its lexical parent has a visible definition.
  DeclContext *DC = D->getLexicalDeclContext();
  if (DC && !IsEffectivelyFileContext(DC)) {
    // For a parameter, check whether our current template declaration's
    // lexical context is visible, not whether there's some other visible
    // definition of it, because parameters aren't "within" the definition.
    //
    // In C++ we need to check for a visible definition due to ODR merging,
    // and in C we must not because each declaration of a function gets its own
    // set of declarations for tags in prototype scope.
    bool VisibleWithinParent;
    if (D->isTemplateParameter()) {
      bool SearchDefinitions = true;
      if (const auto *DCD = dyn_cast<Decl>(DC)) {
        if (const auto *TD = DCD->getDescribedTemplate()) {
          TemplateParameterList *TPL = TD->getTemplateParameters();
          auto Index = getDepthAndIndex(D).second;
          SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
        }
      }
      if (SearchDefinitions)
        VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
      else
        VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
    } else if (isa<ParmVarDecl>(D) ||
               (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
      VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
    else if (D->isModulePrivate()) {
      // A module-private declaration is only visible if an enclosing lexical
      // parent was merged with another definition in the current module.
      VisibleWithinParent = false;
      do {
        if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
          VisibleWithinParent = true;
          break;
        }
        DC = DC->getLexicalParent();
      } while (!IsEffectivelyFileContext(DC));
    } else {
      VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
    }

    if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
        // FIXME: Do something better in this case.
        !SemaRef.getLangOpts().ModulesLocalVisibility) {
      // Cache the fact that this declaration is implicitly visible because
      // its parent has a visible definition.
      D->setVisibleDespiteOwningModule();
    }
    return VisibleWithinParent;
  }

  return false;
}

bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
  // The module might be ordinarily visible. For a module-private query, that
  // means it is part of the current module. For any other query, that means it
  // is in our visible module set.
  if (ModulePrivate) {
    if (isInCurrentModule(M, getLangOpts()))
      return true;
  } else {
    if (VisibleModules.isVisible(M))
      return true;
  }

  // Otherwise, it might be visible by virtue of the query being within a
  // template instantiation or similar that is permitted to look inside M.

  // Find the extra places where we need to look.
  const auto &LookupModules = getLookupModules();
  if (LookupModules.empty())
    return false;

  // If our lookup set contains the module, it's visible.
  if (LookupModules.count(M))
    return true;

  // For a module-private query, that's everywhere we get to look.
  if (ModulePrivate)
    return false;

  // Check whether M is transitively exported to an import of the lookup set.
  return llvm::any_of(LookupModules, [&](const Module *LookupM) {
    return LookupM->isModuleVisible(M);
  });
}

bool Sema::isVisibleSlow(const NamedDecl *D) {
  return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
}

bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
  // FIXME: If there are both visible and hidden declarations, we need to take
  // into account whether redeclaration is possible. Example:
  //
  // Non-imported module:
  //   int f(T);        // #1
  // Some TU:
  //   static int f(U); // #2, not a redeclaration of #1
  //   int f(T);        // #3, finds both, should link with #1 if T != U, but
  //                    // with #2 if T == U; neither should be ambiguous.
  for (auto *D : R) {
    if (isVisible(D))
      return true;
    assert(D->isExternallyDeclarable() &&
           "should not have hidden, non-externally-declarable result here");
  }

  // This function is called once "New" is essentially complete, but before a
  // previous declaration is attached. We can't query the linkage of "New" in
  // general, because attaching the previous declaration can change the
  // linkage of New to match the previous declaration.
  //
  // However, because we've just determined that there is no *visible* prior
  // declaration, we can compute the linkage here. There are two possibilities:
  //
  //  * This is not a redeclaration; it's safe to compute the linkage now.
  //
  //  * This is a redeclaration of a prior declaration that is externally
  //    redeclarable. In that case, the linkage of the declaration is not
  //    changed by attaching the prior declaration, because both are externally
  //    declarable (and thus ExternalLinkage or VisibleNoLinkage).
  //
  // FIXME: This is subtle and fragile.
  return New->isExternallyDeclarable();
}

/// Retrieve the visible declaration corresponding to D, if any.
///
/// This routine determines whether the declaration D is visible in the current
/// module, with the current imports. If not, it checks whether any
/// redeclaration of D is visible, and if so, returns that declaration.
///
/// \returns D, or a visible previous declaration of D, whichever is more recent
/// and visible. If no declaration of D is visible, returns null.
static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
                                     unsigned IDNS) {
  assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");

  for (auto RD : D->redecls()) {
    // Don't bother with extra checks if we already know this one isn't visible.
    if (RD == D)
      continue;

    auto ND = cast<NamedDecl>(RD);
    // FIXME: This is wrong in the case where the previous declaration is not
    // visible in the same scope as D. This needs to be done much more
    // carefully.
    if (ND->isInIdentifierNamespace(IDNS) &&
        LookupResult::isVisible(SemaRef, ND))
      return ND;
  }

  return nullptr;
}

bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
                                     llvm::SmallVectorImpl<Module *> *Modules) {
  assert(!isVisible(D) && "not in slow case");
  return hasVisibleDeclarationImpl(*this, D, Modules,
                                   [](const NamedDecl *) { return true; });
}

NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
  if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
    // Namespaces are a bit of a special case: we expect there to be a lot of
    // redeclarations of some namespaces, all declarations of a namespace are
    // essentially interchangeable, all declarations are found by name lookup
    // if any is, and namespaces are never looked up during template
    // instantiation. So we benefit from caching the check in this case, and
    // it is correct to do so.
    auto *Key = ND->getCanonicalDecl();
    if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
      return Acceptable;
    auto *Acceptable = isVisible(getSema(), Key)
                           ? Key
                           : findAcceptableDecl(getSema(), Key, IDNS);
    if (Acceptable)
      getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
    return Acceptable;
  }

  return findAcceptableDecl(getSema(), D, IDNS);
}

/// Perform unqualified name lookup starting from a given
/// scope.
///
/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
/// used to find names within the current scope. For example, 'x' in
/// @code
/// int x;
/// int f() {
///   return x; // unqualified name look finds 'x' in the global scope
/// }
/// @endcode
///
/// Different lookup criteria can find different names. For example, a
/// particular scope can have both a struct and a function of the same
/// name, and each can be found by certain lookup criteria. For more
/// information about lookup criteria, see the documentation for the
/// class LookupCriteria.
///
/// @param S        The scope from which unqualified name lookup will
/// begin. If the lookup criteria permits, name lookup may also search
/// in the parent scopes.
///
/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
/// look up and the lookup kind), and is updated with the results of lookup
/// including zero or more declarations and possibly additional information
/// used to diagnose ambiguities.
///
/// @returns \c true if lookup succeeded and false otherwise.
bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
  DeclarationName Name = R.getLookupName();
  if (!Name) return false;

  LookupNameKind NameKind = R.getLookupKind();

  if (!getLangOpts().CPlusPlus) {
    // Unqualified name lookup in C/Objective-C is purely lexical, so
    // search in the declarations attached to the name.
    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
      // Find the nearest non-transparent declaration scope.
      while (!(S->getFlags() & Scope::DeclScope) ||
             (S->getEntity() && S->getEntity()->isTransparentContext()))
        S = S->getParent();
    }

    // When performing a scope lookup, we want to find local extern decls.
    FindLocalExternScope FindLocals(R);

    // Scan up the scope chain looking for a decl that matches this
    // identifier that is in the appropriate namespace.  This search
    // should not take long, as shadowing of names is uncommon, and
    // deep shadowing is extremely uncommon.
    bool LeftStartingScope = false;

    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
                                   IEnd = IdResolver.end();
         I != IEnd; ++I)
      if (NamedDecl *D = R.getAcceptableDecl(*I)) {
        if (NameKind == LookupRedeclarationWithLinkage) {
          // Determine whether this (or a previous) declaration is
          // out-of-scope.
          if (!LeftStartingScope && !S->isDeclScope(*I))
            LeftStartingScope = true;

          // If we found something outside of our starting scope that
          // does not have linkage, skip it.
          if (LeftStartingScope && !((*I)->hasLinkage())) {
            R.setShadowed();
            continue;
          }
        }
        else if (NameKind == LookupObjCImplicitSelfParam &&
                 !isa<ImplicitParamDecl>(*I))
          continue;

        R.addDecl(D);

        // Check whether there are any other declarations with the same name
        // and in the same scope.
        if (I != IEnd) {
          // Find the scope in which this declaration was declared (if it
          // actually exists in a Scope).
          while (S && !S->isDeclScope(D))
            S = S->getParent();

          // If the scope containing the declaration is the translation unit,
          // then we'll need to perform our checks based on the matching
          // DeclContexts rather than matching scopes.
          if (S && isNamespaceOrTranslationUnitScope(S))
            S = nullptr;

          // Compute the DeclContext, if we need it.
          DeclContext *DC = nullptr;
          if (!S)
            DC = (*I)->getDeclContext()->getRedeclContext();

          IdentifierResolver::iterator LastI = I;
          for (++LastI; LastI != IEnd; ++LastI) {
            if (S) {
              // Match based on scope.
              if (!S->isDeclScope(*LastI))
                break;
            } else {
              // Match based on DeclContext.
              DeclContext *LastDC
                = (*LastI)->getDeclContext()->getRedeclContext();
              if (!LastDC->Equals(DC))
                break;
            }

            // If the declaration is in the right namespace and visible, add it.
            if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
              R.addDecl(LastD);
          }

          R.resolveKind();
        }

        return true;
      }
  } else {
    // Perform C++ unqualified name lookup.
    if (CppLookupName(R, S))
      return true;
  }

  // If we didn't find a use of this identifier, and if the identifier
  // corresponds to a compiler builtin, create the decl object for the builtin
  // now, injecting it into translation unit scope, and return it.
  if (AllowBuiltinCreation && LookupBuiltin(R))
    return true;

  // If we didn't find a use of this identifier, the ExternalSource
  // may be able to handle the situation.
  // Note: some lookup failures are expected!
  // See e.g. R.isForRedeclaration().
  return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
}

/// Perform qualified name lookup in the namespaces nominated by
/// using directives by the given context.
///
/// C++98 [namespace.qual]p2:
///   Given X::m (where X is a user-declared namespace), or given \::m
///   (where X is the global namespace), let S be the set of all
///   declarations of m in X and in the transitive closure of all
///   namespaces nominated by using-directives in X and its used
///   namespaces, except that using-directives are ignored in any
///   namespace, including X, directly containing one or more
///   declarations of m. No namespace is searched more than once in
///   the lookup of a name. If S is the empty set, the program is
///   ill-formed. Otherwise, if S has exactly one member, or if the
///   context of the reference is a using-declaration
///   (namespace.udecl), S is the required set of declarations of
///   m. Otherwise if the use of m is not one that allows a unique
///   declaration to be chosen from S, the program is ill-formed.
///
/// C++98 [namespace.qual]p5:
///   During the lookup of a qualified namespace member name, if the
///   lookup finds more than one declaration of the member, and if one
///   declaration introduces a class name or enumeration name and the
///   other declarations either introduce the same object, the same
///   enumerator or a set of functions, the non-type name hides the
///   class or enumeration name if and only if the declarations are
///   from the same namespace; otherwise (the declarations are from
///   different namespaces), the program is ill-formed.
static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
                                                 DeclContext *StartDC) {
  assert(StartDC->isFileContext() && "start context is not a file context");

  // We have not yet looked into these namespaces, much less added
  // their "using-children" to the queue.
  SmallVector<NamespaceDecl*, 8> Queue;

  // We have at least added all these contexts to the queue.
  llvm::SmallPtrSet<DeclContext*, 8> Visited;
  Visited.insert(StartDC);

  // We have already looked into the initial namespace; seed the queue
  // with its using-children.
  for (auto *I : StartDC->using_directives()) {
    NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
    if (S.isVisible(I) && Visited.insert(ND).second)
      Queue.push_back(ND);
  }

  // The easiest way to implement the restriction in [namespace.qual]p5
  // is to check whether any of the individual results found a tag
  // and, if so, to declare an ambiguity if the final result is not
  // a tag.
  bool FoundTag = false;
  bool FoundNonTag = false;

  LookupResult LocalR(LookupResult::Temporary, R);

  bool Found = false;
  while (!Queue.empty()) {
    NamespaceDecl *ND = Queue.pop_back_val();

    // We go through some convolutions here to avoid copying results
    // between LookupResults.
    bool UseLocal = !R.empty();
    LookupResult &DirectR = UseLocal ? LocalR : R;
    bool FoundDirect = LookupDirect(S, DirectR, ND);

    if (FoundDirect) {
      // First do any local hiding.
      DirectR.resolveKind();

      // If the local result is a tag, remember that.
      if (DirectR.isSingleTagDecl())
        FoundTag = true;
      else
        FoundNonTag = true;

      // Append the local results to the total results if necessary.
      if (UseLocal) {
        R.addAllDecls(LocalR);
        LocalR.clear();
      }
    }

    // If we find names in this namespace, ignore its using directives.
    if (FoundDirect) {
      Found = true;
      continue;
    }

    for (auto I : ND->using_directives()) {
      NamespaceDecl *Nom = I->getNominatedNamespace();
      if (S.isVisible(I) && Visited.insert(Nom).second)
        Queue.push_back(Nom);
    }
  }

  if (Found) {
    if (FoundTag && FoundNonTag)
      R.setAmbiguousQualifiedTagHiding();
    else
      R.resolveKind();
  }

  return Found;
}

/// Perform qualified name lookup into a given context.
///
/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
/// names when the context of those names is explicit specified, e.g.,
/// "std::vector" or "x->member", or as part of unqualified name lookup.
///
/// Different lookup criteria can find different names. For example, a
/// particular scope can have both a struct and a function of the same
/// name, and each can be found by certain lookup criteria. For more
/// information about lookup criteria, see the documentation for the
/// class LookupCriteria.
///
/// \param R captures both the lookup criteria and any lookup results found.
///
/// \param LookupCtx The context in which qualified name lookup will
/// search. If the lookup criteria permits, name lookup may also search
/// in the parent contexts or (for C++ classes) base classes.
///
/// \param InUnqualifiedLookup true if this is qualified name lookup that
/// occurs as part of unqualified name lookup.
///
/// \returns true if lookup succeeded, false if it failed.
bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
                               bool InUnqualifiedLookup) {
  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");

  if (!R.getLookupName())
    return false;

