aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang14/lib/Sema/AnalysisBasedWarnings.cpp
blob: ac5ad52c0b1d81ca9191883a5e61fd9a87492450 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines analysis_warnings::[Policy,Executor].
// Together they are used by Sema to issue warnings based on inexpensive
// static analysis algorithms in libAnalysis.
//
//===----------------------------------------------------------------------===//

#include "clang/Sema/AnalysisBasedWarnings.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ParentMap.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
#include "clang/Analysis/Analyses/CalledOnceCheck.h"
#include "clang/Analysis/Analyses/Consumed.h"
#include "clang/Analysis/Analyses/ReachableCode.h"
#include "clang/Analysis/Analyses/ThreadSafety.h"
#include "clang/Analysis/Analyses/UninitializedValues.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/CFGStmtMap.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <deque>
#include <iterator>

using namespace clang;

//===----------------------------------------------------------------------===//
// Unreachable code analysis.
//===----------------------------------------------------------------------===//

namespace {
  class UnreachableCodeHandler : public reachable_code::Callback {
    Sema &S;
    SourceRange PreviousSilenceableCondVal;

  public:
    UnreachableCodeHandler(Sema &s) : S(s) {}

    void HandleUnreachable(reachable_code::UnreachableKind UK,
                           SourceLocation L,
                           SourceRange SilenceableCondVal,
                           SourceRange R1,
                           SourceRange R2) override {
      // Avoid reporting multiple unreachable code diagnostics that are
      // triggered by the same conditional value.
      if (PreviousSilenceableCondVal.isValid() &&
          SilenceableCondVal.isValid() &&
          PreviousSilenceableCondVal == SilenceableCondVal)
        return;
      PreviousSilenceableCondVal = SilenceableCondVal;

      unsigned diag = diag::warn_unreachable;
      switch (UK) {
        case reachable_code::UK_Break:
          diag = diag::warn_unreachable_break;
          break;
        case reachable_code::UK_Return:
          diag = diag::warn_unreachable_return;
          break;
        case reachable_code::UK_Loop_Increment:
          diag = diag::warn_unreachable_loop_increment;
          break;
        case reachable_code::UK_Other:
          break;
      }

      S.Diag(L, diag) << R1 << R2;

      SourceLocation Open = SilenceableCondVal.getBegin();
      if (Open.isValid()) {
        SourceLocation Close = SilenceableCondVal.getEnd();
        Close = S.getLocForEndOfToken(Close);
        if (Close.isValid()) {
          S.Diag(Open, diag::note_unreachable_silence)
            << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
            << FixItHint::CreateInsertion(Close, ")");
        }
      }
    }
  };
} // anonymous namespace

/// CheckUnreachable - Check for unreachable code.
static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
  // As a heuristic prune all diagnostics not in the main file.  Currently
  // the majority of warnings in headers are false positives.  These
  // are largely caused by configuration state, e.g. preprocessor
  // defined code, etc.
  //
  // Note that this is also a performance optimization.  Analyzing
  // headers many times can be expensive.
  if (!S.getSourceManager().isInMainFile(AC.getDecl()->getBeginLoc()))
    return;

  UnreachableCodeHandler UC(S);
  reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
}

namespace {
/// Warn on logical operator errors in CFGBuilder
class LogicalErrorHandler : public CFGCallback {
  Sema &S;

public:
  LogicalErrorHandler(Sema &S) : S(S) {}

  static bool HasMacroID(const Expr *E) {
    if (E->getExprLoc().isMacroID())
      return true;

    // Recurse to children.
    for (const Stmt *SubStmt : E->children())
      if (const Expr *SubExpr = dyn_cast_or_null<Expr>(SubStmt))
        if (HasMacroID(SubExpr))
          return true;

    return false;
  }

  void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) override {
    if (HasMacroID(B))
      return;

    SourceRange DiagRange = B->getSourceRange();
    S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
        << DiagRange << isAlwaysTrue;
  }

  void compareBitwiseEquality(const BinaryOperator *B,
                              bool isAlwaysTrue) override {
    if (HasMacroID(B))
      return;

    SourceRange DiagRange = B->getSourceRange();
    S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
        << DiagRange << isAlwaysTrue;
  }

  void compareBitwiseOr(const BinaryOperator *B) override {
    if (HasMacroID(B))
      return;

    SourceRange DiagRange = B->getSourceRange();
    S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_or) << DiagRange;
  }

  static bool hasActiveDiagnostics(DiagnosticsEngine &Diags,
                                   SourceLocation Loc) {
    return !Diags.isIgnored(diag::warn_tautological_overlap_comparison, Loc) ||
           !Diags.isIgnored(diag::warn_comparison_bitwise_or, Loc);
  }
};
} // anonymous namespace

//===----------------------------------------------------------------------===//
// Check for infinite self-recursion in functions
//===----------------------------------------------------------------------===//

// Returns true if the function is called anywhere within the CFGBlock.
// For member functions, the additional condition of being call from the
// this pointer is required.
static bool hasRecursiveCallInPath(const FunctionDecl *FD, CFGBlock &Block) {
  // Process all the Stmt's in this block to find any calls to FD.
  for (const auto &B : Block) {
    if (B.getKind() != CFGElement::Statement)
      continue;

    const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
    if (!CE || !CE->getCalleeDecl() ||
        CE->getCalleeDecl()->getCanonicalDecl() != FD)
      continue;

    // Skip function calls which are qualified with a templated class.
    if (const DeclRefExpr *DRE =
            dyn_cast<DeclRefExpr>(CE->getCallee()->IgnoreParenImpCasts())) {
      if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
        if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
            isa<TemplateSpecializationType>(NNS->getAsType())) {
          continue;
        }
      }
    }

    const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE);
    if (!MCE || isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
        !MCE->getMethodDecl()->isVirtual())
      return true;
  }
  return false;
}

// Returns true if every path from the entry block passes through a call to FD.
static bool checkForRecursiveFunctionCall(const FunctionDecl *FD, CFG *cfg) {
  llvm::SmallPtrSet<CFGBlock *, 16> Visited;
  llvm::SmallVector<CFGBlock *, 16> WorkList;
  // Keep track of whether we found at least one recursive path.
  bool foundRecursion = false;

  const unsigned ExitID = cfg->getExit().getBlockID();

  // Seed the work list with the entry block.
  WorkList.push_back(&cfg->getEntry());

  while (!WorkList.empty()) {
    CFGBlock *Block = WorkList.pop_back_val();

    for (auto I = Block->succ_begin(), E = Block->succ_end(); I != E; ++I) {
      if (CFGBlock *SuccBlock = *I) {
        if (!Visited.insert(SuccBlock).second)
          continue;

        // Found a path to the exit node without a recursive call.
        if (ExitID == SuccBlock->getBlockID())
          return false;

        // If the successor block contains a recursive call, end analysis there.
        if (hasRecursiveCallInPath(FD, *SuccBlock)) {
          foundRecursion = true;
          continue;
        }

        WorkList.push_back(SuccBlock);
      }
    }
  }
  return foundRecursion;
}

static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
                                   const Stmt *Body, AnalysisDeclContext &AC) {
  FD = FD->getCanonicalDecl();

  // Only run on non-templated functions and non-templated members of
  // templated classes.
  if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
      FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
    return;

  CFG *cfg = AC.getCFG();
  if (!cfg) return;

  // If the exit block is unreachable, skip processing the function.
  if (cfg->getExit().pred_empty())
    return;

  // Emit diagnostic if a recursive function call is detected for all paths.
  if (checkForRecursiveFunctionCall(FD, cfg))
    S.Diag(Body->getBeginLoc(), diag::warn_infinite_recursive_function);
}

//===----------------------------------------------------------------------===//
// Check for throw in a non-throwing function.
//===----------------------------------------------------------------------===//

/// Determine whether an exception thrown by E, unwinding from ThrowBlock,
/// can reach ExitBlock.
static bool throwEscapes(Sema &S, const CXXThrowExpr *E, CFGBlock &ThrowBlock,
                         CFG *Body) {
  SmallVector<CFGBlock *, 16> Stack;
  llvm::BitVector Queued(Body->getNumBlockIDs());

  Stack.push_back(&ThrowBlock);
  Queued[ThrowBlock.getBlockID()] = true;

  while (!Stack.empty()) {
    CFGBlock &UnwindBlock = *Stack.back();
    Stack.pop_back();

    for (auto &Succ : UnwindBlock.succs()) {
      if (!Succ.isReachable() || Queued[Succ->getBlockID()])
        continue;

      if (Succ->getBlockID() == Body->getExit().getBlockID())
        return true;

      if (auto *Catch =
              dyn_cast_or_null<CXXCatchStmt>(Succ->getLabel())) {
        QualType Caught = Catch->getCaughtType();
        if (Caught.isNull() || // catch (...) catches everything
            !E->getSubExpr() || // throw; is considered cuaght by any handler
            S.handlerCanCatch(Caught, E->getSubExpr()->getType()))
          // Exception doesn't escape via this path.
          break;
      } else {
        Stack.push_back(Succ);
        Queued[Succ->getBlockID()] = true;
      }
    }
  }

  return false;
}

static void visitReachableThrows(
    CFG *BodyCFG,
    llvm::function_ref<void(const CXXThrowExpr *, CFGBlock &)> Visit) {
  llvm::BitVector Reachable(BodyCFG->getNumBlockIDs());
  clang::reachable_code::ScanReachableFromBlock(&BodyCFG->getEntry(), Reachable);
  for (CFGBlock *B : *BodyCFG) {
    if (!Reachable[B->getBlockID()])
      continue;
    for (CFGElement &E : *B) {
      Optional<CFGStmt> S = E.getAs<CFGStmt>();
      if (!S)
        continue;
      if (auto *Throw = dyn_cast<CXXThrowExpr>(S->getStmt()))
        Visit(Throw, *B);
    }
  }
}

static void EmitDiagForCXXThrowInNonThrowingFunc(Sema &S, SourceLocation OpLoc,
                                                 const FunctionDecl *FD) {
  if (!S.getSourceManager().isInSystemHeader(OpLoc) &&
      FD->getTypeSourceInfo()) {
    S.Diag(OpLoc, diag::warn_throw_in_noexcept_func) << FD;
    if (S.getLangOpts().CPlusPlus11 &&
        (isa<CXXDestructorDecl>(FD) ||
         FD->getDeclName().getCXXOverloadedOperator() == OO_Delete ||
         FD->getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)) {
      if (const auto *Ty = FD->getTypeSourceInfo()->getType()->
                                         getAs<FunctionProtoType>())
        S.Diag(FD->getLocation(), diag::note_throw_in_dtor)
            << !isa<CXXDestructorDecl>(FD) << !Ty->hasExceptionSpec()
            << FD->getExceptionSpecSourceRange();
    } else
      S.Diag(FD->getLocation(), diag::note_throw_in_function)
          << FD->getExceptionSpecSourceRange();
  }
}

static void checkThrowInNonThrowingFunc(Sema &S, const FunctionDecl *FD,
                                        AnalysisDeclContext &AC) {
  CFG *BodyCFG = AC.getCFG();
  if (!BodyCFG)
    return;
  if (BodyCFG->getExit().pred_empty())
    return;
  visitReachableThrows(BodyCFG, [&](const CXXThrowExpr *Throw, CFGBlock &Block) {
    if (throwEscapes(S, Throw, Block, BodyCFG))
      EmitDiagForCXXThrowInNonThrowingFunc(S, Throw->getThrowLoc(), FD);
  });
}

static bool isNoexcept(const FunctionDecl *FD) {
  const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
  if (FPT->isNothrow() || FD->hasAttr<NoThrowAttr>())
    return true;
  return false;
}

//===----------------------------------------------------------------------===//
// Check for missing return value.
//===----------------------------------------------------------------------===//

enum ControlFlowKind {
  UnknownFallThrough,
  NeverFallThrough,
  MaybeFallThrough,
  AlwaysFallThrough,
  NeverFallThroughOrReturn
};

/// CheckFallThrough - Check that we don't fall off the end of a
/// Statement that should return a value.
///
/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
/// MaybeFallThrough iff we might or might not fall off the end,
/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
/// return.  We assume NeverFallThrough iff we never fall off the end of the
/// statement but we may return.  We assume that functions not marked noreturn
/// will return.
static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
  CFG *cfg = AC.getCFG();
  if (!cfg) return UnknownFallThrough;

  // The CFG leaves in dead things, and we don't want the dead code paths to
  // confuse us, so we mark all live things first.
  llvm::BitVector live(cfg->getNumBlockIDs());
  unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
                                                          live);

  bool AddEHEdges = AC.getAddEHEdges();
  if (!AddEHEdges && count != cfg->getNumBlockIDs())
    // When there are things remaining dead, and we didn't add EH edges
    // from CallExprs to the catch clauses, we have to go back and
    // mark them as live.
    for (const auto *B : *cfg) {
      if (!live[B->getBlockID()]) {
        if (B->pred_begin() == B->pred_end()) {
          const Stmt *Term = B->getTerminatorStmt();
          if (Term && isa<CXXTryStmt>(Term))
            // When not adding EH edges from calls, catch clauses
            // can otherwise seem dead.  Avoid noting them as dead.
            count += reachable_code::ScanReachableFromBlock(B, live);
          continue;
        }
      }
    }

  // Now we know what is live, we check the live precessors of the exit block
  // and look for fall through paths, being careful to ignore normal returns,
  // and exceptional paths.
  bool HasLiveReturn = false;
  bool HasFakeEdge = false;
  bool HasPlainEdge = false;
  bool HasAbnormalEdge = false;

  // Ignore default cases that aren't likely to be reachable because all
  // enums in a switch(X) have explicit case statements.
  CFGBlock::FilterOptions FO;
  FO.IgnoreDefaultsWithCoveredEnums = 1;

  for (CFGBlock::filtered_pred_iterator I =
           cfg->getExit().filtered_pred_start_end(FO);
       I.hasMore(); ++I) {
    const CFGBlock &B = **I;
    if (!live[B.getBlockID()])
      continue;

    // Skip blocks which contain an element marked as no-return. They don't
    // represent actually viable edges into the exit block, so mark them as
    // abnormal.
    if (B.hasNoReturnElement()) {
      HasAbnormalEdge = true;
      continue;
    }

    // Destructors can appear after the 'return' in the CFG.  This is
    // normal.  We need to look pass the destructors for the return
    // statement (if it exists).
    CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();

    for ( ; ri != re ; ++ri)
      if (ri->getAs<CFGStmt>())
        break;

    // No more CFGElements in the block?
    if (ri == re) {
      const Stmt *Term = B.getTerminatorStmt();
      if (Term && (isa<CXXTryStmt>(Term) || isa<ObjCAtTryStmt>(Term))) {
        HasAbnormalEdge = true;
        continue;
      }
      // A labeled empty statement, or the entry block...
      HasPlainEdge = true;
      continue;
    }

    CFGStmt CS = ri->castAs<CFGStmt>();
    const Stmt *S = CS.getStmt();
    if (isa<ReturnStmt>(S) || isa<CoreturnStmt>(S)) {
      HasLiveReturn = true;
      continue;
    }
    if (isa<ObjCAtThrowStmt>(S)) {
      HasFakeEdge = true;
      continue;
    }
    if (isa<CXXThrowExpr>(S)) {
      HasFakeEdge = true;
      continue;
    }
    if (isa<MSAsmStmt>(S)) {
      // TODO: Verify this is correct.
      HasFakeEdge = true;
      HasLiveReturn = true;
      continue;
    }
    if (isa<CXXTryStmt>(S)) {
      HasAbnormalEdge = true;
      continue;
    }
    if (!llvm::is_contained(B.succs(), &cfg->getExit())) {
      HasAbnormalEdge = true;
      continue;
    }

    HasPlainEdge = true;
  }
  if (!HasPlainEdge) {
    if (HasLiveReturn)
      return NeverFallThrough;
    return NeverFallThroughOrReturn;
  }
  if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
    return MaybeFallThrough;
  // This says AlwaysFallThrough for calls to functions that are not marked
  // noreturn, that don't return.  If people would like this warning to be more
  // accurate, such functions should be marked as noreturn.
  return AlwaysFallThrough;
}

namespace {

struct CheckFallThroughDiagnostics {
  unsigned diag_MaybeFallThrough_HasNoReturn;
  unsigned diag_MaybeFallThrough_ReturnsNonVoid;
  unsigned diag_AlwaysFallThrough_HasNoReturn;
  unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
  unsigned diag_NeverFallThroughOrReturn;
  enum { Function, Block, Lambda, Coroutine } funMode;
  SourceLocation FuncLoc;

  static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
    CheckFallThroughDiagnostics D;
    D.FuncLoc = Func->getLocation();
    D.diag_MaybeFallThrough_HasNoReturn =
      diag::warn_falloff_noreturn_function;
    D.diag_MaybeFallThrough_ReturnsNonVoid =
      diag::warn_maybe_falloff_nonvoid_function;
    D.diag_AlwaysFallThrough_HasNoReturn =
      diag::warn_falloff_noreturn_function;
    D.diag_AlwaysFallThrough_ReturnsNonVoid =
      diag::warn_falloff_nonvoid_function;

    // Don't suggest that virtual functions be marked "noreturn", since they
    // might be overridden by non-noreturn functions.
    bool isVirtualMethod = false;
    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
      isVirtualMethod = Method->isVirtual();

    // Don't suggest that template instantiations be marked "noreturn"
    bool isTemplateInstantiation = false;
    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
      isTemplateInstantiation = Function->isTemplateInstantiation();

    if (!isVirtualMethod && !isTemplateInstantiation)
      D.diag_NeverFallThroughOrReturn =
        diag::warn_suggest_noreturn_function;
    else
      D.diag_NeverFallThroughOrReturn = 0;

    D.funMode = Function;
    return D;
  }

  static CheckFallThroughDiagnostics MakeForCoroutine(const Decl *Func) {
    CheckFallThroughDiagnostics D;
    D.FuncLoc = Func->getLocation();
    D.diag_MaybeFallThrough_HasNoReturn = 0;
    D.diag_MaybeFallThrough_ReturnsNonVoid =
        diag::warn_maybe_falloff_nonvoid_coroutine;
    D.diag_AlwaysFallThrough_HasNoReturn = 0;
    D.diag_AlwaysFallThrough_ReturnsNonVoid =
        diag::warn_falloff_nonvoid_coroutine;
    D.funMode = Coroutine;
    return D;
  }

  static CheckFallThroughDiagnostics MakeForBlock() {
    CheckFallThroughDiagnostics D;
    D.diag_MaybeFallThrough_HasNoReturn =
      diag::err_noreturn_block_has_return_expr;
    D.diag_MaybeFallThrough_ReturnsNonVoid =
      diag::err_maybe_falloff_nonvoid_block;
    D.diag_AlwaysFallThrough_HasNoReturn =
      diag::err_noreturn_block_has_return_expr;
    D.diag_AlwaysFallThrough_ReturnsNonVoid =
      diag::err_falloff_nonvoid_block;
    D.diag_NeverFallThroughOrReturn = 0;
    D.funMode = Block;
    return D;
  }

  static CheckFallThroughDiagnostics MakeForLambda() {
    CheckFallThroughDiagnostics D;
    D.diag_MaybeFallThrough_HasNoReturn =
      diag::err_noreturn_lambda_has_return_expr;
    D.diag_MaybeFallThrough_ReturnsNonVoid =
      diag::warn_maybe_falloff_nonvoid_lambda;
    D.diag_AlwaysFallThrough_HasNoReturn =
      diag::err_noreturn_lambda_has_return_expr;
    D.diag_AlwaysFallThrough_ReturnsNonVoid =
      diag::warn_falloff_nonvoid_lambda;
    D.diag_NeverFallThroughOrReturn = 0;
    D.funMode = Lambda;
    return D;
  }

  bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
                        bool HasNoReturn) const {
    if (funMode == Function) {
      return (ReturnsVoid ||
              D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
                          FuncLoc)) &&
             (!HasNoReturn ||
              D.isIgnored(diag::warn_noreturn_function_has_return_expr,
                          FuncLoc)) &&
             (!ReturnsVoid ||
              D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
    }
    if (funMode == Coroutine) {
      return (ReturnsVoid ||
              D.isIgnored(diag::warn_maybe_falloff_nonvoid_function, FuncLoc) ||
              D.isIgnored(diag::warn_maybe_falloff_nonvoid_coroutine,
                          FuncLoc)) &&
             (!HasNoReturn);
    }
    // For blocks / lambdas.
    return ReturnsVoid && !HasNoReturn;
  }
};