  // Make sure that the declaration context is complete.
  assert((!isa<TagDecl>(LookupCtx) ||
          LookupCtx->isDependentContext() ||
          cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
          cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
         "Declaration context must already be complete!");

  struct QualifiedLookupInScope {
    bool oldVal;
    DeclContext *Context;
    // Set flag in DeclContext informing debugger that we're looking for qualified name
    QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
      oldVal = ctx->setUseQualifiedLookup();
    }
    ~QualifiedLookupInScope() {
      Context->setUseQualifiedLookup(oldVal);
    }
  } QL(LookupCtx);

  if (LookupDirect(*this, R, LookupCtx)) {
    R.resolveKind();
    if (isa<CXXRecordDecl>(LookupCtx))
      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
    return true;
  }

  // Don't descend into implied contexts for redeclarations.
  // C++98 [namespace.qual]p6:
  //   In a declaration for a namespace member in which the
  //   declarator-id is a qualified-id, given that the qualified-id
  //   for the namespace member has the form
  //     nested-name-specifier unqualified-id
  //   the unqualified-id shall name a member of the namespace
  //   designated by the nested-name-specifier.
  // See also [class.mfct]p5 and [class.static.data]p2.
  if (R.isForRedeclaration())
    return false;

  // If this is a namespace, look it up in the implied namespaces.
  if (LookupCtx->isFileContext())
    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);

  // If this isn't a C++ class, we aren't allowed to look into base
  // classes, we're done.
  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
  if (!LookupRec || !LookupRec->getDefinition())
    return false;

  // We're done for lookups that can never succeed for C++ classes.
  if (R.getLookupKind() == LookupOperatorName ||
      R.getLookupKind() == LookupNamespaceName ||
      R.getLookupKind() == LookupObjCProtocolName ||
      R.getLookupKind() == LookupLabel)
    return false;

  // If we're performing qualified name lookup into a dependent class,
  // then we are actually looking into a current instantiation. If we have any
  // dependent base classes, then we either have to delay lookup until
  // template instantiation time (at which point all bases will be available)
  // or we have to fail.
  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
      LookupRec->hasAnyDependentBases()) {
    R.setNotFoundInCurrentInstantiation();
    return false;
  }

  // Perform lookup into our base classes.

  DeclarationName Name = R.getLookupName();
  unsigned IDNS = R.getIdentifierNamespace();

  // Look for this member in our base classes.
  auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier,
                                   CXXBasePath &Path) -> bool {
    CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
    // Drop leading non-matching lookup results from the declaration list so
    // we don't need to consider them again below.
    for (Path.Decls = BaseRecord->lookup(Name).begin();
         Path.Decls != Path.Decls.end(); ++Path.Decls) {
      if ((*Path.Decls)->isInIdentifierNamespace(IDNS))
        return true;
    }
    return false;
  };

  CXXBasePaths Paths;
  Paths.setOrigin(LookupRec);
  if (!LookupRec->lookupInBases(BaseCallback, Paths))
    return false;

  R.setNamingClass(LookupRec);

  // C++ [class.member.lookup]p2:
  //   [...] If the resulting set of declarations are not all from
  //   sub-objects of the same type, or the set has a nonstatic member
  //   and includes members from distinct sub-objects, there is an
  //   ambiguity and the program is ill-formed. Otherwise that set is
  //   the result of the lookup.
  QualType SubobjectType;
  int SubobjectNumber = 0;
  AccessSpecifier SubobjectAccess = AS_none;

  // Check whether the given lookup result contains only static members.
  auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) {
    for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I)
      if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember())
        return false;
    return true;
  };

  bool TemplateNameLookup = R.isTemplateNameLookup();

  // Determine whether two sets of members contain the same members, as
  // required by C++ [class.member.lookup]p6.
  auto HasSameDeclarations = [&](DeclContext::lookup_iterator A,
                                 DeclContext::lookup_iterator B) {
    using Iterator = DeclContextLookupResult::iterator;
    using Result = const void *;

    auto Next = [&](Iterator &It, Iterator End) -> Result {
      while (It != End) {
        NamedDecl *ND = *It++;
        if (!ND->isInIdentifierNamespace(IDNS))
          continue;

        // C++ [temp.local]p3:
        //   A lookup that finds an injected-class-name (10.2) can result in
        //   an ambiguity in certain cases (for example, if it is found in
        //   more than one base class). If all of the injected-class-names
        //   that are found refer to specializations of the same class
        //   template, and if the name is used as a template-name, the
        //   reference refers to the class template itself and not a
        //   specialization thereof, and is not ambiguous.
        if (TemplateNameLookup)
          if (auto *TD = getAsTemplateNameDecl(ND))
            ND = TD;

        // C++ [class.member.lookup]p3:
        //   type declarations (including injected-class-names) are replaced by
        //   the types they designate
        if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) {
          QualType T = Context.getTypeDeclType(TD);
          return T.getCanonicalType().getAsOpaquePtr();
        }

        return ND->getUnderlyingDecl()->getCanonicalDecl();
      }
      return nullptr;
    };

    // We'll often find the declarations are in the same order. Handle this
    // case (and the special case of only one declaration) efficiently.
    Iterator AIt = A, BIt = B, AEnd, BEnd;
    while (true) {
      Result AResult = Next(AIt, AEnd);
      Result BResult = Next(BIt, BEnd);
      if (!AResult && !BResult)
        return true;
      if (!AResult || !BResult)
        return false;
      if (AResult != BResult) {
        // Found a mismatch; carefully check both lists, accounting for the
        // possibility of declarations appearing more than once.
        llvm::SmallDenseMap<Result, bool, 32> AResults;
        for (; AResult; AResult = Next(AIt, AEnd))
          AResults.insert({AResult, /*FoundInB*/false});
        unsigned Found = 0;
        for (; BResult; BResult = Next(BIt, BEnd)) {
          auto It = AResults.find(BResult);
          if (It == AResults.end())
            return false;
          if (!It->second) {
            It->second = true;
            ++Found;
          }
        }
        return AResults.size() == Found;
      }
    }
  };

  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
       Path != PathEnd; ++Path) {
    const CXXBasePathElement &PathElement = Path->back();

    // Pick the best (i.e. most permissive i.e. numerically lowest) access
    // across all paths.
    SubobjectAccess = std::min(SubobjectAccess, Path->Access);

    // Determine whether we're looking at a distinct sub-object or not.
    if (SubobjectType.isNull()) {
      // This is the first subobject we've looked at. Record its type.
      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
      SubobjectNumber = PathElement.SubobjectNumber;
      continue;
    }

    if (SubobjectType !=
        Context.getCanonicalType(PathElement.Base->getType())) {
      // We found members of the given name in two subobjects of
      // different types. If the declaration sets aren't the same, this
      // lookup is ambiguous.
      //
      // FIXME: The language rule says that this applies irrespective of
      // whether the sets contain only static members.
      if (HasOnlyStaticMembers(Path->Decls) &&
          HasSameDeclarations(Paths.begin()->Decls, Path->Decls))
        continue;

      R.setAmbiguousBaseSubobjectTypes(Paths);
      return true;
    }

    // FIXME: This language rule no longer exists. Checking for ambiguous base
    // subobjects should be done as part of formation of a class member access
    // expression (when converting the object parameter to the member's type).
    if (SubobjectNumber != PathElement.SubobjectNumber) {
      // We have a different subobject of the same type.

      // C++ [class.member.lookup]p5:
      //   A static member, a nested type or an enumerator defined in
      //   a base class T can unambiguously be found even if an object
      //   has more than one base class subobject of type T.
      if (HasOnlyStaticMembers(Path->Decls))
        continue;

      // We have found a nonstatic member name in multiple, distinct
      // subobjects. Name lookup is ambiguous.
      R.setAmbiguousBaseSubobjects(Paths);
      return true;
    }
  }

  // Lookup in a base class succeeded; return these results.

  for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end();
       I != E; ++I) {
    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
                                                    (*I)->getAccess());
    if (NamedDecl *ND = R.getAcceptableDecl(*I))
      R.addDecl(ND, AS);
  }
  R.resolveKind();
  return true;
}

/// Performs qualified name lookup or special type of lookup for
/// "__super::" scope specifier.
///
/// This routine is a convenience overload meant to be called from contexts
/// that need to perform a qualified name lookup with an optional C++ scope
/// specifier that might require special kind of lookup.
///
/// \param R captures both the lookup criteria and any lookup results found.
///
/// \param LookupCtx The context in which qualified name lookup will
/// search.
///
/// \param SS An optional C++ scope-specifier.
///
/// \returns true if lookup succeeded, false if it failed.
bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
                               CXXScopeSpec &SS) {
  auto *NNS = SS.getScopeRep();
  if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
    return LookupInSuper(R, NNS->getAsRecordDecl());
  else

    return LookupQualifiedName(R, LookupCtx);
}

/// Performs name lookup for a name that was parsed in the
/// source code, and may contain a C++ scope specifier.
///
/// This routine is a convenience routine meant to be called from
/// contexts that receive a name and an optional C++ scope specifier
/// (e.g., "N::M::x"). It will then perform either qualified or
/// unqualified name lookup (with LookupQualifiedName or LookupName,
/// respectively) on the given name and return those results. It will
/// perform a special type of lookup for "__super::" scope specifier.
///
/// @param S        The scope from which unqualified name lookup will
/// begin.
///
/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
///
/// @param EnteringContext Indicates whether we are going to enter the
/// context of the scope-specifier SS (if present).
///
/// @returns True if any decls were found (but possibly ambiguous)
bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
                            bool AllowBuiltinCreation, bool EnteringContext) {
  if (SS && SS->isInvalid()) {
    // When the scope specifier is invalid, don't even look for
    // anything.
    return false;
  }

  if (SS && SS->isSet()) {
    NestedNameSpecifier *NNS = SS->getScopeRep();
    if (NNS->getKind() == NestedNameSpecifier::Super)
      return LookupInSuper(R, NNS->getAsRecordDecl());

    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
      // We have resolved the scope specifier to a particular declaration
      // contex, and will perform name lookup in that context.
      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
        return false;

      R.setContextRange(SS->getRange());
      return LookupQualifiedName(R, DC);
    }

    // We could not resolve the scope specified to a specific declaration
    // context, which means that SS refers to an unknown specialization.
    // Name lookup can't find anything in this case.
    R.setNotFoundInCurrentInstantiation();
    R.setContextRange(SS->getRange());
    return false;
  }

  // Perform unqualified name lookup starting in the given scope.
  return LookupName(R, S, AllowBuiltinCreation);
}

/// Perform qualified name lookup into all base classes of the given
/// class.
///
/// \param R captures both the lookup criteria and any lookup results found.
///
/// \param Class The context in which qualified name lookup will
/// search. Name lookup will search in all base classes merging the results.
///
/// @returns True if any decls were found (but possibly ambiguous)
bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
  // The access-control rules we use here are essentially the rules for
  // doing a lookup in Class that just magically skipped the direct
  // members of Class itself.  That is, the naming class is Class, and the
  // access includes the access of the base.
  for (const auto &BaseSpec : Class->bases()) {
    CXXRecordDecl *RD = cast<CXXRecordDecl>(
        BaseSpec.getType()->castAs<RecordType>()->getDecl());
    LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
    Result.setBaseObjectType(Context.getRecordType(Class));
    LookupQualifiedName(Result, RD);

    // Copy the lookup results into the target, merging the base's access into
    // the path access.
    for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
      R.addDecl(I.getDecl(),
                CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
                                           I.getAccess()));
    }

    Result.suppressDiagnostics();
  }

  R.resolveKind();
  R.setNamingClass(Class);

  return !R.empty();
}

/// Produce a diagnostic describing the ambiguity that resulted
/// from name lookup.
///
/// \param Result The result of the ambiguous lookup to be diagnosed.
void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");

  DeclarationName Name = Result.getLookupName();
  SourceLocation NameLoc = Result.getNameLoc();
  SourceRange LookupRange = Result.getContextRange();

  switch (Result.getAmbiguityKind()) {
  case LookupResult::AmbiguousBaseSubobjects: {
    CXXBasePaths *Paths = Result.getBasePaths();
    QualType SubobjectType = Paths->front().back().Base->getType();
    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
      << LookupRange;

    DeclContext::lookup_iterator Found = Paths->front().Decls;
    while (isa<CXXMethodDecl>(*Found) &&
           cast<CXXMethodDecl>(*Found)->isStatic())
      ++Found;

    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
    break;
  }

  case LookupResult::AmbiguousBaseSubobjectTypes: {
    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
      << Name << LookupRange;

    CXXBasePaths *Paths = Result.getBasePaths();
    std::set<const NamedDecl *> DeclsPrinted;
    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
                                      PathEnd = Paths->end();
         Path != PathEnd; ++Path) {
      const NamedDecl *D = *Path->Decls;
      if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace()))
        continue;
      if (DeclsPrinted.insert(D).second) {
        if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl()))
          Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
              << TD->getUnderlyingType();
        else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
          Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
              << Context.getTypeDeclType(TD);
        else
          Diag(D->getLocation(), diag::note_ambiguous_member_found);
      }
    }
    break;
  }

  case LookupResult::AmbiguousTagHiding: {
    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;

    llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;

    for (auto *D : Result)
      if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
        TagDecls.insert(TD);
        Diag(TD->getLocation(), diag::note_hidden_tag);
      }

    for (auto *D : Result)
      if (!isa<TagDecl>(D))
        Diag(D->getLocation(), diag::note_hiding_object);

    // For recovery purposes, go ahead and implement the hiding.
    LookupResult::Filter F = Result.makeFilter();
    while (F.hasNext()) {
      if (TagDecls.count(F.next()))
        F.erase();
    }
    F.done();
    break;
  }

  case LookupResult::AmbiguousReference: {
    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;

    for (auto *D : Result)
      Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
    break;
  }
  }
}

namespace {
  struct AssociatedLookup {
    AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
                     Sema::AssociatedNamespaceSet &Namespaces,
                     Sema::AssociatedClassSet &Classes)
      : S(S), Namespaces(Namespaces), Classes(Classes),
        InstantiationLoc(InstantiationLoc) {
    }

    bool addClassTransitive(CXXRecordDecl *RD) {
      Classes.insert(RD);
      return ClassesTransitive.insert(RD);
    }

    Sema &S;
    Sema::AssociatedNamespaceSet &Namespaces;
    Sema::AssociatedClassSet &Classes;
    SourceLocation InstantiationLoc;

  private:
    Sema::AssociatedClassSet ClassesTransitive;
  };
} // end anonymous namespace

static void
addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);

// Given the declaration context \param Ctx of a class, class template or
// enumeration, add the associated namespaces to \param Namespaces as described
// in [basic.lookup.argdep]p2.
static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
                                      DeclContext *Ctx) {
  // The exact wording has been changed in C++14 as a result of
  // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
  // to all language versions since it is possible to return a local type
  // from a lambda in C++11.
  //
  // C++14 [basic.lookup.argdep]p2:
  //   If T is a class type [...]. Its associated namespaces are the innermost
  //   enclosing namespaces of its associated classes. [...]
  //
  //   If T is an enumeration type, its associated namespace is the innermost
  //   enclosing namespace of its declaration. [...]