} // anonymous namespace

/// CheckFallThroughForBody - Check that we don't fall off the end of a
/// function that should return a value.  Check that we don't fall off the end
/// of a noreturn function.  We assume that functions and blocks not marked
/// noreturn will return.
static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
                                    QualType BlockType,
                                    const CheckFallThroughDiagnostics &CD,
                                    AnalysisDeclContext &AC,
                                    sema::FunctionScopeInfo *FSI) {

  bool ReturnsVoid = false;
  bool HasNoReturn = false;
  bool IsCoroutine = FSI->isCoroutine();

  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
    if (const auto *CBody = dyn_cast<CoroutineBodyStmt>(Body))
      ReturnsVoid = CBody->getFallthroughHandler() != nullptr;
    else
      ReturnsVoid = FD->getReturnType()->isVoidType();
    HasNoReturn = FD->isNoReturn();
  }
  else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
    ReturnsVoid = MD->getReturnType()->isVoidType();
    HasNoReturn = MD->hasAttr<NoReturnAttr>();
  }
  else if (isa<BlockDecl>(D)) {
    if (const FunctionType *FT =
          BlockType->getPointeeType()->getAs<FunctionType>()) {
      if (FT->getReturnType()->isVoidType())
        ReturnsVoid = true;
      if (FT->getNoReturnAttr())
        HasNoReturn = true;
    }
  }

  DiagnosticsEngine &Diags = S.getDiagnostics();

  // Short circuit for compilation speed.
  if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
      return;
  SourceLocation LBrace = Body->getBeginLoc(), RBrace = Body->getEndLoc();
  auto EmitDiag = [&](SourceLocation Loc, unsigned DiagID) {
    if (IsCoroutine)
      S.Diag(Loc, DiagID) << FSI->CoroutinePromise->getType();
    else
      S.Diag(Loc, DiagID);
  };

  // cpu_dispatch functions permit empty function bodies for ICC compatibility.
  if (D->getAsFunction() && D->getAsFunction()->isCPUDispatchMultiVersion())
    return;

  // Either in a function body compound statement, or a function-try-block.
  switch (CheckFallThrough(AC)) {
    case UnknownFallThrough:
      break;

    case MaybeFallThrough:
      if (HasNoReturn)
        EmitDiag(RBrace, CD.diag_MaybeFallThrough_HasNoReturn);
      else if (!ReturnsVoid)
        EmitDiag(RBrace, CD.diag_MaybeFallThrough_ReturnsNonVoid);
      break;
    case AlwaysFallThrough:
      if (HasNoReturn)
        EmitDiag(RBrace, CD.diag_AlwaysFallThrough_HasNoReturn);
      else if (!ReturnsVoid)
        EmitDiag(RBrace, CD.diag_AlwaysFallThrough_ReturnsNonVoid);
      break;
    case NeverFallThroughOrReturn:
      if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
          S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD;
        } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
          S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD;
        } else {
          S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn);
        }
      }
      break;
    case NeverFallThrough:
      break;
  }
}

//===----------------------------------------------------------------------===//
// -Wuninitialized
//===----------------------------------------------------------------------===//

namespace {
/// ContainsReference - A visitor class to search for references to
/// a particular declaration (the needle) within any evaluated component of an
/// expression (recursively).
class ContainsReference : public ConstEvaluatedExprVisitor<ContainsReference> {
  bool FoundReference;
  const DeclRefExpr *Needle;

public:
  typedef ConstEvaluatedExprVisitor<ContainsReference> Inherited;

  ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
    : Inherited(Context), FoundReference(false), Needle(Needle) {}

  void VisitExpr(const Expr *E) {
    // Stop evaluating if we already have a reference.
    if (FoundReference)
      return;

    Inherited::VisitExpr(E);
  }

  void VisitDeclRefExpr(const DeclRefExpr *E) {
    if (E == Needle)
      FoundReference = true;
    else
      Inherited::VisitDeclRefExpr(E);
  }

  bool doesContainReference() const { return FoundReference; }
};
} // anonymous namespace

static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
  QualType VariableTy = VD->getType().getCanonicalType();
  if (VariableTy->isBlockPointerType() &&
      !VD->hasAttr<BlocksAttr>()) {
    S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
        << VD->getDeclName()
        << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
    return true;
  }

  // Don't issue a fixit if there is already an initializer.
  if (VD->getInit())
    return false;

  // Don't suggest a fixit inside macros.
  if (VD->getEndLoc().isMacroID())
    return false;

  SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());

  // Suggest possible initialization (if any).
  std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
  if (Init.empty())
    return false;

  S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
    << FixItHint::CreateInsertion(Loc, Init);
  return true;
}

/// Create a fixit to remove an if-like statement, on the assumption that its
/// condition is CondVal.
static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
                          const Stmt *Else, bool CondVal,
                          FixItHint &Fixit1, FixItHint &Fixit2) {
  if (CondVal) {
    // If condition is always true, remove all but the 'then'.
    Fixit1 = FixItHint::CreateRemoval(
        CharSourceRange::getCharRange(If->getBeginLoc(), Then->getBeginLoc()));
    if (Else) {
      SourceLocation ElseKwLoc = S.getLocForEndOfToken(Then->getEndLoc());
      Fixit2 =
          FixItHint::CreateRemoval(SourceRange(ElseKwLoc, Else->getEndLoc()));
    }
  } else {
    // If condition is always false, remove all but the 'else'.
    if (Else)
      Fixit1 = FixItHint::CreateRemoval(CharSourceRange::getCharRange(
          If->getBeginLoc(), Else->getBeginLoc()));
    else
      Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
  }
}

/// DiagUninitUse -- Helper function to produce a diagnostic for an
/// uninitialized use of a variable.
static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
                          bool IsCapturedByBlock) {
  bool Diagnosed = false;

  switch (Use.getKind()) {
  case UninitUse::Always:
    S.Diag(Use.getUser()->getBeginLoc(), diag::warn_uninit_var)
        << VD->getDeclName() << IsCapturedByBlock
        << Use.getUser()->getSourceRange();
    return;

  case UninitUse::AfterDecl:
  case UninitUse::AfterCall:
    S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
      << VD->getDeclName() << IsCapturedByBlock
      << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
      << const_cast<DeclContext*>(VD->getLexicalDeclContext())
      << VD->getSourceRange();
    S.Diag(Use.getUser()->getBeginLoc(), diag::note_uninit_var_use)
        << IsCapturedByBlock << Use.getUser()->getSourceRange();
    return;

  case UninitUse::Maybe:
  case UninitUse::Sometimes:
    // Carry on to report sometimes-uninitialized branches, if possible,
    // or a 'may be used uninitialized' diagnostic otherwise.
    break;
  }

  // Diagnose each branch which leads to a sometimes-uninitialized use.
  for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
       I != E; ++I) {
    assert(Use.getKind() == UninitUse::Sometimes);

    const Expr *User = Use.getUser();
    const Stmt *Term = I->Terminator;

    // Information used when building the diagnostic.
    unsigned DiagKind;
    StringRef Str;
    SourceRange Range;

    // FixIts to suppress the diagnostic by removing the dead condition.
    // For all binary terminators, branch 0 is taken if the condition is true,
    // and branch 1 is taken if the condition is false.
    int RemoveDiagKind = -1;
    const char *FixitStr =
        S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
                                  : (I->Output ? "1" : "0");
    FixItHint Fixit1, Fixit2;

    switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
    default:
      // Don't know how to report this. Just fall back to 'may be used
      // uninitialized'. FIXME: Can this happen?
      continue;

    // "condition is true / condition is false".
    case Stmt::IfStmtClass: {
      const IfStmt *IS = cast<IfStmt>(Term);
      DiagKind = 0;
      Str = "if";
      Range = IS->getCond()->getSourceRange();
      RemoveDiagKind = 0;
      CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
                    I->Output, Fixit1, Fixit2);
      break;
    }
    case Stmt::ConditionalOperatorClass: {
      const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
      DiagKind = 0;
      Str = "?:";
      Range = CO->getCond()->getSourceRange();
      RemoveDiagKind = 0;
      CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
                    I->Output, Fixit1, Fixit2);
      break;
    }
    case Stmt::BinaryOperatorClass: {
      const BinaryOperator *BO = cast<BinaryOperator>(Term);
      if (!BO->isLogicalOp())
        continue;
      DiagKind = 0;
      Str = BO->getOpcodeStr();
      Range = BO->getLHS()->getSourceRange();
      RemoveDiagKind = 0;
      if ((BO->getOpcode() == BO_LAnd && I->Output) ||
          (BO->getOpcode() == BO_LOr && !I->Output))
        // true && y -> y, false || y -> y.
        Fixit1 = FixItHint::CreateRemoval(
            SourceRange(BO->getBeginLoc(), BO->getOperatorLoc()));
      else
        // false && y -> false, true || y -> true.
        Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
      break;
    }

    // "loop is entered / loop is exited".
    case Stmt::WhileStmtClass:
      DiagKind = 1;
      Str = "while";
      Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
      RemoveDiagKind = 1;
      Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
      break;
    case Stmt::ForStmtClass:
      DiagKind = 1;
      Str = "for";
      Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
      RemoveDiagKind = 1;
      if (I->Output)
        Fixit1 = FixItHint::CreateRemoval(Range);
      else
        Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
      break;
    case Stmt::CXXForRangeStmtClass:
      if (I->Output == 1) {
        // The use occurs if a range-based for loop's body never executes.
        // That may be impossible, and there's no syntactic fix for this,
        // so treat it as a 'may be uninitialized' case.
        continue;
      }
      DiagKind = 1;
      Str = "for";
      Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
      break;

    // "condition is true / loop is exited".
    case Stmt::DoStmtClass:
      DiagKind = 2;
      Str = "do";
      Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
      RemoveDiagKind = 1;
      Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
      break;

    // "switch case is taken".
    case Stmt::CaseStmtClass:
      DiagKind = 3;
      Str = "case";
      Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
      break;
    case Stmt::DefaultStmtClass:
      DiagKind = 3;
      Str = "default";
      Range = cast<DefaultStmt>(Term)->getDefaultLoc();
      break;
    }

    S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
      << VD->getDeclName() << IsCapturedByBlock << DiagKind
      << Str << I->Output << Range;
    S.Diag(User->getBeginLoc(), diag::note_uninit_var_use)
        << IsCapturedByBlock << User->getSourceRange();
    if (RemoveDiagKind != -1)
      S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
        << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;

    Diagnosed = true;
  }

  if (!Diagnosed)
    S.Diag(Use.getUser()->getBeginLoc(), diag::warn_maybe_uninit_var)
        << VD->getDeclName() << IsCapturedByBlock
        << Use.getUser()->getSourceRange();
}

/// Diagnose uninitialized const reference usages.
static bool DiagnoseUninitializedConstRefUse(Sema &S, const VarDecl *VD,
                                             const UninitUse &Use) {
  S.Diag(Use.getUser()->getBeginLoc(), diag::warn_uninit_const_reference)
      << VD->getDeclName() << Use.getUser()->getSourceRange();
  return true;
}

/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
/// uninitialized variable. This manages the different forms of diagnostic
/// emitted for particular types of uses. Returns true if the use was diagnosed
/// as a warning. If a particular use is one we omit warnings for, returns
/// false.
static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
                                     const UninitUse &Use,
                                     bool alwaysReportSelfInit = false) {
  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
    // Inspect the initializer of the variable declaration which is
    // being referenced prior to its initialization. We emit
    // specialized diagnostics for self-initialization, and we
    // specifically avoid warning about self references which take the
    // form of:
    //
    //   int x = x;
    //
    // This is used to indicate to GCC that 'x' is intentionally left
    // uninitialized. Proven code paths which access 'x' in
    // an uninitialized state after this will still warn.
    if (const Expr *Initializer = VD->getInit()) {
      if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
        return false;

      ContainsReference CR(S.Context, DRE);
      CR.Visit(Initializer);
      if (CR.doesContainReference()) {
        S.Diag(DRE->getBeginLoc(), diag::warn_uninit_self_reference_in_init)
            << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
        return true;
      }
    }

    DiagUninitUse(S, VD, Use, false);
  } else {
    const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
    if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
      S.Diag(BE->getBeginLoc(),
             diag::warn_uninit_byref_blockvar_captured_by_block)
          << VD->getDeclName()
          << VD->getType().getQualifiers().hasObjCLifetime();
    else
      DiagUninitUse(S, VD, Use, true);
  }

  // Report where the variable was declared when the use wasn't within
  // the initializer of that declaration & we didn't already suggest
  // an initialization fixit.
  if (!SuggestInitializationFixit(S, VD))
    S.Diag(VD->getBeginLoc(), diag::note_var_declared_here)
        << VD->getDeclName();

  return true;
}

namespace {
  class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
  public:
    FallthroughMapper(Sema &S)
      : FoundSwitchStatements(false),
        S(S) {
    }

    bool foundSwitchStatements() const { return FoundSwitchStatements; }

    void markFallthroughVisited(const AttributedStmt *Stmt) {
      bool Found = FallthroughStmts.erase(Stmt);
      assert(Found);
      (void)Found;
    }

    typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;

    const AttrStmts &getFallthroughStmts() const {
      return FallthroughStmts;
    }

    void fillReachableBlocks(CFG *Cfg) {
      assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
      std::deque<const CFGBlock *> BlockQueue;

      ReachableBlocks.insert(&Cfg->getEntry());
      BlockQueue.push_back(&Cfg->getEntry());
      // Mark all case blocks reachable to avoid problems with switching on
      // constants, covered enums, etc.
      // These blocks can contain fall-through annotations, and we don't want to
      // issue a warn_fallthrough_attr_unreachable for them.
      for (const auto *B : *Cfg) {
        const Stmt *L = B->getLabel();
        if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B).second)
          BlockQueue.push_back(B);
      }

      while (!BlockQueue.empty()) {
        const CFGBlock *P = BlockQueue.front();
        BlockQueue.pop_front();
        for (const CFGBlock *B : P->succs()) {
          if (B && ReachableBlocks.insert(B).second)
            BlockQueue.push_back(B);
        }
      }
    }

    bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt,
                                   bool IsTemplateInstantiation) {
      assert(!ReachableBlocks.empty() && "ReachableBlocks empty");

      int UnannotatedCnt = 0;
      AnnotatedCnt = 0;

      std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
      while (!BlockQueue.empty()) {
        const CFGBlock *P = BlockQueue.front();
        BlockQueue.pop_front();
        if (!P) continue;

        const Stmt *Term = P->getTerminatorStmt();
        if (Term && isa<SwitchStmt>(Term))
          continue; // Switch statement, good.

        const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
        if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
          continue; // Previous case label has no statements, good.

        const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
        if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
          continue; // Case label is preceded with a normal label, good.

        if (!ReachableBlocks.count(P)) {
          for (const CFGElement &Elem : llvm::reverse(*P)) {
            if (Optional<CFGStmt> CS = Elem.getAs<CFGStmt>()) {
              if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
                // Don't issue a warning for an unreachable fallthrough
                // attribute in template instantiations as it may not be
                // unreachable in all instantiations of the template.
                if (!IsTemplateInstantiation)
                  S.Diag(AS->getBeginLoc(),
                         diag::warn_unreachable_fallthrough_attr);
                markFallthroughVisited(AS);
                ++AnnotatedCnt;
                break;
              }
              // Don't care about other unreachable statements.
            }
          }
          // If there are no unreachable statements, this may be a special
          // case in CFG:
          // case X: {
          //    A a;  // A has a destructor.
          //    break;
          // }
          // // <<<< This place is represented by a 'hanging' CFG block.
          // case Y:
          continue;
        }

        const Stmt *LastStmt = getLastStmt(*P);
        if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
          markFallthroughVisited(AS);
          ++AnnotatedCnt;
          continue; // Fallthrough annotation, good.
        }

        if (!LastStmt) { // This block contains no executable statements.
          // Traverse its predecessors.
          std::copy(P->pred_begin(), P->pred_end(),
                    std::back_inserter(BlockQueue));
          continue;
        }

        ++UnannotatedCnt;
      }
      return !!UnannotatedCnt;
    }

    // RecursiveASTVisitor setup.
    bool shouldWalkTypesOfTypeLocs() const { return false; }

    bool VisitAttributedStmt(AttributedStmt *S) {
      if (asFallThroughAttr(S))
        FallthroughStmts.insert(S);
      return true;
    }

    bool VisitSwitchStmt(SwitchStmt *S) {
      FoundSwitchStatements = true;
      return true;
    }

    // We don't want to traverse local type declarations. We analyze their
    // methods separately.
    bool TraverseDecl(Decl *D) { return true; }

    // We analyze lambda bodies separately. Skip them here.
    bool TraverseLambdaExpr(LambdaExpr *LE) {
      // Traverse the captures, but not the body.
      for (const auto C : zip(LE->captures(), LE->capture_inits()))
        TraverseLambdaCapture(LE, &std::get<0>(C), std::get<1>(C));
      return true;
    }

  private:

    static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
      if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
        if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
          return AS;
      }
      return nullptr;
    }

    static const Stmt *getLastStmt(const CFGBlock &B) {
      if (const Stmt *Term = B.getTerminatorStmt())
        return Term;
      for (const CFGElement &Elem : llvm::reverse(B))
        if (Optional<CFGStmt> CS = Elem.getAs<CFGStmt>())
          return CS->getStmt();
      // Workaround to detect a statement thrown out by CFGBuilder:
      //   case X: {} case Y:
      //   case X: ; case Y:
      if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
        if (!isa<SwitchCase>(SW->getSubStmt()))
          return SW->getSubStmt();

      return nullptr;
    }

    bool FoundSwitchStatements;
    AttrStmts FallthroughStmts;
    Sema &S;
    llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
  };
} // anonymous namespace

static StringRef getFallthroughAttrSpelling(Preprocessor &PP,
                                            SourceLocation Loc) {
  TokenValue FallthroughTokens[] = {
    tok::l_square, tok::l_square,
    PP.getIdentifierInfo("fallthrough"),
    tok::r_square, tok::r_square
  };

  TokenValue ClangFallthroughTokens[] = {
    tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
    tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
    tok::r_square, tok::r_square
  };

  bool PreferClangAttr = !PP.getLangOpts().CPlusPlus17 && !PP.getLangOpts().C2x;

  StringRef MacroName;
  if (PreferClangAttr)
    MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
  if (MacroName.empty())
    MacroName = PP.getLastMacroWithSpelling(Loc, FallthroughTokens);
  if (MacroName.empty() && !PreferClangAttr)
    MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
  if (MacroName.empty()) {
    if (!PreferClangAttr)
      MacroName = "[[fallthrough]]";
    else if (PP.getLangOpts().CPlusPlus)
      MacroName = "[[clang::fallthrough]]";
    else
      MacroName = "__attribute__((fallthrough))";
  }
  return MacroName;
}

static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
                                            bool PerFunction) {
  FallthroughMapper FM(S);
  FM.TraverseStmt(AC.getBody());

  if (!FM.foundSwitchStatements())
    return;

  if (PerFunction && FM.getFallthroughStmts().empty())
    return;

  CFG *Cfg = AC.getCFG();

  if (!Cfg)
    return;

  FM.fillReachableBlocks(Cfg);

  for (const CFGBlock *B : llvm::reverse(*Cfg)) {
    const Stmt *Label = B->getLabel();

    if (!Label || !isa<SwitchCase>(Label))
      continue;

    int AnnotatedCnt;

    bool IsTemplateInstantiation = false;
    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(AC.getDecl()))
      IsTemplateInstantiation = Function->isTemplateInstantiation();
    if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt,
                                      IsTemplateInstantiation))
      continue;