  // We additionally skip inline namespaces. The innermost non-inline namespace
  // contains all names of all its nested inline namespaces anyway, so we can
  // replace the entire inline namespace tree with its root.
  while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
    Ctx = Ctx->getParent();

  Namespaces.insert(Ctx->getPrimaryContext());
}

// Add the associated classes and namespaces for argument-dependent
// lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
static void
addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
                                  const TemplateArgument &Arg) {
  // C++ [basic.lookup.argdep]p2, last bullet:
  //   -- [...] ;
  switch (Arg.getKind()) {
    case TemplateArgument::Null:
      break;

    case TemplateArgument::Type:
      // [...] the namespaces and classes associated with the types of the
      // template arguments provided for template type parameters (excluding
      // template template parameters)
      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
      break;

    case TemplateArgument::Template:
    case TemplateArgument::TemplateExpansion: {
      // [...] the namespaces in which any template template arguments are
      // defined; and the classes in which any member templates used as
      // template template arguments are defined.
      TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
      if (ClassTemplateDecl *ClassTemplate
                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
        DeclContext *Ctx = ClassTemplate->getDeclContext();
        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
          Result.Classes.insert(EnclosingClass);
        // Add the associated namespace for this class.
        CollectEnclosingNamespace(Result.Namespaces, Ctx);
      }
      break;
    }

    case TemplateArgument::Declaration:
    case TemplateArgument::Integral:
    case TemplateArgument::Expression:
    case TemplateArgument::NullPtr:
      // [Note: non-type template arguments do not contribute to the set of
      //  associated namespaces. ]
      break;

    case TemplateArgument::Pack:
      for (const auto &P : Arg.pack_elements())
        addAssociatedClassesAndNamespaces(Result, P);
      break;
  }
}

// Add the associated classes and namespaces for argument-dependent lookup
// with an argument of class type (C++ [basic.lookup.argdep]p2).
static void
addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
                                  CXXRecordDecl *Class) {

  // Just silently ignore anything whose name is __va_list_tag.
  if (Class->getDeclName() == Result.S.VAListTagName)
    return;

  // C++ [basic.lookup.argdep]p2:
  //   [...]
  //     -- If T is a class type (including unions), its associated
  //        classes are: the class itself; the class of which it is a
  //        member, if any; and its direct and indirect base classes.
  //        Its associated namespaces are the innermost enclosing
  //        namespaces of its associated classes.

  // Add the class of which it is a member, if any.
  DeclContext *Ctx = Class->getDeclContext();
  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
    Result.Classes.insert(EnclosingClass);

  // Add the associated namespace for this class.
  CollectEnclosingNamespace(Result.Namespaces, Ctx);

  // -- If T is a template-id, its associated namespaces and classes are
  //    the namespace in which the template is defined; for member
  //    templates, the member template's class; the namespaces and classes
  //    associated with the types of the template arguments provided for
  //    template type parameters (excluding template template parameters); the
  //    namespaces in which any template template arguments are defined; and
  //    the classes in which any member templates used as template template
  //    arguments are defined. [Note: non-type template arguments do not
  //    contribute to the set of associated namespaces. ]
  if (ClassTemplateSpecializationDecl *Spec
        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
      Result.Classes.insert(EnclosingClass);
    // Add the associated namespace for this class.
    CollectEnclosingNamespace(Result.Namespaces, Ctx);

    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
  }

  // Add the class itself. If we've already transitively visited this class,
  // we don't need to visit base classes.
  if (!Result.addClassTransitive(Class))
    return;

  // Only recurse into base classes for complete types.
  if (!Result.S.isCompleteType(Result.InstantiationLoc,
                               Result.S.Context.getRecordType(Class)))
    return;

  // Add direct and indirect base classes along with their associated
  // namespaces.
  SmallVector<CXXRecordDecl *, 32> Bases;
  Bases.push_back(Class);
  while (!Bases.empty()) {
    // Pop this class off the stack.
    Class = Bases.pop_back_val();

    // Visit the base classes.
    for (const auto &Base : Class->bases()) {
      const RecordType *BaseType = Base.getType()->getAs<RecordType>();
      // In dependent contexts, we do ADL twice, and the first time around,
      // the base type might be a dependent TemplateSpecializationType, or a
      // TemplateTypeParmType. If that happens, simply ignore it.
      // FIXME: If we want to support export, we probably need to add the
      // namespace of the template in a TemplateSpecializationType, or even
      // the classes and namespaces of known non-dependent arguments.
      if (!BaseType)
        continue;
      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
      if (Result.addClassTransitive(BaseDecl)) {
        // Find the associated namespace for this base class.
        DeclContext *BaseCtx = BaseDecl->getDeclContext();
        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);

        // Make sure we visit the bases of this base class.
        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
          Bases.push_back(BaseDecl);
      }
    }
  }
}

// Add the associated classes and namespaces for
// argument-dependent lookup with an argument of type T
// (C++ [basic.lookup.koenig]p2).
static void
addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
  // C++ [basic.lookup.koenig]p2:
  //
  //   For each argument type T in the function call, there is a set
  //   of zero or more associated namespaces and a set of zero or more
  //   associated classes to be considered. The sets of namespaces and
  //   classes is determined entirely by the types of the function
  //   arguments (and the namespace of any template template
  //   argument). Typedef names and using-declarations used to specify
  //   the types do not contribute to this set. The sets of namespaces
  //   and classes are determined in the following way:

  SmallVector<const Type *, 16> Queue;
  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();

  while (true) {
    switch (T->getTypeClass()) {

#define TYPE(Class, Base)
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
#define ABSTRACT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.inc"
      // T is canonical.  We can also ignore dependent types because
      // we don't need to do ADL at the definition point, but if we
      // wanted to implement template export (or if we find some other
      // use for associated classes and namespaces...) this would be
      // wrong.
      break;

    //    -- If T is a pointer to U or an array of U, its associated
    //       namespaces and classes are those associated with U.
    case Type::Pointer:
      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
      continue;
    case Type::ConstantArray:
    case Type::IncompleteArray:
    case Type::VariableArray:
      T = cast<ArrayType>(T)->getElementType().getTypePtr();
      continue;

    //     -- If T is a fundamental type, its associated sets of
    //        namespaces and classes are both empty.
    case Type::Builtin:
      break;

    //     -- If T is a class type (including unions), its associated
    //        classes are: the class itself; the class of which it is
    //        a member, if any; and its direct and indirect base classes.
    //        Its associated namespaces are the innermost enclosing
    //        namespaces of its associated classes.
    case Type::Record: {
      CXXRecordDecl *Class =
          cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
      addAssociatedClassesAndNamespaces(Result, Class);
      break;
    }

    //     -- If T is an enumeration type, its associated namespace
    //        is the innermost enclosing namespace of its declaration.
    //        If it is a class member, its associated class is the
    //        member’s class; else it has no associated class.
    case Type::Enum: {
      EnumDecl *Enum = cast<EnumType>(T)->getDecl();

      DeclContext *Ctx = Enum->getDeclContext();
      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
        Result.Classes.insert(EnclosingClass);

      // Add the associated namespace for this enumeration.
      CollectEnclosingNamespace(Result.Namespaces, Ctx);

      break;
    }

    //     -- If T is a function type, its associated namespaces and
    //        classes are those associated with the function parameter
    //        types and those associated with the return type.
    case Type::FunctionProto: {
      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
      for (const auto &Arg : Proto->param_types())
        Queue.push_back(Arg.getTypePtr());
      // fallthrough
      LLVM_FALLTHROUGH;
    }
    case Type::FunctionNoProto: {
      const FunctionType *FnType = cast<FunctionType>(T);
      T = FnType->getReturnType().getTypePtr();
      continue;
    }

    //     -- If T is a pointer to a member function of a class X, its
    //        associated namespaces and classes are those associated
    //        with the function parameter types and return type,
    //        together with those associated with X.
    //
    //     -- If T is a pointer to a data member of class X, its
    //        associated namespaces and classes are those associated
    //        with the member type together with those associated with
    //        X.
    case Type::MemberPointer: {
      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);

      // Queue up the class type into which this points.
      Queue.push_back(MemberPtr->getClass());

      // And directly continue with the pointee type.
      T = MemberPtr->getPointeeType().getTypePtr();
      continue;
    }

    // As an extension, treat this like a normal pointer.
    case Type::BlockPointer:
      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
      continue;

    // References aren't covered by the standard, but that's such an
    // obvious defect that we cover them anyway.
    case Type::LValueReference:
    case Type::RValueReference:
      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
      continue;

    // These are fundamental types.
    case Type::Vector:
    case Type::ExtVector:
    case Type::ConstantMatrix:
    case Type::Complex:
    case Type::BitInt:
      break;

    // Non-deduced auto types only get here for error cases.
    case Type::Auto:
    case Type::DeducedTemplateSpecialization:
      break;

    // If T is an Objective-C object or interface type, or a pointer to an
    // object or interface type, the associated namespace is the global
    // namespace.
    case Type::ObjCObject:
    case Type::ObjCInterface:
    case Type::ObjCObjectPointer:
      Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
      break;

    // Atomic types are just wrappers; use the associations of the
    // contained type.
    case Type::Atomic:
      T = cast<AtomicType>(T)->getValueType().getTypePtr();
      continue;
    case Type::Pipe:
      T = cast<PipeType>(T)->getElementType().getTypePtr();
      continue;
    }

    if (Queue.empty())
      break;
    T = Queue.pop_back_val();
  }
}

/// Find the associated classes and namespaces for
/// argument-dependent lookup for a call with the given set of
/// arguments.
///
/// This routine computes the sets of associated classes and associated
/// namespaces searched by argument-dependent lookup
/// (C++ [basic.lookup.argdep]) for a given set of arguments.
void Sema::FindAssociatedClassesAndNamespaces(
    SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
    AssociatedNamespaceSet &AssociatedNamespaces,
    AssociatedClassSet &AssociatedClasses) {
  AssociatedNamespaces.clear();
  AssociatedClasses.clear();

  AssociatedLookup Result(*this, InstantiationLoc,
                          AssociatedNamespaces, AssociatedClasses);

  // C++ [basic.lookup.koenig]p2:
  //   For each argument type T in the function call, there is a set
  //   of zero or more associated namespaces and a set of zero or more
  //   associated classes to be considered. The sets of namespaces and
  //   classes is determined entirely by the types of the function
  //   arguments (and the namespace of any template template
  //   argument).
  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
    Expr *Arg = Args[ArgIdx];

    if (Arg->getType() != Context.OverloadTy) {
      addAssociatedClassesAndNamespaces(Result, Arg->getType());
      continue;
    }

    // [...] In addition, if the argument is the name or address of a
    // set of overloaded functions and/or function templates, its
    // associated classes and namespaces are the union of those
    // associated with each of the members of the set: the namespace
    // in which the function or function template is defined and the
    // classes and namespaces associated with its (non-dependent)
    // parameter types and return type.
    OverloadExpr *OE = OverloadExpr::find(Arg).Expression;

    for (const NamedDecl *D : OE->decls()) {
      // Look through any using declarations to find the underlying function.
      const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();

      // Add the classes and namespaces associated with the parameter
      // types and return type of this function.
      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
    }
  }
}

NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
                                  SourceLocation Loc,
                                  LookupNameKind NameKind,
                                  RedeclarationKind Redecl) {
  LookupResult R(*this, Name, Loc, NameKind, Redecl);
  LookupName(R, S);
  return R.getAsSingle<NamedDecl>();
}

/// Find the protocol with the given name, if any.
ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
                                       SourceLocation IdLoc,
                                       RedeclarationKind Redecl) {
  Decl *D = LookupSingleName(TUScope, II, IdLoc,
                             LookupObjCProtocolName, Redecl);
  return cast_or_null<ObjCProtocolDecl>(D);
}

void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
                                        UnresolvedSetImpl &Functions) {
  // C++ [over.match.oper]p3:
  //     -- The set of non-member candidates is the result of the
  //        unqualified lookup of operator@ in the context of the
  //        expression according to the usual rules for name lookup in
  //        unqualified function calls (3.4.2) except that all member
  //        functions are ignored.
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
  LookupName(Operators, S);

  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
  Functions.append(Operators.begin(), Operators.end());
}

Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
                                                           CXXSpecialMember SM,
                                                           bool ConstArg,
                                                           bool VolatileArg,
                                                           bool RValueThis,
                                                           bool ConstThis,
                                                           bool VolatileThis) {
  assert(CanDeclareSpecialMemberFunction(RD) &&
         "doing special member lookup into record that isn't fully complete");
  RD = RD->getDefinition();
  if (RValueThis || ConstThis || VolatileThis)
    assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
           "constructors and destructors always have unqualified lvalue this");
  if (ConstArg || VolatileArg)
    assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
           "parameter-less special members can't have qualified arguments");

  // FIXME: Get the caller to pass in a location for the lookup.
  SourceLocation LookupLoc = RD->getLocation();

  llvm::FoldingSetNodeID ID;
  ID.AddPointer(RD);
  ID.AddInteger(SM);
  ID.AddInteger(ConstArg);
  ID.AddInteger(VolatileArg);
  ID.AddInteger(RValueThis);
  ID.AddInteger(ConstThis);
  ID.AddInteger(VolatileThis);

  void *InsertPoint;
  SpecialMemberOverloadResultEntry *Result =
    SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);