    S.Diag(Label->getBeginLoc(),
           PerFunction ? diag::warn_unannotated_fallthrough_per_function
                       : diag::warn_unannotated_fallthrough);

    if (!AnnotatedCnt) {
      SourceLocation L = Label->getBeginLoc();
      if (L.isMacroID())
        continue;

      const Stmt *Term = B->getTerminatorStmt();
      // Skip empty cases.
      while (B->empty() && !Term && B->succ_size() == 1) {
        B = *B->succ_begin();
        Term = B->getTerminatorStmt();
      }
      if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
        Preprocessor &PP = S.getPreprocessor();
        StringRef AnnotationSpelling = getFallthroughAttrSpelling(PP, L);
        SmallString<64> TextToInsert(AnnotationSpelling);
        TextToInsert += "; ";
        S.Diag(L, diag::note_insert_fallthrough_fixit)
            << AnnotationSpelling
            << FixItHint::CreateInsertion(L, TextToInsert);
      }
      S.Diag(L, diag::note_insert_break_fixit)
          << FixItHint::CreateInsertion(L, "break; ");
    }
  }

  for (const auto *F : FM.getFallthroughStmts())
    S.Diag(F->getBeginLoc(), diag::err_fallthrough_attr_invalid_placement);
}

static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
                     const Stmt *S) {
  assert(S);

  do {
    switch (S->getStmtClass()) {
    case Stmt::ForStmtClass:
    case Stmt::WhileStmtClass:
    case Stmt::CXXForRangeStmtClass:
    case Stmt::ObjCForCollectionStmtClass:
      return true;
    case Stmt::DoStmtClass: {
      Expr::EvalResult Result;
      if (!cast<DoStmt>(S)->getCond()->EvaluateAsInt(Result, Ctx))
        return true;
      return Result.Val.getInt().getBoolValue();
    }
    default:
      break;
    }
  } while ((S = PM.getParent(S)));

  return false;
}

static void diagnoseRepeatedUseOfWeak(Sema &S,
                                      const sema::FunctionScopeInfo *CurFn,
                                      const Decl *D,
                                      const ParentMap &PM) {
  typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
  typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
  typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
  typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
  StmtUsesPair;

  ASTContext &Ctx = S.getASTContext();

  const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();

  // Extract all weak objects that are referenced more than once.
  SmallVector<StmtUsesPair, 8> UsesByStmt;
  for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
       I != E; ++I) {
    const WeakUseVector &Uses = I->second;

    // Find the first read of the weak object.
    WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
    for ( ; UI != UE; ++UI) {
      if (UI->isUnsafe())
        break;
    }

    // If there were only writes to this object, don't warn.
    if (UI == UE)
      continue;

    // If there was only one read, followed by any number of writes, and the
    // read is not within a loop, don't warn. Additionally, don't warn in a
    // loop if the base object is a local variable -- local variables are often
    // changed in loops.
    if (UI == Uses.begin()) {
      WeakUseVector::const_iterator UI2 = UI;
      for (++UI2; UI2 != UE; ++UI2)
        if (UI2->isUnsafe())
          break;

      if (UI2 == UE) {
        if (!isInLoop(Ctx, PM, UI->getUseExpr()))
          continue;

        const WeakObjectProfileTy &Profile = I->first;
        if (!Profile.isExactProfile())
          continue;

        const NamedDecl *Base = Profile.getBase();
        if (!Base)
          Base = Profile.getProperty();
        assert(Base && "A profile always has a base or property.");

        if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
          if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
            continue;
      }
    }

    UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
  }

  if (UsesByStmt.empty())
    return;

  // Sort by first use so that we emit the warnings in a deterministic order.
  SourceManager &SM = S.getSourceManager();
  llvm::sort(UsesByStmt,
             [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
               return SM.isBeforeInTranslationUnit(LHS.first->getBeginLoc(),
                                                   RHS.first->getBeginLoc());
             });

  // Classify the current code body for better warning text.
  // This enum should stay in sync with the cases in
  // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
  // FIXME: Should we use a common classification enum and the same set of
  // possibilities all throughout Sema?
  enum {
    Function,
    Method,
    Block,
    Lambda
  } FunctionKind;

  if (isa<sema::BlockScopeInfo>(CurFn))
    FunctionKind = Block;
  else if (isa<sema::LambdaScopeInfo>(CurFn))
    FunctionKind = Lambda;
  else if (isa<ObjCMethodDecl>(D))
    FunctionKind = Method;
  else
    FunctionKind = Function;

  // Iterate through the sorted problems and emit warnings for each.
  for (const auto &P : UsesByStmt) {
    const Stmt *FirstRead = P.first;
    const WeakObjectProfileTy &Key = P.second->first;
    const WeakUseVector &Uses = P.second->second;

    // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
    // may not contain enough information to determine that these are different
    // properties. We can only be 100% sure of a repeated use in certain cases,
    // and we adjust the diagnostic kind accordingly so that the less certain
    // case can be turned off if it is too noisy.
    unsigned DiagKind;
    if (Key.isExactProfile())
      DiagKind = diag::warn_arc_repeated_use_of_weak;
    else
      DiagKind = diag::warn_arc_possible_repeated_use_of_weak;

    // Classify the weak object being accessed for better warning text.
    // This enum should stay in sync with the cases in
    // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
    enum {
      Variable,
      Property,
      ImplicitProperty,
      Ivar
    } ObjectKind;

    const NamedDecl *KeyProp = Key.getProperty();
    if (isa<VarDecl>(KeyProp))
      ObjectKind = Variable;
    else if (isa<ObjCPropertyDecl>(KeyProp))
      ObjectKind = Property;
    else if (isa<ObjCMethodDecl>(KeyProp))
      ObjectKind = ImplicitProperty;
    else if (isa<ObjCIvarDecl>(KeyProp))
      ObjectKind = Ivar;
    else
      llvm_unreachable("Unexpected weak object kind!");

    // Do not warn about IBOutlet weak property receivers being set to null
    // since they are typically only used from the main thread.
    if (const ObjCPropertyDecl *Prop = dyn_cast<ObjCPropertyDecl>(KeyProp))
      if (Prop->hasAttr<IBOutletAttr>())
        continue;

    // Show the first time the object was read.
    S.Diag(FirstRead->getBeginLoc(), DiagKind)
        << int(ObjectKind) << KeyProp << int(FunctionKind)
        << FirstRead->getSourceRange();

    // Print all the other accesses as notes.
    for (const auto &Use : Uses) {
      if (Use.getUseExpr() == FirstRead)
        continue;
      S.Diag(Use.getUseExpr()->getBeginLoc(),
             diag::note_arc_weak_also_accessed_here)
          << Use.getUseExpr()->getSourceRange();
    }
  }
}

namespace clang {
namespace {
typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
typedef std::list<DelayedDiag> DiagList;

struct SortDiagBySourceLocation {
  SourceManager &SM;
  SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}

  bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
    // Although this call will be slow, this is only called when outputting
    // multiple warnings.
    return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
  }
};
} // anonymous namespace
} // namespace clang

namespace {
class UninitValsDiagReporter : public UninitVariablesHandler {
  Sema &S;
  typedef SmallVector<UninitUse, 2> UsesVec;
  typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
  // Prefer using MapVector to DenseMap, so that iteration order will be
  // the same as insertion order. This is needed to obtain a deterministic
  // order of diagnostics when calling flushDiagnostics().
  typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
  UsesMap uses;
  UsesMap constRefUses;

public:
  UninitValsDiagReporter(Sema &S) : S(S) {}
  ~UninitValsDiagReporter() override { flushDiagnostics(); }

  MappedType &getUses(UsesMap &um, const VarDecl *vd) {
    MappedType &V = um[vd];
    if (!V.getPointer())
      V.setPointer(new UsesVec());
    return V;
  }

  void handleUseOfUninitVariable(const VarDecl *vd,
                                 const UninitUse &use) override {
    getUses(uses, vd).getPointer()->push_back(use);
  }

  void handleConstRefUseOfUninitVariable(const VarDecl *vd,
                                         const UninitUse &use) override {
    getUses(constRefUses, vd).getPointer()->push_back(use);
  }

  void handleSelfInit(const VarDecl *vd) override {
    getUses(uses, vd).setInt(true);
    getUses(constRefUses, vd).setInt(true);
  }

  void flushDiagnostics() {
    for (const auto &P : uses) {
      const VarDecl *vd = P.first;
      const MappedType &V = P.second;

      UsesVec *vec = V.getPointer();
      bool hasSelfInit = V.getInt();

      // Specially handle the case where we have uses of an uninitialized
      // variable, but the root cause is an idiomatic self-init.  We want
      // to report the diagnostic at the self-init since that is the root cause.
      if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
        DiagnoseUninitializedUse(S, vd,
                                 UninitUse(vd->getInit()->IgnoreParenCasts(),
                                           /* isAlwaysUninit */ true),
                                 /* alwaysReportSelfInit */ true);
      else {
        // Sort the uses by their SourceLocations.  While not strictly
        // guaranteed to produce them in line/column order, this will provide
        // a stable ordering.
        llvm::sort(vec->begin(), vec->end(),
                   [](const UninitUse &a, const UninitUse &b) {
          // Prefer a more confident report over a less confident one.
          if (a.getKind() != b.getKind())
            return a.getKind() > b.getKind();
          return a.getUser()->getBeginLoc() < b.getUser()->getBeginLoc();
        });

        for (const auto &U : *vec) {
          // If we have self-init, downgrade all uses to 'may be uninitialized'.
          UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;

          if (DiagnoseUninitializedUse(S, vd, Use))
            // Skip further diagnostics for this variable. We try to warn only
            // on the first point at which a variable is used uninitialized.
            break;
        }
      }

      // Release the uses vector.
      delete vec;
    }

    uses.clear();

    // Flush all const reference uses diags.
    for (const auto &P : constRefUses) {
      const VarDecl *vd = P.first;
      const MappedType &V = P.second;

      UsesVec *vec = V.getPointer();
      bool hasSelfInit = V.getInt();

      if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
        DiagnoseUninitializedUse(S, vd,
                                 UninitUse(vd->getInit()->IgnoreParenCasts(),
                                           /* isAlwaysUninit */ true),
                                 /* alwaysReportSelfInit */ true);
      else {
        for (const auto &U : *vec) {
          if (DiagnoseUninitializedConstRefUse(S, vd, U))
            break;
        }
      }

      // Release the uses vector.
      delete vec;
    }

    constRefUses.clear();
  }

private:
  static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
    return llvm::any_of(*vec, [](const UninitUse &U) {
      return U.getKind() == UninitUse::Always ||
             U.getKind() == UninitUse::AfterCall ||
             U.getKind() == UninitUse::AfterDecl;
    });
  }
};

/// Inter-procedural data for the called-once checker.
class CalledOnceInterProceduralData {
public:
  // Add the delayed warning for the given block.
  void addDelayedWarning(const BlockDecl *Block,
                         PartialDiagnosticAt &&Warning) {
    DelayedBlockWarnings[Block].emplace_back(std::move(Warning));
  }
  // Report all of the warnings we've gathered for the given block.
  void flushWarnings(const BlockDecl *Block, Sema &S) {
    for (const PartialDiagnosticAt &Delayed : DelayedBlockWarnings[Block])
      S.Diag(Delayed.first, Delayed.second);

    discardWarnings(Block);
  }
  // Discard all of the warnings we've gathered for the given block.
  void discardWarnings(const BlockDecl *Block) {
    DelayedBlockWarnings.erase(Block);
  }

private:
  using DelayedDiagnostics = SmallVector<PartialDiagnosticAt, 2>;
  llvm::DenseMap<const BlockDecl *, DelayedDiagnostics> DelayedBlockWarnings;
};

class CalledOnceCheckReporter : public CalledOnceCheckHandler {
public:
  CalledOnceCheckReporter(Sema &S, CalledOnceInterProceduralData &Data)
      : S(S), Data(Data) {}
  void handleDoubleCall(const ParmVarDecl *Parameter, const Expr *Call,
                        const Expr *PrevCall, bool IsCompletionHandler,
                        bool Poised) override {
    auto DiagToReport = IsCompletionHandler
                            ? diag::warn_completion_handler_called_twice
                            : diag::warn_called_once_gets_called_twice;
    S.Diag(Call->getBeginLoc(), DiagToReport) << Parameter;
    S.Diag(PrevCall->getBeginLoc(), diag::note_called_once_gets_called_twice)
        << Poised;
  }

  void handleNeverCalled(const ParmVarDecl *Parameter,
                         bool IsCompletionHandler) override {
    auto DiagToReport = IsCompletionHandler
                            ? diag::warn_completion_handler_never_called
                            : diag::warn_called_once_never_called;
    S.Diag(Parameter->getBeginLoc(), DiagToReport)
        << Parameter << /* Captured */ false;
  }

  void handleNeverCalled(const ParmVarDecl *Parameter, const Decl *Function,
                         const Stmt *Where, NeverCalledReason Reason,
                         bool IsCalledDirectly,
                         bool IsCompletionHandler) override {
    auto DiagToReport = IsCompletionHandler
                            ? diag::warn_completion_handler_never_called_when
                            : diag::warn_called_once_never_called_when;
    PartialDiagnosticAt Warning(Where->getBeginLoc(), S.PDiag(DiagToReport)
                                                          << Parameter
                                                          << IsCalledDirectly
                                                          << (unsigned)Reason);

    if (const auto *Block = dyn_cast<BlockDecl>(Function)) {
      // We shouldn't report these warnings on blocks immediately
      Data.addDelayedWarning(Block, std::move(Warning));
    } else {
      S.Diag(Warning.first, Warning.second);
    }
  }

  void handleCapturedNeverCalled(const ParmVarDecl *Parameter,
                                 const Decl *Where,
                                 bool IsCompletionHandler) override {
    auto DiagToReport = IsCompletionHandler
                            ? diag::warn_completion_handler_never_called
                            : diag::warn_called_once_never_called;
    S.Diag(Where->getBeginLoc(), DiagToReport)
        << Parameter << /* Captured */ true;
  }

  void
  handleBlockThatIsGuaranteedToBeCalledOnce(const BlockDecl *Block) override {
    Data.flushWarnings(Block, S);
  }

  void handleBlockWithNoGuarantees(const BlockDecl *Block) override {
    Data.discardWarnings(Block);
  }

private:
  Sema &S;
  CalledOnceInterProceduralData &Data;
};

constexpr unsigned CalledOnceWarnings[] = {
    diag::warn_called_once_never_called,
    diag::warn_called_once_never_called_when,
    diag::warn_called_once_gets_called_twice};

constexpr unsigned CompletionHandlerWarnings[]{
    diag::warn_completion_handler_never_called,
    diag::warn_completion_handler_never_called_when,
    diag::warn_completion_handler_called_twice};

bool shouldAnalyzeCalledOnceImpl(llvm::ArrayRef<unsigned> DiagIDs,
                                 const DiagnosticsEngine &Diags,
                                 SourceLocation At) {
  return llvm::any_of(DiagIDs, [&Diags, At](unsigned DiagID) {
    return !Diags.isIgnored(DiagID, At);
  });
}

bool shouldAnalyzeCalledOnceConventions(const DiagnosticsEngine &Diags,
                                        SourceLocation At) {
  return shouldAnalyzeCalledOnceImpl(CompletionHandlerWarnings, Diags, At);
}

bool shouldAnalyzeCalledOnceParameters(const DiagnosticsEngine &Diags,
                                       SourceLocation At) {
  return shouldAnalyzeCalledOnceImpl(CalledOnceWarnings, Diags, At) ||
         shouldAnalyzeCalledOnceConventions(Diags, At);
}
} // anonymous namespace

//===----------------------------------------------------------------------===//
// -Wthread-safety
//===----------------------------------------------------------------------===//
namespace clang {
namespace threadSafety {
namespace {
class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler {
  Sema &S;
  DiagList Warnings;
  SourceLocation FunLocation, FunEndLocation;

  const FunctionDecl *CurrentFunction;
  bool Verbose;

  OptionalNotes getNotes() const {
    if (Verbose && CurrentFunction) {
      PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
                                S.PDiag(diag::note_thread_warning_in_fun)
                                    << CurrentFunction);
      return OptionalNotes(1, FNote);
    }
    return OptionalNotes();
  }

  OptionalNotes getNotes(const PartialDiagnosticAt &Note) const {
    OptionalNotes ONS(1, Note);
    if (Verbose && CurrentFunction) {
      PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
                                S.PDiag(diag::note_thread_warning_in_fun)
                                    << CurrentFunction);
      ONS.push_back(std::move(FNote));
    }
    return ONS;
  }

  OptionalNotes getNotes(const PartialDiagnosticAt &Note1,
                         const PartialDiagnosticAt &Note2) const {
    OptionalNotes ONS;
    ONS.push_back(Note1);
    ONS.push_back(Note2);
    if (Verbose && CurrentFunction) {
      PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
                                S.PDiag(diag::note_thread_warning_in_fun)
                                    << CurrentFunction);
      ONS.push_back(std::move(FNote));
    }
    return ONS;
  }

  OptionalNotes makeLockedHereNote(SourceLocation LocLocked, StringRef Kind) {
    return LocLocked.isValid()
               ? getNotes(PartialDiagnosticAt(
                     LocLocked, S.PDiag(diag::note_locked_here) << Kind))
               : getNotes();
  }

  OptionalNotes makeUnlockedHereNote(SourceLocation LocUnlocked,
                                     StringRef Kind) {
    return LocUnlocked.isValid()
               ? getNotes(PartialDiagnosticAt(
                     LocUnlocked, S.PDiag(diag::note_unlocked_here) << Kind))
               : getNotes();
  }

 public:
  ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
    : S(S), FunLocation(FL), FunEndLocation(FEL),
      CurrentFunction(nullptr), Verbose(false) {}

  void setVerbose(bool b) { Verbose = b; }

  /// Emit all buffered diagnostics in order of sourcelocation.
  /// We need to output diagnostics produced while iterating through
  /// the lockset in deterministic order, so this function orders diagnostics
  /// and outputs them.
  void emitDiagnostics() {
    Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
    for (const auto &Diag : Warnings) {
      S.Diag(Diag.first.first, Diag.first.second);
      for (const auto &Note : Diag.second)
        S.Diag(Note.first, Note.second);
    }
  }

  void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override {
    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
                                         << Loc);
    Warnings.emplace_back(std::move(Warning), getNotes());
  }

  void handleUnmatchedUnlock(StringRef Kind, Name LockName, SourceLocation Loc,
                             SourceLocation LocPreviousUnlock) override {
    if (Loc.isInvalid())
      Loc = FunLocation;
    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_but_no_lock)
                                         << Kind << LockName);
    Warnings.emplace_back(std::move(Warning),
                          makeUnlockedHereNote(LocPreviousUnlock, Kind));
  }

  void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
                                 LockKind Expected, LockKind Received,
                                 SourceLocation LocLocked,
                                 SourceLocation LocUnlock) override {
    if (LocUnlock.isInvalid())
      LocUnlock = FunLocation;
    PartialDiagnosticAt Warning(
        LocUnlock, S.PDiag(diag::warn_unlock_kind_mismatch)
                       << Kind << LockName << Received << Expected);
    Warnings.emplace_back(std::move(Warning),
                          makeLockedHereNote(LocLocked, Kind));
  }

  void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation LocLocked,
                        SourceLocation LocDoubleLock) override {
    if (LocDoubleLock.isInvalid())
      LocDoubleLock = FunLocation;
    PartialDiagnosticAt Warning(LocDoubleLock, S.PDiag(diag::warn_double_lock)
                                                   << Kind << LockName);
    Warnings.emplace_back(std::move(Warning),
                          makeLockedHereNote(LocLocked, Kind));
  }

  void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
                                 SourceLocation LocLocked,
                                 SourceLocation LocEndOfScope,
                                 LockErrorKind LEK) override {
    unsigned DiagID = 0;
    switch (LEK) {
      case LEK_LockedSomePredecessors:
        DiagID = diag::warn_lock_some_predecessors;
        break;
      case LEK_LockedSomeLoopIterations:
        DiagID = diag::warn_expecting_lock_held_on_loop;
        break;
      case LEK_LockedAtEndOfFunction:
        DiagID = diag::warn_no_unlock;
        break;
      case LEK_NotLockedAtEndOfFunction:
        DiagID = diag::warn_expecting_locked;
        break;
    }
    if (LocEndOfScope.isInvalid())
      LocEndOfScope = FunEndLocation;

    PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
                                                               << LockName);
    Warnings.emplace_back(std::move(Warning),
                          makeLockedHereNote(LocLocked, Kind));
  }

  void handleExclusiveAndShared(StringRef Kind, Name LockName,
                                SourceLocation Loc1,
                                SourceLocation Loc2) override {
    PartialDiagnosticAt Warning(Loc1,
                                S.PDiag(diag::warn_lock_exclusive_and_shared)
                                    << Kind << LockName);
    PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
                                       << Kind << LockName);
    Warnings.emplace_back(std::move(Warning), getNotes(Note));
  }

  void handleNoMutexHeld(StringRef Kind, const NamedDecl *D,
                         ProtectedOperationKind POK, AccessKind AK,
                         SourceLocation Loc) override {
    assert((POK == POK_VarAccess || POK == POK_VarDereference) &&
           "Only works for variables");
    unsigned DiagID = POK == POK_VarAccess?
                        diag::warn_variable_requires_any_lock:
                        diag::warn_var_deref_requires_any_lock;
    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
      << D << getLockKindFromAccessKind(AK));
    Warnings.emplace_back(std::move(Warning), getNotes());
  }

  void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
                          ProtectedOperationKind POK, Name LockName,
                          LockKind LK, SourceLocation Loc,
                          Name *PossibleMatch) override {
    unsigned DiagID = 0;
    if (PossibleMatch) {
      switch (POK) {
        case POK_VarAccess:
          DiagID = diag::warn_variable_requires_lock_precise;
          break;
        case POK_VarDereference:
          DiagID = diag::warn_var_deref_requires_lock_precise;
          break;
        case POK_FunctionCall:
          DiagID = diag::warn_fun_requires_lock_precise;
          break;
        case POK_PassByRef:
          DiagID = diag::warn_guarded_pass_by_reference;
          break;
        case POK_PtPassByRef:
          DiagID = diag::warn_pt_guarded_pass_by_reference;
          break;
      }
      PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
                                                       << D
                                                       << LockName << LK);
      PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
                                        << *PossibleMatch);
      if (Verbose && POK == POK_VarAccess) {
        PartialDiagnosticAt VNote(D->getLocation(),
                                  S.PDiag(diag::note_guarded_by_declared_here)
                                      << D->getDeclName());
        Warnings.emplace_back(std::move(Warning), getNotes(Note, VNote));
      } else
        Warnings.emplace_back(std::move(Warning), getNotes(Note));
    } else {
      switch (POK) {
        case POK_VarAccess:
          DiagID = diag::warn_variable_requires_lock;
          break;
        case POK_VarDereference:
          DiagID = diag::warn_var_deref_requires_lock;
          break;
        case POK_FunctionCall:
          DiagID = diag::warn_fun_requires_lock;
          break;
        case POK_PassByRef:
          DiagID = diag::warn_guarded_pass_by_reference;
          break;
        case POK_PtPassByRef:
          DiagID = diag::warn_pt_guarded_pass_by_reference;
          break;
      }
      PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
                                                       << D
                                                       << LockName << LK);
      if (Verbose && POK == POK_VarAccess) {
        PartialDiagnosticAt Note(D->getLocation(),
                                 S.PDiag(diag::note_guarded_by_declared_here));
        Warnings.emplace_back(std::move(Warning), getNotes(Note));
      } else
        Warnings.emplace_back(std::move(Warning), getNotes());
    }
  }

  void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg,
                             SourceLocation Loc) override {
    PartialDiagnosticAt Warning(Loc,
        S.PDiag(diag::warn_acquire_requires_negative_cap)
        << Kind << LockName << Neg);
    Warnings.emplace_back(std::move(Warning), getNotes());
  }

  void handleNegativeNotHeld(const NamedDecl *D, Name LockName,
                             SourceLocation Loc) override {
    PartialDiagnosticAt Warning(
        Loc, S.PDiag(diag::warn_fun_requires_negative_cap) << D << LockName);
    Warnings.emplace_back(std::move(Warning), getNotes());
  }

  void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
                             SourceLocation Loc) override {
    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
                                         << Kind << FunName << LockName);
    Warnings.emplace_back(std::move(Warning), getNotes());
  }

  void handleLockAcquiredBefore(StringRef Kind, Name L1Name, Name L2Name,
                                SourceLocation Loc) override {
    PartialDiagnosticAt Warning(Loc,
      S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name);
    Warnings.emplace_back(std::move(Warning), getNotes());
  }

  void handleBeforeAfterCycle(Name L1Name, SourceLocation Loc) override {
    PartialDiagnosticAt Warning(Loc,
      S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name);
    Warnings.emplace_back(std::move(Warning), getNotes());
  }

  void enterFunction(const FunctionDecl* FD) override {
    CurrentFunction = FD;
  }

  void leaveFunction(const FunctionDecl* FD) override {
    CurrentFunction = nullptr;
  }
};
} // anonymous namespace
} // namespace threadSafety
} // namespace clang

//===----------------------------------------------------------------------===//
// -Wconsumed
//===----------------------------------------------------------------------===//

namespace clang {
namespace consumed {
namespace {
class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {

  Sema &S;
  DiagList Warnings;

public:

  ConsumedWarningsHandler(Sema &S) : S(S) {}

  void emitDiagnostics() override {
    Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
    for (const auto &Diag : Warnings) {
      S.Diag(Diag.first.first, Diag.first.second);
      for (const auto &Note : Diag.second)
        S.Diag(Note.first, Note.second);
    }
  }

  void warnLoopStateMismatch(SourceLocation Loc,
                             StringRef VariableName) override {
    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
      VariableName);

    Warnings.emplace_back(std::move(Warning), OptionalNotes());
  }

  void warnParamReturnTypestateMismatch(SourceLocation Loc,
                                        StringRef VariableName,
                                        StringRef ExpectedState,
                                        StringRef ObservedState) override {

    PartialDiagnosticAt Warning(Loc, S.PDiag(
      diag::warn_param_return_typestate_mismatch) << VariableName <<
        ExpectedState << ObservedState);

    Warnings.emplace_back(std::move(Warning), OptionalNotes());
  }

  void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
                                  StringRef ObservedState) override {

    PartialDiagnosticAt Warning(Loc, S.PDiag(
      diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);

    Warnings.emplace_back(std::move(Warning), OptionalNotes());
  }

  void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
                                              StringRef TypeName) override {
    PartialDiagnosticAt Warning(Loc, S.PDiag(
      diag::warn_return_typestate_for_unconsumable_type) << TypeName);

    Warnings.emplace_back(std::move(Warning), OptionalNotes());
  }

  void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
                                   StringRef ObservedState) override {

    PartialDiagnosticAt Warning(Loc, S.PDiag(
      diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);

    Warnings.emplace_back(std::move(Warning), OptionalNotes());
  }

  void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
                                   SourceLocation Loc) override {

    PartialDiagnosticAt Warning(Loc, S.PDiag(
      diag::warn_use_of_temp_in_invalid_state) << MethodName << State);

    Warnings.emplace_back(std::move(Warning), OptionalNotes());
  }

  void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
                             StringRef State, SourceLocation Loc) override {

    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
                                MethodName << VariableName << State);

    Warnings.emplace_back(std::move(Warning), OptionalNotes());
  }
};
} // anonymous namespace
} // namespace consumed
} // namespace clang

//===----------------------------------------------------------------------===//
// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
//  warnings on a function, method, or block.
//===----------------------------------------------------------------------===//

sema::AnalysisBasedWarnings::Policy::Policy() {
  enableCheckFallThrough = 1;
  enableCheckUnreachable = 0;
  enableThreadSafetyAnalysis = 0;
  enableConsumedAnalysis = 0;
}

/// InterProceduralData aims to be a storage of whatever data should be passed
/// between analyses of different functions.
///
/// At the moment, its primary goal is to make the information gathered during
/// the analysis of the blocks available during the analysis of the enclosing
/// function.  This is important due to the fact that blocks are analyzed before
/// the enclosed function is even parsed fully, so it is not viable to access
/// anything in the outer scope while analyzing the block.  On the other hand,
/// re-building CFG for blocks and re-analyzing them when we do have all the
/// information (i.e. during the analysis of the enclosing function) seems to be
/// ill-designed.
class sema::AnalysisBasedWarnings::InterProceduralData {
public:
  // It is important to analyze blocks within functions because it's a very
  // common pattern to capture completion handler parameters by blocks.
  CalledOnceInterProceduralData CalledOnceData;
};

static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) {
  return (unsigned)!D.isIgnored(diag, SourceLocation());
}

sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
    : S(s), IPData(std::make_unique<InterProceduralData>()),
      NumFunctionsAnalyzed(0), NumFunctionsWithBadCFGs(0), NumCFGBlocks(0),
      MaxCFGBlocksPerFunction(0), NumUninitAnalysisFunctions(0),
      NumUninitAnalysisVariables(0), MaxUninitAnalysisVariablesPerFunction(0),
      NumUninitAnalysisBlockVisits(0),
      MaxUninitAnalysisBlockVisitsPerFunction(0) {

  using namespace diag;
  DiagnosticsEngine &D = S.getDiagnostics();

  DefaultPolicy.enableCheckUnreachable =
      isEnabled(D, warn_unreachable) || isEnabled(D, warn_unreachable_break) ||
      isEnabled(D, warn_unreachable_return) ||
      isEnabled(D, warn_unreachable_loop_increment);

  DefaultPolicy.enableThreadSafetyAnalysis = isEnabled(D, warn_double_lock);

  DefaultPolicy.enableConsumedAnalysis =
      isEnabled(D, warn_use_in_invalid_state);
}

// We need this here for unique_ptr with forward declared class.
sema::AnalysisBasedWarnings::~AnalysisBasedWarnings() = default;

static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
  for (const auto &D : fscope->PossiblyUnreachableDiags)
    S.Diag(D.Loc, D.PD);
}

void clang::sema::AnalysisBasedWarnings::IssueWarnings(
    sema::AnalysisBasedWarnings::Policy P, sema::FunctionScopeInfo *fscope,
    const Decl *D, QualType BlockType) {