  // This was already cached
  if (Result)
    return *Result;

  Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
  Result = new (Result) SpecialMemberOverloadResultEntry(ID);
  SpecialMemberCache.InsertNode(Result, InsertPoint);

  if (SM == CXXDestructor) {
    if (RD->needsImplicitDestructor()) {
      runWithSufficientStackSpace(RD->getLocation(), [&] {
        DeclareImplicitDestructor(RD);
      });
    }
    CXXDestructorDecl *DD = RD->getDestructor();
    Result->setMethod(DD);
    Result->setKind(DD && !DD->isDeleted()
                        ? SpecialMemberOverloadResult::Success
                        : SpecialMemberOverloadResult::NoMemberOrDeleted);
    return *Result;
  }

  // Prepare for overload resolution. Here we construct a synthetic argument
  // if necessary and make sure that implicit functions are declared.
  CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
  DeclarationName Name;
  Expr *Arg = nullptr;
  unsigned NumArgs;

  QualType ArgType = CanTy;
  ExprValueKind VK = VK_LValue;

  if (SM == CXXDefaultConstructor) {
    Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
    NumArgs = 0;
    if (RD->needsImplicitDefaultConstructor()) {
      runWithSufficientStackSpace(RD->getLocation(), [&] {
        DeclareImplicitDefaultConstructor(RD);
      });
    }
  } else {
    if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
      Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
      if (RD->needsImplicitCopyConstructor()) {
        runWithSufficientStackSpace(RD->getLocation(), [&] {
          DeclareImplicitCopyConstructor(RD);
        });
      }
      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
        runWithSufficientStackSpace(RD->getLocation(), [&] {
          DeclareImplicitMoveConstructor(RD);
        });
      }
    } else {
      Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
      if (RD->needsImplicitCopyAssignment()) {
        runWithSufficientStackSpace(RD->getLocation(), [&] {
          DeclareImplicitCopyAssignment(RD);
        });
      }
      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
        runWithSufficientStackSpace(RD->getLocation(), [&] {
          DeclareImplicitMoveAssignment(RD);
        });
      }
    }

    if (ConstArg)
      ArgType.addConst();
    if (VolatileArg)
      ArgType.addVolatile();

    // This isn't /really/ specified by the standard, but it's implied
    // we should be working from a PRValue in the case of move to ensure
    // that we prefer to bind to rvalue references, and an LValue in the
    // case of copy to ensure we don't bind to rvalue references.
    // Possibly an XValue is actually correct in the case of move, but
    // there is no semantic difference for class types in this restricted
    // case.
    if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
      VK = VK_LValue;
    else
      VK = VK_PRValue;
  }

  OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);

  if (SM != CXXDefaultConstructor) {
    NumArgs = 1;
    Arg = &FakeArg;
  }

  // Create the object argument
  QualType ThisTy = CanTy;
  if (ConstThis)
    ThisTy.addConst();
  if (VolatileThis)
    ThisTy.addVolatile();
  Expr::Classification Classification =
      OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue)
          .Classify(Context);

  // Now we perform lookup on the name we computed earlier and do overload
  // resolution. Lookup is only performed directly into the class since there
  // will always be a (possibly implicit) declaration to shadow any others.
  OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
  DeclContext::lookup_result R = RD->lookup(Name);

  if (R.empty()) {
    // We might have no default constructor because we have a lambda's closure
    // type, rather than because there's some other declared constructor.
    // Every class has a copy/move constructor, copy/move assignment, and
    // destructor.
    assert(SM == CXXDefaultConstructor &&
           "lookup for a constructor or assignment operator was empty");
    Result->setMethod(nullptr);
    Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
    return *Result;
  }

  // Copy the candidates as our processing of them may load new declarations
  // from an external source and invalidate lookup_result.
  SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());

  for (NamedDecl *CandDecl : Candidates) {
    if (CandDecl->isInvalidDecl())
      continue;

    DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
    auto CtorInfo = getConstructorInfo(Cand);
    if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
        AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
                           llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
      else if (CtorInfo)
        AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
                             llvm::makeArrayRef(&Arg, NumArgs), OCS,
                             /*SuppressUserConversions*/ true);
      else
        AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
                             /*SuppressUserConversions*/ true);
    } else if (FunctionTemplateDecl *Tmpl =
                 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
        AddMethodTemplateCandidate(
            Tmpl, Cand, RD, nullptr, ThisTy, Classification,
            llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
      else if (CtorInfo)
        AddTemplateOverloadCandidate(
            CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
            llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
      else
        AddTemplateOverloadCandidate(
            Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
    } else {
      assert(isa<UsingDecl>(Cand.getDecl()) &&
             "illegal Kind of operator = Decl");
    }
  }

  OverloadCandidateSet::iterator Best;
  switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
    case OR_Success:
      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
      Result->setKind(SpecialMemberOverloadResult::Success);
      break;

    case OR_Deleted:
      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
      break;

    case OR_Ambiguous:
      Result->setMethod(nullptr);
      Result->setKind(SpecialMemberOverloadResult::Ambiguous);
      break;

    case OR_No_Viable_Function:
      Result->setMethod(nullptr);
      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
      break;
  }

  return *Result;
}

/// Look up the default constructor for the given class.
CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
  SpecialMemberOverloadResult Result =
    LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
                        false, false);

  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
}

/// Look up the copying constructor for the given class.
CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
                                                   unsigned Quals) {
  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
         "non-const, non-volatile qualifiers for copy ctor arg");
  SpecialMemberOverloadResult Result =
    LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
                        Quals & Qualifiers::Volatile, false, false, false);

  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
}

/// Look up the moving constructor for the given class.
CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
                                                  unsigned Quals) {
  SpecialMemberOverloadResult Result =
    LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
                        Quals & Qualifiers::Volatile, false, false, false);

  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
}

/// Look up the constructors for the given class.
DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
  // If the implicit constructors have not yet been declared, do so now.
  if (CanDeclareSpecialMemberFunction(Class)) {
    runWithSufficientStackSpace(Class->getLocation(), [&] {
      if (Class->needsImplicitDefaultConstructor())
        DeclareImplicitDefaultConstructor(Class);
      if (Class->needsImplicitCopyConstructor())
        DeclareImplicitCopyConstructor(Class);
      if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
        DeclareImplicitMoveConstructor(Class);
    });
  }

  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
  DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
  return Class->lookup(Name);
}

/// Look up the copying assignment operator for the given class.
CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
                                             unsigned Quals, bool RValueThis,
                                             unsigned ThisQuals) {
  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
         "non-const, non-volatile qualifiers for copy assignment arg");
  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
         "non-const, non-volatile qualifiers for copy assignment this");
  SpecialMemberOverloadResult Result =
    LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
                        Quals & Qualifiers::Volatile, RValueThis,
                        ThisQuals & Qualifiers::Const,
                        ThisQuals & Qualifiers::Volatile);

  return Result.getMethod();
}

/// Look up the moving assignment operator for the given class.
CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
                                            unsigned Quals,
                                            bool RValueThis,
                                            unsigned ThisQuals) {
  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
         "non-const, non-volatile qualifiers for copy assignment this");
  SpecialMemberOverloadResult Result =
    LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
                        Quals & Qualifiers::Volatile, RValueThis,
                        ThisQuals & Qualifiers::Const,
                        ThisQuals & Qualifiers::Volatile);

  return Result.getMethod();
}

/// Look for the destructor of the given class.
///
/// During semantic analysis, this routine should be used in lieu of
/// CXXRecordDecl::getDestructor().
///
/// \returns The destructor for this class.
CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
  return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
                                                     false, false, false,
                                                     false, false).getMethod());
}

/// LookupLiteralOperator - Determine which literal operator should be used for
/// a user-defined literal, per C++11 [lex.ext].
///
/// Normal overload resolution is not used to select which literal operator to
/// call for a user-defined literal. Look up the provided literal operator name,
/// and filter the results to the appropriate set for the given argument types.
Sema::LiteralOperatorLookupResult
Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
                            ArrayRef<QualType> ArgTys, bool AllowRaw,
                            bool AllowTemplate, bool AllowStringTemplatePack,
                            bool DiagnoseMissing, StringLiteral *StringLit) {
  LookupName(R, S);
  assert(R.getResultKind() != LookupResult::Ambiguous &&
         "literal operator lookup can't be ambiguous");

  // Filter the lookup results appropriately.
  LookupResult::Filter F = R.makeFilter();

  bool AllowCooked = true;
  bool FoundRaw = false;
  bool FoundTemplate = false;
  bool FoundStringTemplatePack = false;
  bool FoundCooked = false;

  while (F.hasNext()) {
    Decl *D = F.next();
    if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
      D = USD->getTargetDecl();

    // If the declaration we found is invalid, skip it.
    if (D->isInvalidDecl()) {
      F.erase();
      continue;
    }

    bool IsRaw = false;
    bool IsTemplate = false;
    bool IsStringTemplatePack = false;
    bool IsCooked = false;

    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
      if (FD->getNumParams() == 1 &&
          FD->getParamDecl(0)->getType()->getAs<PointerType>())
        IsRaw = true;
      else if (FD->getNumParams() == ArgTys.size()) {
        IsCooked = true;
        for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
          QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
          if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
            IsCooked = false;
            break;
          }
        }
      }
    }
    if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
      TemplateParameterList *Params = FD->getTemplateParameters();
      if (Params->size() == 1) {
        IsTemplate = true;
        if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) {
          // Implied but not stated: user-defined integer and floating literals
          // only ever use numeric literal operator templates, not templates
          // taking a parameter of class type.
          F.erase();
          continue;
        }

        // A string literal template is only considered if the string literal
        // is a well-formed template argument for the template parameter.
        if (StringLit) {
          SFINAETrap Trap(*this);
          SmallVector<TemplateArgument, 1> Checked;
          TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit);
          if (CheckTemplateArgument(Params->getParam(0), Arg, FD,
                                    R.getNameLoc(), R.getNameLoc(), 0,
                                    Checked) ||
              Trap.hasErrorOccurred())
            IsTemplate = false;
        }
      } else {
        IsStringTemplatePack = true;
      }
    }

    if (AllowTemplate && StringLit && IsTemplate) {
      FoundTemplate = true;
      AllowRaw = false;
      AllowCooked = false;
      AllowStringTemplatePack = false;
      if (FoundRaw || FoundCooked || FoundStringTemplatePack) {
        F.restart();
        FoundRaw = FoundCooked = FoundStringTemplatePack = false;
      }
    } else if (AllowCooked && IsCooked) {
      FoundCooked = true;
      AllowRaw = false;
      AllowTemplate = StringLit;
      AllowStringTemplatePack = false;
      if (FoundRaw || FoundTemplate || FoundStringTemplatePack) {
        // Go through again and remove the raw and template decls we've
        // already found.
        F.restart();
        FoundRaw = FoundTemplate = FoundStringTemplatePack = false;
      }
    } else if (AllowRaw && IsRaw) {
      FoundRaw = true;
    } else if (AllowTemplate && IsTemplate) {
      FoundTemplate = true;
    } else if (AllowStringTemplatePack && IsStringTemplatePack) {
      FoundStringTemplatePack = true;
    } else {
      F.erase();
    }
  }

  F.done();

  // Per C++20 [lex.ext]p5, we prefer the template form over the non-template
  // form for string literal operator templates.
  if (StringLit && FoundTemplate)
    return LOLR_Template;

  // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
  // parameter type, that is used in preference to a raw literal operator
  // or literal operator template.
  if (FoundCooked)
    return LOLR_Cooked;

  // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
  // operator template, but not both.
  if (FoundRaw && FoundTemplate) {
    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
      NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
    return LOLR_Error;
  }

  if (FoundRaw)
    return LOLR_Raw;

  if (FoundTemplate)
    return LOLR_Template;

  if (FoundStringTemplatePack)
    return LOLR_StringTemplatePack;

  // Didn't find anything we could use.
  if (DiagnoseMissing) {
    Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
        << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
        << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
        << (AllowTemplate || AllowStringTemplatePack);
    return LOLR_Error;
  }

  return LOLR_ErrorNoDiagnostic;
}

void ADLResult::insert(NamedDecl *New) {
  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];

  // If we haven't yet seen a decl for this key, or the last decl
  // was exactly this one, we're done.
  if (Old == nullptr || Old == New) {
    Old = New;
    return;
  }

  // Otherwise, decide which is a more recent redeclaration.
  FunctionDecl *OldFD = Old->getAsFunction();
  FunctionDecl *NewFD = New->getAsFunction();

  FunctionDecl *Cursor = NewFD;
  while (true) {
    Cursor = Cursor->getPreviousDecl();

    // If we got to the end without finding OldFD, OldFD is the newer
    // declaration;  leave things as they are.
    if (!Cursor) return;

    // If we do find OldFD, then NewFD is newer.
    if (Cursor == OldFD) break;

    // Otherwise, keep looking.
  }

  Old = New;
}

void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
                                   ArrayRef<Expr *> Args, ADLResult &Result) {
  // Find all of the associated namespaces and classes based on the
  // arguments we have.
  AssociatedNamespaceSet AssociatedNamespaces;
  AssociatedClassSet AssociatedClasses;
  FindAssociatedClassesAndNamespaces(Loc, Args,
                                     AssociatedNamespaces,
                                     AssociatedClasses);

  // C++ [basic.lookup.argdep]p3:
  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
  //   and let Y be the lookup set produced by argument dependent
  //   lookup (defined as follows). If X contains [...] then Y is
  //   empty. Otherwise Y is the set of declarations found in the
  //   namespaces associated with the argument types as described
  //   below. The set of declarations found by the lookup of the name
  //   is the union of X and Y.
  //
  // Here, we compute Y and add its members to the overloaded
  // candidate set.
  for (auto *NS : AssociatedNamespaces) {
    //   When considering an associated namespace, the lookup is the
    //   same as the lookup performed when the associated namespace is
    //   used as a qualifier (3.4.3.2) except that:
    //
    //     -- Any using-directives in the associated namespace are
    //        ignored.
    //
    //     -- Any namespace-scope friend functions declared in
    //        associated classes are visible within their respective
    //        namespaces even if they are not visible during an ordinary
    //        lookup (11.4).
    DeclContext::lookup_result R = NS->lookup(Name);
    for (auto *D : R) {
      auto *Underlying = D;
      if (auto *USD = dyn_cast<UsingShadowDecl>(D))
        Underlying = USD->getTargetDecl();

      if (!isa<FunctionDecl>(Underlying) &&
          !isa<FunctionTemplateDecl>(Underlying))
        continue;

      // The declaration is visible to argument-dependent lookup if either
      // it's ordinarily visible or declared as a friend in an associated
      // class.
      bool Visible = false;
      for (D = D->getMostRecentDecl(); D;
           D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
        if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
          if (isVisible(D)) {
            Visible = true;
            break;
          }
        } else if (D->getFriendObjectKind()) {
          auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
          if (AssociatedClasses.count(RD) && isVisible(D)) {
            Visible = true;
            break;
          }
        }
      }

      // FIXME: Preserve D as the FoundDecl.
      if (Visible)
        Result.insert(Underlying);
    }
  }
}

//----------------------------------------------------------------------------
// Search for all visible declarations.
//----------------------------------------------------------------------------
VisibleDeclConsumer::~VisibleDeclConsumer() { }

bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }

namespace {

class ShadowContextRAII;

class VisibleDeclsRecord {
public:
  /// An entry in the shadow map, which is optimized to store a
  /// single declaration (the common case) but can also store a list
  /// of declarations.
  typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;

private:
  /// A mapping from declaration names to the declarations that have
  /// this name within a particular scope.
  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;

  /// A list of shadow maps, which is used to model name hiding.
  std::list<ShadowMap> ShadowMaps;

  /// The declaration contexts we have already visited.
  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;

  friend class ShadowContextRAII;

public:
  /// Determine whether we have already visited this context
  /// (and, if not, note that we are going to visit that context now).
  bool visitedContext(DeclContext *Ctx) {
    return !VisitedContexts.insert(Ctx).second;
  }

  bool alreadyVisitedContext(DeclContext *Ctx) {
    return VisitedContexts.count(Ctx);
  }

  /// Determine whether the given declaration is hidden in the
  /// current scope.
  ///
  /// \returns the declaration that hides the given declaration, or
  /// NULL if no such declaration exists.
  NamedDecl *checkHidden(NamedDecl *ND);

  /// Add a declaration to the current shadow map.
  void add(NamedDecl *ND) {
    ShadowMaps.back()[ND->getDeclName()].push_back(ND);
  }
};

/// RAII object that records when we've entered a shadow context.
class ShadowContextRAII {
  VisibleDeclsRecord &Visible;

  typedef VisibleDeclsRecord::ShadowMap ShadowMap;

public:
  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
    Visible.ShadowMaps.emplace_back();
  }

  ~ShadowContextRAII() {
    Visible.ShadowMaps.pop_back();
  }
};

} // end anonymous namespace

NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
  unsigned IDNS = ND->getIdentifierNamespace();
  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
       SM != SMEnd; ++SM) {
    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
    if (Pos == SM->end())
      continue;

    for (auto *D : Pos->second) {
      // A tag declaration does not hide a non-tag declaration.
      if (D->hasTagIdentifierNamespace() &&
          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
                   Decl::IDNS_ObjCProtocol)))
        continue;

      // Protocols are in distinct namespaces from everything else.
      if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
          D->getIdentifierNamespace() != IDNS)
        continue;

      // Functions and function templates in the same scope overload
      // rather than hide.  FIXME: Look for hiding based on function
      // signatures!
      if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
          ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
          SM == ShadowMaps.rbegin())
        continue;

      // A shadow declaration that's created by a resolved using declaration
      // is not hidden by the same using declaration.
      if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
          cast<UsingShadowDecl>(ND)->getIntroducer() == D)
        continue;

      // We've found a declaration that hides this one.
      return D;
    }
  }

  return nullptr;
}

namespace {
class LookupVisibleHelper {
public:
  LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
                      bool LoadExternal)
      : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
        LoadExternal(LoadExternal) {}

  void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
                          bool IncludeGlobalScope) {
    // Determine the set of using directives available during
    // unqualified name lookup.
    Scope *Initial = S;
    UnqualUsingDirectiveSet UDirs(SemaRef);
    if (SemaRef.getLangOpts().CPlusPlus) {
      // Find the first namespace or translation-unit scope.
      while (S && !isNamespaceOrTranslationUnitScope(S))
        S = S->getParent();

      UDirs.visitScopeChain(Initial, S);
    }
    UDirs.done();

    // Look for visible declarations.
    LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
    Result.setAllowHidden(Consumer.includeHiddenDecls());
    if (!IncludeGlobalScope)
      Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
    ShadowContextRAII Shadow(Visited);
    lookupInScope(Initial, Result, UDirs);
  }

  void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
                          Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
    LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
    Result.setAllowHidden(Consumer.includeHiddenDecls());
    if (!IncludeGlobalScope)
      Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());

    ShadowContextRAII Shadow(Visited);
    lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
                        /*InBaseClass=*/false);
  }

private:
  void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
                           bool QualifiedNameLookup, bool InBaseClass) {
    if (!Ctx)
      return;

    // Make sure we don't visit the same context twice.
    if (Visited.visitedContext(Ctx->getPrimaryContext()))
      return;

    Consumer.EnteredContext(Ctx);

    // Outside C++, lookup results for the TU live on identifiers.
    if (isa<TranslationUnitDecl>(Ctx) &&
        !Result.getSema().getLangOpts().CPlusPlus) {
      auto &S = Result.getSema();
      auto &Idents = S.Context.Idents;

      // Ensure all external identifiers are in the identifier table.
      if (LoadExternal)
        if (IdentifierInfoLookup *External =
                Idents.getExternalIdentifierLookup()) {
          std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
          for (StringRef Name = Iter->Next(); !Name.empty();
               Name = Iter->Next())
            Idents.get(Name);
        }

      // Walk all lookup results in the TU for each identifier.
      for (const auto &Ident : Idents) {
        for (auto I = S.IdResolver.begin(Ident.getValue()),
                  E = S.IdResolver.end();
             I != E; ++I) {
          if (S.IdResolver.isDeclInScope(*I, Ctx)) {
            if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
              Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
              Visited.add(ND);
            }
          }
        }
      }

      return;
    }

    if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
      Result.getSema().ForceDeclarationOfImplicitMembers(Class);

    llvm::SmallVector<NamedDecl *, 4> DeclsToVisit;
    // We sometimes skip loading namespace-level results (they tend to be huge).
    bool Load = LoadExternal ||
                !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
    // Enumerate all of the results in this context.
    for (DeclContextLookupResult R :
         Load ? Ctx->lookups()
              : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
      for (auto *D : R) {
        if (auto *ND = Result.getAcceptableDecl(D)) {
          // Rather than visit immediately, we put ND into a vector and visit
          // all decls, in order, outside of this loop. The reason is that
          // Consumer.FoundDecl() may invalidate the iterators used in the two
          // loops above.
          DeclsToVisit.push_back(ND);
        }
      }
    }

    for (auto *ND : DeclsToVisit) {
      Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
      Visited.add(ND);
    }
    DeclsToVisit.clear();

    // Traverse using directives for qualified name lookup.
    if (QualifiedNameLookup) {
      ShadowContextRAII Shadow(Visited);
      for (auto I : Ctx->using_directives()) {
        if (!Result.getSema().isVisible(I))
          continue;
        lookupInDeclContext(I->getNominatedNamespace(), Result,
                            QualifiedNameLookup, InBaseClass);
      }
    }

    // Traverse the contexts of inherited C++ classes.
    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
      if (!Record->hasDefinition())
        return;

      for (const auto &B : Record->bases()) {
        QualType BaseType = B.getType();

        RecordDecl *RD;
        if (BaseType->isDependentType()) {
          if (!IncludeDependentBases) {
            // Don't look into dependent bases, because name lookup can't look
            // there anyway.
            continue;
          }
          const auto *TST = BaseType->getAs<TemplateSpecializationType>();
          if (!TST)
            continue;
          TemplateName TN = TST->getTemplateName();
          const auto *TD =
              dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
          if (!TD)
            continue;
          RD = TD->getTemplatedDecl();
        } else {
          const auto *Record = BaseType->getAs<RecordType>();
          if (!Record)
            continue;
          RD = Record->getDecl();
        }

        // FIXME: It would be nice to be able to determine whether referencing
        // a particular member would be ambiguous. For example, given
        //
        //   struct A { int member; };
        //   struct B { int member; };
        //   struct C : A, B { };
        //
        //   void f(C *c) { c->### }
        //
        // accessing 'member' would result in an ambiguity. However, we
        // could be smart enough to qualify the member with the base
        // class, e.g.,
        //
        //   c->B::member
        //
        // or
        //
        //   c->A::member

        // Find results in this base class (and its bases).
        ShadowContextRAII Shadow(Visited);
        lookupInDeclContext(RD, Result, QualifiedNameLookup,
                            /*InBaseClass=*/true);
      }
    }

    // Traverse the contexts of Objective-C classes.
    if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
      // Traverse categories.
      for (auto *Cat : IFace->visible_categories()) {
        ShadowContextRAII Shadow(Visited);
        lookupInDeclContext(Cat, Result, QualifiedNameLookup,
                            /*InBaseClass=*/false);
      }

      // Traverse protocols.
      for (auto *I : IFace->all_referenced_protocols()) {
        ShadowContextRAII Shadow(Visited);
        lookupInDeclContext(I, Result, QualifiedNameLookup,
                            /*InBaseClass=*/false);
      }

      // Traverse the superclass.
      if (IFace->getSuperClass()) {
        ShadowContextRAII Shadow(Visited);
        lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
                            /*InBaseClass=*/true);
      }

      // If there is an implementation, traverse it. We do this to find
      // synthesized ivars.
      if (IFace->getImplementation()) {
        ShadowContextRAII Shadow(Visited);
        lookupInDeclContext(IFace->getImplementation(), Result,
                            QualifiedNameLookup, InBaseClass);
      }
    } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
      for (auto *I : Protocol->protocols()) {
        ShadowContextRAII Shadow(Visited);
        lookupInDeclContext(I, Result, QualifiedNameLookup,
                            /*InBaseClass=*/false);
      }
    } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
      for (auto *I : Category->protocols()) {
        ShadowContextRAII Shadow(Visited);
        lookupInDeclContext(I, Result, QualifiedNameLookup,
                            /*InBaseClass=*/false);
      }

      // If there is an implementation, traverse it.
      if (Category->getImplementation()) {
        ShadowContextRAII Shadow(Visited);
        lookupInDeclContext(Category->getImplementation(), Result,
                            QualifiedNameLookup, /*InBaseClass=*/true);
      }
    }
  }

  void lookupInScope(Scope *S, LookupResult &Result,
                     UnqualUsingDirectiveSet &UDirs) {
    // No clients run in this mode and it's not supported. Please add tests and
    // remove the assertion if you start relying on it.
    assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");

    if (!S)
      return;

    if (!S->getEntity() ||
        (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
        (S->getEntity())->isFunctionOrMethod()) {
      FindLocalExternScope FindLocals(Result);
      // Walk through the declarations in this Scope. The consumer might add new
      // decls to the scope as part of deserialization, so make a copy first.
      SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
      for (Decl *D : ScopeDecls) {
        if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
          if ((ND = Result.getAcceptableDecl(ND))) {
            Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
            Visited.add(ND);
          }
      }
    }

    DeclContext *Entity = S->getLookupEntity();
    if (Entity) {
      // Look into this scope's declaration context, along with any of its
      // parent lookup contexts (e.g., enclosing classes), up to the point
      // where we hit the context stored in the next outer scope.
      DeclContext *OuterCtx = findOuterContext(S);

      for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
           Ctx = Ctx->getLookupParent()) {
        if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
          if (Method->isInstanceMethod()) {
            // For instance methods, look for ivars in the method's interface.
            LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
                                    Result.getNameLoc(),
                                    Sema::LookupMemberName);
            if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
              lookupInDeclContext(IFace, IvarResult,
                                  /*QualifiedNameLookup=*/false,
                                  /*InBaseClass=*/false);
            }
          }

          // We've already performed all of the name lookup that we need
          // to for Objective-C methods; the next context will be the
          // outer scope.
          break;
        }

        if (Ctx->isFunctionOrMethod())
          continue;

        lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
                            /*InBaseClass=*/false);
      }
    } else if (!S->getParent()) {
      // Look into the translation unit scope. We walk through the translation
      // unit's declaration context, because the Scope itself won't have all of
      // the declarations if we loaded a precompiled header.
      // FIXME: We would like the translation unit's Scope object to point to
      // the translation unit, so we don't need this special "if" branch.
      // However, doing so would force the normal C++ name-lookup code to look
      // into the translation unit decl when the IdentifierInfo chains would
      // suffice. Once we fix that problem (which is part of a more general
      // "don't look in DeclContexts unless we have to" optimization), we can
      // eliminate this.
      Entity = Result.getSema().Context.getTranslationUnitDecl();
      lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
                          /*InBaseClass=*/false);
    }

    if (Entity) {
      // Lookup visible declarations in any namespaces found by using
      // directives.
      for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
        lookupInDeclContext(
            const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
            /*QualifiedNameLookup=*/false,
            /*InBaseClass=*/false);
    }

    // Lookup names in the parent scope.
    ShadowContextRAII Shadow(Visited);
    lookupInScope(S->getParent(), Result, UDirs);
  }

private:
  VisibleDeclsRecord Visited;
  VisibleDeclConsumer &Consumer;
  bool IncludeDependentBases;
  bool LoadExternal;
};
} // namespace

void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
                              VisibleDeclConsumer &Consumer,
                              bool IncludeGlobalScope, bool LoadExternal) {
  LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
                        LoadExternal);
  H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
}

void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
                              VisibleDeclConsumer &Consumer,
                              bool IncludeGlobalScope,
                              bool IncludeDependentBases, bool LoadExternal) {
  LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
  H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
}

/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
/// If GnuLabelLoc is a valid source location, then this is a definition
/// of an __label__ label name, otherwise it is a normal label definition
/// or use.
LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
                                     SourceLocation GnuLabelLoc) {
  // Do a lookup to see if we have a label with this name already.
  NamedDecl *Res = nullptr;

  if (GnuLabelLoc.isValid()) {
    // Local label definitions always shadow existing labels.
    Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
    Scope *S = CurScope;
    PushOnScopeChains(Res, S, true);
    return cast<LabelDecl>(Res);
  }