  // We avoid doing analysis-based warnings when there are errors for
  // two reasons:
  // (1) The CFGs often can't be constructed (if the body is invalid), so
  //     don't bother trying.
  // (2) The code already has problems; running the analysis just takes more
  //     time.
  DiagnosticsEngine &Diags = S.getDiagnostics();

  // Do not do any analysis if we are going to just ignore them.
  if (Diags.getIgnoreAllWarnings() ||
      (Diags.getSuppressSystemWarnings() &&
       S.SourceMgr.isInSystemHeader(D->getLocation())))
    return;

  // For code in dependent contexts, we'll do this at instantiation time.
  if (cast<DeclContext>(D)->isDependentContext())
    return;

  if (S.hasUncompilableErrorOccurred()) {
    // Flush out any possibly unreachable diagnostics.
    flushDiagnostics(S, fscope);
    return;
  }

  const Stmt *Body = D->getBody();
  assert(Body);

  // Construct the analysis context with the specified CFG build options.
  AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);

  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
  // explosion for destructors that can result and the compile time hit.
  AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
  AC.getCFGBuildOptions().AddEHEdges = false;
  AC.getCFGBuildOptions().AddInitializers = true;
  AC.getCFGBuildOptions().AddImplicitDtors = true;
  AC.getCFGBuildOptions().AddTemporaryDtors = true;
  AC.getCFGBuildOptions().AddCXXNewAllocator = false;
  AC.getCFGBuildOptions().AddCXXDefaultInitExprInCtors = true;

  // Force that certain expressions appear as CFGElements in the CFG.  This
  // is used to speed up various analyses.
  // FIXME: This isn't the right factoring.  This is here for initial
  // prototyping, but we need a way for analyses to say what expressions they
  // expect to always be CFGElements and then fill in the BuildOptions
  // appropriately.  This is essentially a layering violation.
  if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
      P.enableConsumedAnalysis) {
    // Unreachable code analysis and thread safety require a linearized CFG.
    AC.getCFGBuildOptions().setAllAlwaysAdd();
  }
  else {
    AC.getCFGBuildOptions()
      .setAlwaysAdd(Stmt::BinaryOperatorClass)
      .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
      .setAlwaysAdd(Stmt::BlockExprClass)
      .setAlwaysAdd(Stmt::CStyleCastExprClass)
      .setAlwaysAdd(Stmt::DeclRefExprClass)
      .setAlwaysAdd(Stmt::ImplicitCastExprClass)
      .setAlwaysAdd(Stmt::UnaryOperatorClass);
  }

  // Install the logical handler.
  llvm::Optional<LogicalErrorHandler> LEH;
  if (LogicalErrorHandler::hasActiveDiagnostics(Diags, D->getBeginLoc())) {
    LEH.emplace(S);
    AC.getCFGBuildOptions().Observer = &*LEH;
  }

  // Emit delayed diagnostics.
  if (!fscope->PossiblyUnreachableDiags.empty()) {
    bool analyzed = false;

    // Register the expressions with the CFGBuilder.
    for (const auto &D : fscope->PossiblyUnreachableDiags) {
      for (const Stmt *S : D.Stmts)
        AC.registerForcedBlockExpression(S);
    }

    if (AC.getCFG()) {
      analyzed = true;
      for (const auto &D : fscope->PossiblyUnreachableDiags) {
        bool AllReachable = true;
        for (const Stmt *S : D.Stmts) {
          const CFGBlock *block = AC.getBlockForRegisteredExpression(S);
          CFGReverseBlockReachabilityAnalysis *cra =
              AC.getCFGReachablityAnalysis();
          // FIXME: We should be able to assert that block is non-null, but
          // the CFG analysis can skip potentially-evaluated expressions in
          // edge cases; see test/Sema/vla-2.c.
          if (block && cra) {
            // Can this block be reached from the entrance?
            if (!cra->isReachable(&AC.getCFG()->getEntry(), block)) {
              AllReachable = false;
              break;
            }
          }
          // If we cannot map to a basic block, assume the statement is
          // reachable.
        }

        if (AllReachable)
          S.Diag(D.Loc, D.PD);
      }
    }

    if (!analyzed)
      flushDiagnostics(S, fscope);
  }

  // Warning: check missing 'return'
  if (P.enableCheckFallThrough) {
    const CheckFallThroughDiagnostics &CD =
        (isa<BlockDecl>(D)
             ? CheckFallThroughDiagnostics::MakeForBlock()
             : (isa<CXXMethodDecl>(D) &&
                cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
                cast<CXXMethodDecl>(D)->getParent()->isLambda())
                   ? CheckFallThroughDiagnostics::MakeForLambda()
                   : (fscope->isCoroutine()
                          ? CheckFallThroughDiagnostics::MakeForCoroutine(D)
                          : CheckFallThroughDiagnostics::MakeForFunction(D)));
    CheckFallThroughForBody(S, D, Body, BlockType, CD, AC, fscope);
  }

  // Warning: check for unreachable code
  if (P.enableCheckUnreachable) {
    // Only check for unreachable code on non-template instantiations.
    // Different template instantiations can effectively change the control-flow
    // and it is very difficult to prove that a snippet of code in a template
    // is unreachable for all instantiations.
    bool isTemplateInstantiation = false;
    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
      isTemplateInstantiation = Function->isTemplateInstantiation();
    if (!isTemplateInstantiation)
      CheckUnreachable(S, AC);
  }

  // Check for thread safety violations
  if (P.enableThreadSafetyAnalysis) {
    SourceLocation FL = AC.getDecl()->getLocation();
    SourceLocation FEL = AC.getDecl()->getEndLoc();
    threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL);
    if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getBeginLoc()))
      Reporter.setIssueBetaWarnings(true);
    if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getBeginLoc()))
      Reporter.setVerbose(true);

    threadSafety::runThreadSafetyAnalysis(AC, Reporter,
                                          &S.ThreadSafetyDeclCache);
    Reporter.emitDiagnostics();
  }

  // Check for violations of consumed properties.
  if (P.enableConsumedAnalysis) {
    consumed::ConsumedWarningsHandler WarningHandler(S);
    consumed::ConsumedAnalyzer Analyzer(WarningHandler);
    Analyzer.run(AC);
  }

  if (!Diags.isIgnored(diag::warn_uninit_var, D->getBeginLoc()) ||
      !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getBeginLoc()) ||
      !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getBeginLoc()) ||
      !Diags.isIgnored(diag::warn_uninit_const_reference, D->getBeginLoc())) {
    if (CFG *cfg = AC.getCFG()) {
      UninitValsDiagReporter reporter(S);
      UninitVariablesAnalysisStats stats;
      std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
      runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
                                        reporter, stats);

      if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
        ++NumUninitAnalysisFunctions;
        NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
        NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
        MaxUninitAnalysisVariablesPerFunction =
            std::max(MaxUninitAnalysisVariablesPerFunction,
                     stats.NumVariablesAnalyzed);
        MaxUninitAnalysisBlockVisitsPerFunction =
            std::max(MaxUninitAnalysisBlockVisitsPerFunction,
                     stats.NumBlockVisits);
      }
    }
  }

  // Check for violations of "called once" parameter properties.
  if (S.getLangOpts().ObjC && !S.getLangOpts().CPlusPlus &&
      shouldAnalyzeCalledOnceParameters(Diags, D->getBeginLoc())) {
    if (AC.getCFG()) {
      CalledOnceCheckReporter Reporter(S, IPData->CalledOnceData);
      checkCalledOnceParameters(
          AC, Reporter,
          shouldAnalyzeCalledOnceConventions(Diags, D->getBeginLoc()));
    }
  }

  bool FallThroughDiagFull =
      !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getBeginLoc());
  bool FallThroughDiagPerFunction = !Diags.isIgnored(
      diag::warn_unannotated_fallthrough_per_function, D->getBeginLoc());
  if (FallThroughDiagFull || FallThroughDiagPerFunction ||
      fscope->HasFallthroughStmt) {
    DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
  }

  if (S.getLangOpts().ObjCWeak &&
      !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getBeginLoc()))
    diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());


  // Check for infinite self-recursion in functions
  if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
                       D->getBeginLoc())) {
    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
      checkRecursiveFunction(S, FD, Body, AC);
    }
  }

  // Check for throw out of non-throwing function.
  if (!Diags.isIgnored(diag::warn_throw_in_noexcept_func, D->getBeginLoc()))
    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
      if (S.getLangOpts().CPlusPlus && isNoexcept(FD))
        checkThrowInNonThrowingFunc(S, FD, AC);

  // If none of the previous checks caused a CFG build, trigger one here
  // for the logical error handler.
  if (LogicalErrorHandler::hasActiveDiagnostics(Diags, D->getBeginLoc())) {
    AC.getCFG();
  }

  // Collect statistics about the CFG if it was built.
  if (S.CollectStats && AC.isCFGBuilt()) {
    ++NumFunctionsAnalyzed;
    if (CFG *cfg = AC.getCFG()) {
      // If we successfully built a CFG for this context, record some more
      // detail information about it.
      NumCFGBlocks += cfg->getNumBlockIDs();
      MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
                                         cfg->getNumBlockIDs());
    } else {
      ++NumFunctionsWithBadCFGs;
    }
  }
}

void clang::sema::AnalysisBasedWarnings::PrintStats() const {
  llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";

  unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
  unsigned AvgCFGBlocksPerFunction =
      !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
  llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
               << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
               << "  " << NumCFGBlocks << " CFG blocks built.\n"
               << "  " << AvgCFGBlocksPerFunction
               << " average CFG blocks per function.\n"
               << "  " << MaxCFGBlocksPerFunction
               << " max CFG blocks per function.\n";

  unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
      : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
  unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
      : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
  llvm::errs() << NumUninitAnalysisFunctions
               << " functions analyzed for uninitialiazed variables\n"
               << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
               << "  " << AvgUninitVariablesPerFunction
               << " average variables per function.\n"
               << "  " << MaxUninitAnalysisVariablesPerFunction
               << " max variables per function.\n"
               << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
               << "  " << AvgUninitBlockVisitsPerFunction
               << " average block visits per function.\n"
               << "  " << MaxUninitAnalysisBlockVisitsPerFunction
               << " max block visits per function.\n";
}