  // Not a GNU local label.
  Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
  // If we found a label, check to see if it is in the same context as us.
  // When in a Block, we don't want to reuse a label in an enclosing function.
  if (Res && Res->getDeclContext() != CurContext)
    Res = nullptr;
  if (!Res) {
    // If not forward referenced or defined already, create the backing decl.
    Res = LabelDecl::Create(Context, CurContext, Loc, II);
    Scope *S = CurScope->getFnParent();
    assert(S && "Not in a function?");
    PushOnScopeChains(Res, S, true);
  }
  return cast<LabelDecl>(Res);
}

//===----------------------------------------------------------------------===//
// Typo correction
//===----------------------------------------------------------------------===//

static bool isCandidateViable(CorrectionCandidateCallback &CCC,
                              TypoCorrection &Candidate) {
  Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
  return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
}

static void LookupPotentialTypoResult(Sema &SemaRef,
                                      LookupResult &Res,
                                      IdentifierInfo *Name,
                                      Scope *S, CXXScopeSpec *SS,
                                      DeclContext *MemberContext,
                                      bool EnteringContext,
                                      bool isObjCIvarLookup,
                                      bool FindHidden);

/// Check whether the declarations found for a typo correction are
/// visible. Set the correction's RequiresImport flag to true if none of the
/// declarations are visible, false otherwise.
static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
  TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();

  for (/**/; DI != DE; ++DI)
    if (!LookupResult::isVisible(SemaRef, *DI))
      break;
  // No filtering needed if all decls are visible.
  if (DI == DE) {
    TC.setRequiresImport(false);
    return;
  }

  llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
  bool AnyVisibleDecls = !NewDecls.empty();

  for (/**/; DI != DE; ++DI) {
    if (LookupResult::isVisible(SemaRef, *DI)) {
      if (!AnyVisibleDecls) {
        // Found a visible decl, discard all hidden ones.
        AnyVisibleDecls = true;
        NewDecls.clear();
      }
      NewDecls.push_back(*DI);
    } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
      NewDecls.push_back(*DI);
  }

  if (NewDecls.empty())
    TC = TypoCorrection();
  else {
    TC.setCorrectionDecls(NewDecls);
    TC.setRequiresImport(!AnyVisibleDecls);
  }
}

// Fill the supplied vector with the IdentifierInfo pointers for each piece of
// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
static void getNestedNameSpecifierIdentifiers(
    NestedNameSpecifier *NNS,
    SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
  if (NestedNameSpecifier *Prefix = NNS->getPrefix())
    getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
  else
    Identifiers.clear();

  const IdentifierInfo *II = nullptr;

  switch (NNS->getKind()) {
  case NestedNameSpecifier::Identifier:
    II = NNS->getAsIdentifier();
    break;

  case NestedNameSpecifier::Namespace:
    if (NNS->getAsNamespace()->isAnonymousNamespace())
      return;
    II = NNS->getAsNamespace()->getIdentifier();
    break;

  case NestedNameSpecifier::NamespaceAlias:
    II = NNS->getAsNamespaceAlias()->getIdentifier();
    break;

  case NestedNameSpecifier::TypeSpecWithTemplate:
  case NestedNameSpecifier::TypeSpec:
    II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
    break;

  case NestedNameSpecifier::Global:
  case NestedNameSpecifier::Super:
    return;
  }

  if (II)
    Identifiers.push_back(II);
}

void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
                                       DeclContext *Ctx, bool InBaseClass) {
  // Don't consider hidden names for typo correction.
  if (Hiding)
    return;

  // Only consider entities with identifiers for names, ignoring
  // special names (constructors, overloaded operators, selectors,
  // etc.).
  IdentifierInfo *Name = ND->getIdentifier();
  if (!Name)
    return;

  // Only consider visible declarations and declarations from modules with
  // names that exactly match.
  if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
    return;

  FoundName(Name->getName());
}

void TypoCorrectionConsumer::FoundName(StringRef Name) {
  // Compute the edit distance between the typo and the name of this
  // entity, and add the identifier to the list of results.
  addName(Name, nullptr);
}

void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
  // Compute the edit distance between the typo and this keyword,
  // and add the keyword to the list of results.
  addName(Keyword, nullptr, nullptr, true);
}

void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
                                     NestedNameSpecifier *NNS, bool isKeyword) {
  // Use a simple length-based heuristic to determine the minimum possible
  // edit distance. If the minimum isn't good enough, bail out early.
  StringRef TypoStr = Typo->getName();
  unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
  if (MinED && TypoStr.size() / MinED < 3)
    return;

  // Compute an upper bound on the allowable edit distance, so that the
  // edit-distance algorithm can short-circuit.
  unsigned UpperBound = (TypoStr.size() + 2) / 3;
  unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
  if (ED > UpperBound) return;

  TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
  if (isKeyword) TC.makeKeyword();
  TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
  addCorrection(TC);
}

static const unsigned MaxTypoDistanceResultSets = 5;

void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
  StringRef TypoStr = Typo->getName();
  StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();

  // For very short typos, ignore potential corrections that have a different
  // base identifier from the typo or which have a normalized edit distance
  // longer than the typo itself.
  if (TypoStr.size() < 3 &&
      (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
    return;

  // If the correction is resolved but is not viable, ignore it.
  if (Correction.isResolved()) {
    checkCorrectionVisibility(SemaRef, Correction);
    if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
      return;
  }

  TypoResultList &CList =
      CorrectionResults[Correction.getEditDistance(false)][Name];

  if (!CList.empty() && !CList.back().isResolved())
    CList.pop_back();
  if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
    auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) {
      return TypoCorr.getCorrectionDecl() == NewND;
    });
    if (RI != CList.end()) {
      // The Correction refers to a decl already in the list. No insertion is
      // necessary and all further cases will return.

      auto IsDeprecated = [](Decl *D) {
        while (D) {
          if (D->isDeprecated())
            return true;
          D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext());
        }
        return false;
      };

      // Prefer non deprecated Corrections over deprecated and only then
      // sort using an alphabetical order.
      std::pair<bool, std::string> NewKey = {
          IsDeprecated(Correction.getFoundDecl()),
          Correction.getAsString(SemaRef.getLangOpts())};

      std::pair<bool, std::string> PrevKey = {
          IsDeprecated(RI->getFoundDecl()),
          RI->getAsString(SemaRef.getLangOpts())};

      if (NewKey < PrevKey)
        *RI = Correction;
      return;
    }
  }
  if (CList.empty() || Correction.isResolved())
    CList.push_back(Correction);

  while (CorrectionResults.size() > MaxTypoDistanceResultSets)
    CorrectionResults.erase(std::prev(CorrectionResults.end()));
}

void TypoCorrectionConsumer::addNamespaces(
    const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
  SearchNamespaces = true;

  for (auto KNPair : KnownNamespaces)
    Namespaces.addNameSpecifier(KNPair.first);

  bool SSIsTemplate = false;
  if (NestedNameSpecifier *NNS =
          (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
    if (const Type *T = NNS->getAsType())
      SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
  }
  // Do not transform this into an iterator-based loop. The loop body can
  // trigger the creation of further types (through lazy deserialization) and
  // invalid iterators into this list.
  auto &Types = SemaRef.getASTContext().getTypes();
  for (unsigned I = 0; I != Types.size(); ++I) {
    const auto *TI = Types[I];
    if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
      CD = CD->getCanonicalDecl();
      if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
          !CD->isUnion() && CD->getIdentifier() &&
          (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
          (CD->isBeingDefined() || CD->isCompleteDefinition()))
        Namespaces.addNameSpecifier(CD);
    }
  }
}

const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
  if (++CurrentTCIndex < ValidatedCorrections.size())
    return ValidatedCorrections[CurrentTCIndex];

  CurrentTCIndex = ValidatedCorrections.size();
  while (!CorrectionResults.empty()) {
    auto DI = CorrectionResults.begin();
    if (DI->second.empty()) {
      CorrectionResults.erase(DI);
      continue;
    }

    auto RI = DI->second.begin();
    if (RI->second.empty()) {
      DI->second.erase(RI);
      performQualifiedLookups();
      continue;
    }

    TypoCorrection TC = RI->second.pop_back_val();
    if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
      ValidatedCorrections.push_back(TC);
      return ValidatedCorrections[CurrentTCIndex];
    }
  }
  return ValidatedCorrections[0];  // The empty correction.
}

bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
  IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
  DeclContext *TempMemberContext = MemberContext;
  CXXScopeSpec *TempSS = SS.get();
retry_lookup:
  LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
                            EnteringContext,
                            CorrectionValidator->IsObjCIvarLookup,
                            Name == Typo && !Candidate.WillReplaceSpecifier());
  switch (Result.getResultKind()) {
  case LookupResult::NotFound:
  case LookupResult::NotFoundInCurrentInstantiation:
  case LookupResult::FoundUnresolvedValue:
    if (TempSS) {
      // Immediately retry the lookup without the given CXXScopeSpec
      TempSS = nullptr;
      Candidate.WillReplaceSpecifier(true);
      goto retry_lookup;
    }
    if (TempMemberContext) {
      if (SS && !TempSS)
        TempSS = SS.get();
      TempMemberContext = nullptr;
      goto retry_lookup;
    }
    if (SearchNamespaces)
      QualifiedResults.push_back(Candidate);
    break;

  case LookupResult::Ambiguous:
    // We don't deal with ambiguities.
    break;

  case LookupResult::Found:
  case LookupResult::FoundOverloaded:
    // Store all of the Decls for overloaded symbols
    for (auto *TRD : Result)
      Candidate.addCorrectionDecl(TRD);
    checkCorrectionVisibility(SemaRef, Candidate);
    if (!isCandidateViable(*CorrectionValidator, Candidate)) {
      if (SearchNamespaces)
        QualifiedResults.push_back(Candidate);
      break;
    }
    Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
    return true;
  }
  return false;
}

void TypoCorrectionConsumer::performQualifiedLookups() {
  unsigned TypoLen = Typo->getName().size();
  for (const TypoCorrection &QR : QualifiedResults) {
    for (const auto &NSI : Namespaces) {
      DeclContext *Ctx = NSI.DeclCtx;
      const Type *NSType = NSI.NameSpecifier->getAsType();

      // If the current NestedNameSpecifier refers to a class and the
      // current correction candidate is the name of that class, then skip
      // it as it is unlikely a qualified version of the class' constructor
      // is an appropriate correction.
      if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
                                           nullptr) {
        if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
          continue;
      }

      TypoCorrection TC(QR);
      TC.ClearCorrectionDecls();
      TC.setCorrectionSpecifier(NSI.NameSpecifier);
      TC.setQualifierDistance(NSI.EditDistance);
      TC.setCallbackDistance(0); // Reset the callback distance

      // If the current correction candidate and namespace combination are
      // too far away from the original typo based on the normalized edit
      // distance, then skip performing a qualified name lookup.
      unsigned TmpED = TC.getEditDistance(true);
      if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
          TypoLen / TmpED < 3)
        continue;

      Result.clear();
      Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
      if (!SemaRef.LookupQualifiedName(Result, Ctx))
        continue;

      // Any corrections added below will be validated in subsequent
      // iterations of the main while() loop over the Consumer's contents.
      switch (Result.getResultKind()) {
      case LookupResult::Found:
      case LookupResult::FoundOverloaded: {
        if (SS && SS->isValid()) {
          std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
          std::string OldQualified;
          llvm::raw_string_ostream OldOStream(OldQualified);
          SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
          OldOStream << Typo->getName();
          // If correction candidate would be an identical written qualified
          // identifier, then the existing CXXScopeSpec probably included a
          // typedef that didn't get accounted for properly.
          if (OldOStream.str() == NewQualified)
            break;
        }
        for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
             TRD != TRDEnd; ++TRD) {
          if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
                                        NSType ? NSType->getAsCXXRecordDecl()
                                               : nullptr,
                                        TRD.getPair()) == Sema::AR_accessible)
            TC.addCorrectionDecl(*TRD);
        }
        if (TC.isResolved()) {
          TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
          addCorrection(TC);
        }
        break;
      }
      case LookupResult::NotFound:
      case LookupResult::NotFoundInCurrentInstantiation:
      case LookupResult::Ambiguous:
      case LookupResult::FoundUnresolvedValue:
        break;
      }
    }
  }
  QualifiedResults.clear();
}

TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
    ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
    : Context(Context), CurContextChain(buildContextChain(CurContext)) {
  if (NestedNameSpecifier *NNS =
          CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
    llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
    NNS->print(SpecifierOStream, Context.getPrintingPolicy());

    getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
  }
  // Build the list of identifiers that would be used for an absolute
  // (from the global context) NestedNameSpecifier referring to the current
  // context.
  for (DeclContext *C : llvm::reverse(CurContextChain)) {
    if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
      CurContextIdentifiers.push_back(ND->getIdentifier());
  }

  // Add the global context as a NestedNameSpecifier
  SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
                      NestedNameSpecifier::GlobalSpecifier(Context), 1};
  DistanceMap[1].push_back(SI);
}

auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
    DeclContext *Start) -> DeclContextList {
  assert(Start && "Building a context chain from a null context");
  DeclContextList Chain;
  for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
       DC = DC->getLookupParent()) {
    NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
    if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
        !(ND && ND->isAnonymousNamespace()))
      Chain.push_back(DC->getPrimaryContext());
  }
  return Chain;
}

unsigned
TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
    DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
  unsigned NumSpecifiers = 0;
  for (DeclContext *C : llvm::reverse(DeclChain)) {
    if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
      NNS = NestedNameSpecifier::Create(Context, NNS, ND);
      ++NumSpecifiers;
    } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
      NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
                                        RD->getTypeForDecl());
      ++NumSpecifiers;
    }
  }
  return NumSpecifiers;
}

void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
    DeclContext *Ctx) {
  NestedNameSpecifier *NNS = nullptr;
  unsigned NumSpecifiers = 0;
  DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
  DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);

  // Eliminate common elements from the two DeclContext chains.
  for (DeclContext *C : llvm::reverse(CurContextChain)) {
    if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
      break;
    NamespaceDeclChain.pop_back();
  }

  // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
  NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);

  // Add an explicit leading '::' specifier if needed.
  if (NamespaceDeclChain.empty()) {
    // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
    NNS = NestedNameSpecifier::GlobalSpecifier(Context);
    NumSpecifiers =
        buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
  } else if (NamedDecl *ND =
                 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
    IdentifierInfo *Name = ND->getIdentifier();
    bool SameNameSpecifier = false;
    if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) {
      std::string NewNameSpecifier;
      llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
      SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
      getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
      NNS->print(SpecifierOStream, Context.getPrintingPolicy());
      SpecifierOStream.flush();
      SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
    }
    if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) {
      // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
      NNS = NestedNameSpecifier::GlobalSpecifier(Context);
      NumSpecifiers =
          buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
    }
  }

  // If the built NestedNameSpecifier would be replacing an existing
  // NestedNameSpecifier, use the number of component identifiers that
  // would need to be changed as the edit distance instead of the number
  // of components in the built NestedNameSpecifier.
  if (NNS && !CurNameSpecifierIdentifiers.empty()) {
    SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
    getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
    NumSpecifiers = llvm::ComputeEditDistance(
        llvm::makeArrayRef(CurNameSpecifierIdentifiers),
        llvm::makeArrayRef(NewNameSpecifierIdentifiers));
  }

  SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
  DistanceMap[NumSpecifiers].push_back(SI);
}

/// Perform name lookup for a possible result for typo correction.
static void LookupPotentialTypoResult(Sema &SemaRef,
                                      LookupResult &Res,
                                      IdentifierInfo *Name,
                                      Scope *S, CXXScopeSpec *SS,
                                      DeclContext *MemberContext,
                                      bool EnteringContext,
                                      bool isObjCIvarLookup,
                                      bool FindHidden) {
  Res.suppressDiagnostics();
  Res.clear();
  Res.setLookupName(Name);
  Res.setAllowHidden(FindHidden);
  if (MemberContext) {
    if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
      if (isObjCIvarLookup) {
        if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
          Res.addDecl(Ivar);
          Res.resolveKind();
          return;
        }
      }

      if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
              Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
        Res.addDecl(Prop);
        Res.resolveKind();
        return;
      }
    }

    SemaRef.LookupQualifiedName(Res, MemberContext);
    return;
  }

  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
                           EnteringContext);

  // Fake ivar lookup; this should really be part of
  // LookupParsedName.
  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
    if (Method->isInstanceMethod() && Method->getClassInterface() &&
        (Res.empty() ||
         (Res.isSingleResult() &&
          Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
       if (ObjCIvarDecl *IV
             = Method->getClassInterface()->lookupInstanceVariable(Name)) {
         Res.addDecl(IV);
         Res.resolveKind();
       }
     }
  }
}

/// Add keywords to the consumer as possible typo corrections.
static void AddKeywordsToConsumer(Sema &SemaRef,
                                  TypoCorrectionConsumer &Consumer,
                                  Scope *S, CorrectionCandidateCallback &CCC,
                                  bool AfterNestedNameSpecifier) {
  if (AfterNestedNameSpecifier) {
    // For 'X::', we know exactly which keywords can appear next.
    Consumer.addKeywordResult("template");
    if (CCC.WantExpressionKeywords)
      Consumer.addKeywordResult("operator");
    return;
  }

  if (CCC.WantObjCSuper)
    Consumer.addKeywordResult("super");

  if (CCC.WantTypeSpecifiers) {
    // Add type-specifier keywords to the set of results.
    static const char *const CTypeSpecs[] = {
      "char", "const", "double", "enum", "float", "int", "long", "short",
      "signed", "struct", "union", "unsigned", "void", "volatile",
      "_Complex", "_Imaginary",
      // storage-specifiers as well
      "extern", "inline", "static", "typedef"
    };

    const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
      Consumer.addKeywordResult(CTypeSpecs[I]);

    if (SemaRef.getLangOpts().C99)
      Consumer.addKeywordResult("restrict");
    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
      Consumer.addKeywordResult("bool");
    else if (SemaRef.getLangOpts().C99)
      Consumer.addKeywordResult("_Bool");

    if (SemaRef.getLangOpts().CPlusPlus) {
      Consumer.addKeywordResult("class");
      Consumer.addKeywordResult("typename");
      Consumer.addKeywordResult("wchar_t");

      if (SemaRef.getLangOpts().CPlusPlus11) {
        Consumer.addKeywordResult("char16_t");
        Consumer.addKeywordResult("char32_t");
        Consumer.addKeywordResult("constexpr");
        Consumer.addKeywordResult("decltype");
        Consumer.addKeywordResult("thread_local");
      }
    }

    if (SemaRef.getLangOpts().GNUKeywords)
      Consumer.addKeywordResult("typeof");
  } else if (CCC.WantFunctionLikeCasts) {
    static const char *const CastableTypeSpecs[] = {
      "char", "double", "float", "int", "long", "short",
      "signed", "unsigned", "void"
    };
    for (auto *kw : CastableTypeSpecs)
      Consumer.addKeywordResult(kw);
  }

  if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
    Consumer.addKeywordResult("const_cast");
    Consumer.addKeywordResult("dynamic_cast");
    Consumer.addKeywordResult("reinterpret_cast");
    Consumer.addKeywordResult("static_cast");
  }

  if (CCC.WantExpressionKeywords) {
    Consumer.addKeywordResult("sizeof");
    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
      Consumer.addKeywordResult("false");
      Consumer.addKeywordResult("true");
    }

    if (SemaRef.getLangOpts().CPlusPlus) {
      static const char *const CXXExprs[] = {
        "delete", "new", "operator", "throw", "typeid"
      };
      const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
      for (unsigned I = 0; I != NumCXXExprs; ++I)
        Consumer.addKeywordResult(CXXExprs[I]);

      if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
          cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
        Consumer.addKeywordResult("this");

      if (SemaRef.getLangOpts().CPlusPlus11) {
        Consumer.addKeywordResult("alignof");
        Consumer.addKeywordResult("nullptr");
      }
    }

    if (SemaRef.getLangOpts().C11) {
      // FIXME: We should not suggest _Alignof if the alignof macro
      // is present.
      Consumer.addKeywordResult("_Alignof");
    }
  }

  if (CCC.WantRemainingKeywords) {
    if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
      // Statements.
      static const char *const CStmts[] = {
        "do", "else", "for", "goto", "if", "return", "switch", "while" };
      const unsigned NumCStmts = llvm::array_lengthof(CStmts);
      for (unsigned I = 0; I != NumCStmts; ++I)
        Consumer.addKeywordResult(CStmts[I]);

      if (SemaRef.getLangOpts().CPlusPlus) {
        Consumer.addKeywordResult("catch");
        Consumer.addKeywordResult("try");
      }

      if (S && S->getBreakParent())
        Consumer.addKeywordResult("break");

      if (S && S->getContinueParent())
        Consumer.addKeywordResult("continue");

      if (SemaRef.getCurFunction() &&
          !SemaRef.getCurFunction()->SwitchStack.empty()) {
        Consumer.addKeywordResult("case");
        Consumer.addKeywordResult("default");
      }
    } else {
      if (SemaRef.getLangOpts().CPlusPlus) {
        Consumer.addKeywordResult("namespace");
        Consumer.addKeywordResult("template");
      }

      if (S && S->isClassScope()) {
        Consumer.addKeywordResult("explicit");
        Consumer.addKeywordResult("friend");
        Consumer.addKeywordResult("mutable");
        Consumer.addKeywordResult("private");
        Consumer.addKeywordResult("protected");
        Consumer.addKeywordResult("public");
        Consumer.addKeywordResult("virtual");
      }
    }

    if (SemaRef.getLangOpts().CPlusPlus) {
      Consumer.addKeywordResult("using");

      if (SemaRef.getLangOpts().CPlusPlus11)
        Consumer.addKeywordResult("static_assert");
    }
  }
}

std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
    const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
    Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
    DeclContext *MemberContext, bool EnteringContext,
    const ObjCObjectPointerType *OPT, bool ErrorRecovery) {

  if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
      DisableTypoCorrection)
    return nullptr;

  // In Microsoft mode, don't perform typo correction in a template member
  // function dependent context because it interferes with the "lookup into
  // dependent bases of class templates" feature.
  if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
      isa<CXXMethodDecl>(CurContext))
    return nullptr;

  // We only attempt to correct typos for identifiers.
  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
  if (!Typo)
    return nullptr;

  // If the scope specifier itself was invalid, don't try to correct
  // typos.
  if (SS && SS->isInvalid())
    return nullptr;

  // Never try to correct typos during any kind of code synthesis.
  if (!CodeSynthesisContexts.empty())
    return nullptr;

  // Don't try to correct 'super'.
  if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
    return nullptr;

  // Abort if typo correction already failed for this specific typo.
  IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
  if (locs != TypoCorrectionFailures.end() &&
      locs->second.count(TypoName.getLoc()))
    return nullptr;

  // Don't try to correct the identifier "vector" when in AltiVec mode.
  // TODO: Figure out why typo correction misbehaves in this case, fix it, and
  // remove this workaround.
  if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
    return nullptr;

  // Provide a stop gap for files that are just seriously broken.  Trying
  // to correct all typos can turn into a HUGE performance penalty, causing
  // some files to take minutes to get rejected by the parser.
  unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
  if (Limit && TyposCorrected >= Limit)
    return nullptr;
  ++TyposCorrected;

  // If we're handling a missing symbol error, using modules, and the
  // special search all modules option is used, look for a missing import.
  if (ErrorRecovery && getLangOpts().Modules &&
      getLangOpts().ModulesSearchAll) {
    // The following has the side effect of loading the missing module.
    getModuleLoader().lookupMissingImports(Typo->getName(),
                                           TypoName.getBeginLoc());
  }

  // Extend the lifetime of the callback. We delayed this until here
  // to avoid allocations in the hot path (which is where no typo correction
  // occurs). Note that CorrectionCandidateCallback is polymorphic and
  // initially stack-allocated.
  std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
  auto Consumer = std::make_unique<TypoCorrectionConsumer>(
      *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
      EnteringContext);

  // Perform name lookup to find visible, similarly-named entities.
  bool IsUnqualifiedLookup = false;
  DeclContext *QualifiedDC = MemberContext;
  if (MemberContext) {
    LookupVisibleDecls(MemberContext, LookupKind, *Consumer);

    // Look in qualified interfaces.
    if (OPT) {
      for (auto *I : OPT->quals())
        LookupVisibleDecls(I, LookupKind, *Consumer);
    }
  } else if (SS && SS->isSet()) {
    QualifiedDC = computeDeclContext(*SS, EnteringContext);
    if (!QualifiedDC)
      return nullptr;

    LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
  } else {
    IsUnqualifiedLookup = true;
  }

  // Determine whether we are going to search in the various namespaces for
  // corrections.
  bool SearchNamespaces
    = getLangOpts().CPlusPlus &&
      (IsUnqualifiedLookup || (SS && SS->isSet()));

  if (IsUnqualifiedLookup || SearchNamespaces) {
    // For unqualified lookup, look through all of the names that we have
    // seen in this translation unit.
    // FIXME: Re-add the ability to skip very unlikely potential corrections.
    for (const auto &I : Context.Idents)
      Consumer->FoundName(I.getKey());

    // Walk through identifiers in external identifier sources.
    // FIXME: Re-add the ability to skip very unlikely potential corrections.
    if (IdentifierInfoLookup *External
                            = Context.Idents.getExternalIdentifierLookup()) {
      std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
      do {
        StringRef Name = Iter->Next();
        if (Name.empty())
          break;

        Consumer->FoundName(Name);
      } while (true);
    }
  }

  AddKeywordsToConsumer(*this, *Consumer, S,
                        *Consumer->getCorrectionValidator(),
                        SS && SS->isNotEmpty());

  // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
  // to search those namespaces.
  if (SearchNamespaces) {
    // Load any externally-known namespaces.
    if (ExternalSource && !LoadedExternalKnownNamespaces) {
      SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
      LoadedExternalKnownNamespaces = true;
      ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
      for (auto *N : ExternalKnownNamespaces)
        KnownNamespaces[N] = true;
    }

    Consumer->addNamespaces(KnownNamespaces);
  }

  return Consumer;
}

/// Try to "correct" a typo in the source code by finding
/// visible declarations whose names are similar to the name that was
/// present in the source code.
///
/// \param TypoName the \c DeclarationNameInfo structure that contains
/// the name that was present in the source code along with its location.
///
/// \param LookupKind the name-lookup criteria used to search for the name.
///
/// \param S the scope in which name lookup occurs.
///
/// \param SS the nested-name-specifier that precedes the name we're
/// looking for, if present.
///
/// \param CCC A CorrectionCandidateCallback object that provides further
/// validation of typo correction candidates. It also provides flags for
/// determining the set of keywords permitted.
///
/// \param MemberContext if non-NULL, the context in which to look for
/// a member access expression.
///
/// \param EnteringContext whether we're entering the context described by
/// the nested-name-specifier SS.
///
/// \param OPT when non-NULL, the search for visible declarations will
/// also walk the protocols in the qualified interfaces of \p OPT.
///
/// \returns a \c TypoCorrection containing the corrected name if the typo
/// along with information such as the \c NamedDecl where the corrected name
/// was declared, and any additional \c NestedNameSpecifier needed to access
/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
                                 Sema::LookupNameKind LookupKind,
                                 Scope *S, CXXScopeSpec *SS,
                                 CorrectionCandidateCallback &CCC,
                                 CorrectTypoKind Mode,
                                 DeclContext *MemberContext,
                                 bool EnteringContext,
                                 const ObjCObjectPointerType *OPT,
                                 bool RecordFailure) {
  // Always let the ExternalSource have the first chance at correction, even
  // if we would otherwise have given up.
  if (ExternalSource) {
    if (TypoCorrection Correction =
            ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
                                        MemberContext, EnteringContext, OPT))
      return Correction;
  }

  // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
  // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
  // some instances of CTC_Unknown, while WantRemainingKeywords is true
  // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
  bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;

  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
  auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
                                             MemberContext, EnteringContext,
                                             OPT, Mode == CTK_ErrorRecovery);

  if (!Consumer)
    return TypoCorrection();

  // If we haven't found anything, we're done.
  if (Consumer->empty())
    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);

  // Make sure the best edit distance (prior to adding any namespace qualifiers)
  // is not more that about a third of the length of the typo's identifier.
  unsigned ED = Consumer->getBestEditDistance(true);
  unsigned TypoLen = Typo->getName().size();
  if (ED > 0 && TypoLen / ED < 3)
    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);

  TypoCorrection BestTC = Consumer->getNextCorrection();
  TypoCorrection SecondBestTC = Consumer->getNextCorrection();
  if (!BestTC)
    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);

  ED = BestTC.getEditDistance();

  if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
    // If this was an unqualified lookup and we believe the callback
    // object wouldn't have filtered out possible corrections, note
    // that no correction was found.
    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
  }

  // If only a single name remains, return that result.
  if (!SecondBestTC ||
      SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
    const TypoCorrection &Result = BestTC;

    // Don't correct to a keyword that's the same as the typo; the keyword
    // wasn't actually in scope.
    if (ED == 0 && Result.isKeyword())
      return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);

    TypoCorrection TC = Result;
    TC.setCorrectionRange(SS, TypoName);
    checkCorrectionVisibility(*this, TC);
    return TC;
  } else if (SecondBestTC && ObjCMessageReceiver) {
    // Prefer 'super' when we're completing in a message-receiver
    // context.

    if (BestTC.getCorrection().getAsString() != "super") {
      if (SecondBestTC.getCorrection().getAsString() == "super")
        BestTC = SecondBestTC;
      else if ((*Consumer)["super"].front().isKeyword())
        BestTC = (*Consumer)["super"].front();
    }
    // Don't correct to a keyword that's the same as the typo; the keyword
    // wasn't actually in scope.
    if (BestTC.getEditDistance() == 0 ||
        BestTC.getCorrection().getAsString() != "super")
      return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);

    BestTC.setCorrectionRange(SS, TypoName);
    return BestTC;
  }

  // Record the failure's location if needed and return an empty correction. If
  // this was an unqualified lookup and we believe the callback object did not
  // filter out possible corrections, also cache the failure for the typo.
  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
}

/// Try to "correct" a typo in the source code by finding
/// visible declarations whose names are similar to the name that was
/// present in the source code.
///
/// \param TypoName the \c DeclarationNameInfo structure that contains
/// the name that was present in the source code along with its location.
///
/// \param LookupKind the name-lookup criteria used to search for the name.
///
/// \param S the scope in which name lookup occurs.
///
/// \param SS the nested-name-specifier that precedes the name we're
/// looking for, if present.
///
/// \param CCC A CorrectionCandidateCallback object that provides further
/// validation of typo correction candidates. It also provides flags for
/// determining the set of keywords permitted.
///
/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
/// diagnostics when the actual typo correction is attempted.
///
/// \param TRC A TypoRecoveryCallback functor that will be used to build an
/// Expr from a typo correction candidate.
///
/// \param MemberContext if non-NULL, the context in which to look for
/// a member access expression.
///
/// \param EnteringContext whether we're entering the context described by
/// the nested-name-specifier SS.
///
/// \param OPT when non-NULL, the search for visible declarations will
/// also walk the protocols in the qualified interfaces of \p OPT.
///
/// \returns a new \c TypoExpr that will later be replaced in the AST with an
/// Expr representing the result of performing typo correction, or nullptr if
/// typo correction is not possible. If nullptr is returned, no diagnostics will
/// be emitted and it is the responsibility of the caller to emit any that are
/// needed.
TypoExpr *Sema::CorrectTypoDelayed(
    const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
    Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
    TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
    DeclContext *MemberContext, bool EnteringContext,
    const ObjCObjectPointerType *OPT) {
  auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
                                             MemberContext, EnteringContext,
                                             OPT, Mode == CTK_ErrorRecovery);

  // Give the external sema source a chance to correct the typo.
  TypoCorrection ExternalTypo;
  if (ExternalSource && Consumer) {
    ExternalTypo = ExternalSource->CorrectTypo(
        TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
        MemberContext, EnteringContext, OPT);
    if (ExternalTypo)
      Consumer->addCorrection(ExternalTypo);
  }

  if (!Consumer || Consumer->empty())
    return nullptr;

  // Make sure the best edit distance (prior to adding any namespace qualifiers)
  // is not more that about a third of the length of the typo's identifier.
  unsigned ED = Consumer->getBestEditDistance(true);
  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
  if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
    return nullptr;
  ExprEvalContexts.back().NumTypos++;
  return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC),
                           TypoName.getLoc());
}

void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
  if (!CDecl) return;

  if (isKeyword())
    CorrectionDecls.clear();

  CorrectionDecls.push_back(CDecl);

  if (!CorrectionName)
    CorrectionName = CDecl->getDeclName();
}

std::string TypoCorrection::getAsString(const LangOptions &LO) const {
  if (CorrectionNameSpec) {
    std::string tmpBuffer;
    llvm::raw_string_ostream PrefixOStream(tmpBuffer);
    CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
    PrefixOStream << CorrectionName;
    return PrefixOStream.str();
  }

  return CorrectionName.getAsString();
}

bool CorrectionCandidateCallback::ValidateCandidate(
    const TypoCorrection &candidate) {
  if (!candidate.isResolved())
    return true;

  if (candidate.isKeyword())
    return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
           WantRemainingKeywords || WantObjCSuper;

  bool HasNonType = false;
  bool HasStaticMethod = false;
  bool HasNonStaticMethod = false;
  for (Decl *D : candidate) {
    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
      D = FTD->getTemplatedDecl();
    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
      if (Method->isStatic())
        HasStaticMethod = true;
      else
        HasNonStaticMethod = true;
    }
    if (!isa<TypeDecl>(D))
      HasNonType = true;
  }

  if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
      !candidate.getCorrectionSpecifier())
    return false;

  return WantTypeSpecifiers || HasNonType;
}

FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
                                             bool HasExplicitTemplateArgs,
                                             MemberExpr *ME)
    : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
      CurContext(SemaRef.CurContext), MemberFn(ME) {
  WantTypeSpecifiers = false;
  WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
                          !HasExplicitTemplateArgs && NumArgs == 1;
  WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
  WantRemainingKeywords = false;
}

bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
  if (!candidate.getCorrectionDecl())
    return candidate.isKeyword();

  for (auto *C : candidate) {
    FunctionDecl *FD = nullptr;
    NamedDecl *ND = C->getUnderlyingDecl();
    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
      FD = FTD->getTemplatedDecl();
    if (!HasExplicitTemplateArgs && !FD) {
      if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
        // If the Decl is neither a function nor a template function,
        // determine if it is a pointer or reference to a function. If so,
        // check against the number of arguments expected for the pointee.
        QualType ValType = cast<ValueDecl>(ND)->getType();
        if (ValType.isNull())
          continue;
        if (ValType->isAnyPointerType() || ValType->isReferenceType())
          ValType = ValType->getPointeeType();
        if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
          if (FPT->getNumParams() == NumArgs)
            return true;
      }
    }

    // A typo for a function-style cast can look like a function call in C++.
    if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
                                 : isa<TypeDecl>(ND)) &&
        CurContext->getParentASTContext().getLangOpts().CPlusPlus)
      // Only a class or class template can take two or more arguments.
      return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);

    // Skip the current candidate if it is not a FunctionDecl or does not accept
    // the current number of arguments.
    if (!FD || !(FD->getNumParams() >= NumArgs &&
                 FD->getMinRequiredArguments() <= NumArgs))
      continue;

    // If the current candidate is a non-static C++ method, skip the candidate
    // unless the method being corrected--or the current DeclContext, if the
    // function being corrected is not a method--is a method in the same class
    // or a descendent class of the candidate's parent class.
    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
      if (MemberFn || !MD->isStatic()) {
        CXXMethodDecl *CurMD =
            MemberFn
                ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
                : dyn_cast_or_null<CXXMethodDecl>(CurContext);
        CXXRecordDecl *CurRD =
            CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
        CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
        if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
          continue;
      }
    }
    return true;
  }
  return false;
}

void Sema::diagnoseTypo(const TypoCorrection &Correction,
                        const PartialDiagnostic &TypoDiag,
                        bool ErrorRecovery) {
  diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
               ErrorRecovery);
}

/// Find which declaration we should import to provide the definition of
/// the given declaration.
static NamedDecl *getDefinitionToImport(NamedDecl *D) {
  if (VarDecl *VD = dyn_cast<VarDecl>(D))
    return VD->getDefinition();
  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
    return FD->getDefinition();
  if (TagDecl *TD = dyn_cast<TagDecl>(D))
    return TD->getDefinition();
  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
    return ID->getDefinition();
  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
    return PD->getDefinition();
  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
    if (NamedDecl *TTD = TD->getTemplatedDecl())
      return getDefinitionToImport(TTD);
  return nullptr;
}

void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
                                 MissingImportKind MIK, bool Recover) {
  // Suggest importing a module providing the definition of this entity, if
  // possible.
  NamedDecl *Def = getDefinitionToImport(Decl);
  if (!Def)
    Def = Decl;

  Module *Owner = getOwningModule(Def);
  assert(Owner && "definition of hidden declaration is not in a module");

  llvm::SmallVector<Module*, 8> OwningModules;
  OwningModules.push_back(Owner);
  auto Merged = Context.getModulesWithMergedDefinition(Def);
  OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());

  diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
                        Recover);
}

/// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
/// suggesting the addition of a #include of the specified file.
static std::string getHeaderNameForHeader(Preprocessor &PP, const FileEntry *E,
                                          llvm::StringRef IncludingFile) {
  bool IsSystem = false;
  auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
      E, IncludingFile, &IsSystem);
  return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
}

void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
                                 SourceLocation DeclLoc,
                                 ArrayRef<Module *> Modules,
                                 MissingImportKind MIK, bool Recover) {
  assert(!Modules.empty());

  auto NotePrevious = [&] {
    // FIXME: Suppress the note backtrace even under
    // -fdiagnostics-show-note-include-stack. We don't care how this
    // declaration was previously reached.
    Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK;
  };

  // Weed out duplicates from module list.
  llvm::SmallVector<Module*, 8> UniqueModules;
  llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
  for (auto *M : Modules) {
    if (M->Kind == Module::GlobalModuleFragment)
      continue;
    if (UniqueModuleSet.insert(M).second)
      UniqueModules.push_back(M);
  }

  // Try to find a suitable header-name to #include.
  std::string HeaderName;
  if (const FileEntry *Header =
          PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
    if (const FileEntry *FE =
            SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
      HeaderName = getHeaderNameForHeader(PP, Header, FE->tryGetRealPathName());
  }

  // If we have a #include we should suggest, or if all definition locations
  // were in global module fragments, don't suggest an import.
  if (!HeaderName.empty() || UniqueModules.empty()) {
    // FIXME: Find a smart place to suggest inserting a #include, and add
    // a FixItHint there.
    Diag(UseLoc, diag::err_module_unimported_use_header)
        << (int)MIK << Decl << !HeaderName.empty() << HeaderName;
    // Produce a note showing where the entity was declared.
    NotePrevious();
    if (Recover)
      createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
    return;
  }

  Modules = UniqueModules;

  if (Modules.size() > 1) {
    std::string ModuleList;
    unsigned N = 0;
    for (Module *M : Modules) {
      ModuleList += "\n        ";
      if (++N == 5 && N != Modules.size()) {
        ModuleList += "[...]";
        break;
      }
      ModuleList += M->getFullModuleName();
    }

    Diag(UseLoc, diag::err_module_unimported_use_multiple)
      << (int)MIK << Decl << ModuleList;
  } else {
    // FIXME: Add a FixItHint that imports the corresponding module.
    Diag(UseLoc, diag::err_module_unimported_use)
      << (int)MIK << Decl << Modules[0]->getFullModuleName();
  }

  NotePrevious();

  // Try to recover by implicitly importing this module.
  if (Recover)
    createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
}

/// Diagnose a successfully-corrected typo. Separated from the correction
/// itself to allow external validation of the result, etc.
///
/// \param Correction The result of performing typo correction.
/// \param TypoDiag The diagnostic to produce. This will have the corrected
///        string added to it (and usually also a fixit).
/// \param PrevNote A note to use when indicating the location of the entity to
///        which we are correcting. Will have the correction string added to it.
/// \param ErrorRecovery If \c true (the default), the caller is going to
///        recover from the typo as if the corrected string had been typed.
///        In this case, \c PDiag must be an error, and we will attach a fixit
///        to it.
void Sema::diagnoseTypo(const TypoCorrection &Correction,
                        const PartialDiagnostic &TypoDiag,
                        const PartialDiagnostic &PrevNote,
                        bool ErrorRecovery) {
  std::string CorrectedStr = Correction.getAsString(getLangOpts());
  std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
  FixItHint FixTypo = FixItHint::CreateReplacement(
      Correction.getCorrectionRange(), CorrectedStr);

  // Maybe we're just missing a module import.
  if (Correction.requiresImport()) {
    NamedDecl *Decl = Correction.getFoundDecl();
    assert(Decl && "import required but no declaration to import");

    diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
                          MissingImportKind::Declaration, ErrorRecovery);
    return;
  }

  Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
    << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());

  NamedDecl *ChosenDecl =
      Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
  if (PrevNote.getDiagID() && ChosenDecl)
    Diag(ChosenDecl->getLocation(), PrevNote)
      << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);

  // Add any extra diagnostics.
  for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
    Diag(Correction.getCorrectionRange().getBegin(), PD);
}

TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
                                  TypoDiagnosticGenerator TDG,
                                  TypoRecoveryCallback TRC,
                                  SourceLocation TypoLoc) {
  assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
  auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc);
  auto &State = DelayedTypos[TE];
  State.Consumer = std::move(TCC);
  State.DiagHandler = std::move(TDG);
  State.RecoveryHandler = std::move(TRC);
  if (TE)
    TypoExprs.push_back(TE);
  return TE;
}

const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
  auto Entry = DelayedTypos.find(TE);
  assert(Entry != DelayedTypos.end() &&
         "Failed to get the state for a TypoExpr!");
  return Entry->second;
}

void Sema::clearDelayedTypo(TypoExpr *TE) {
  DelayedTypos.erase(TE);
}

void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
  DeclarationNameInfo Name(II, IILoc);
  LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
  R.suppressDiagnostics();
  R.setHideTags(false);
  LookupName(R, S);
  R.dump();
}