aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang14/lib/CodeGen/CGExprConstant.cpp
blob: ac4b4d1308ab664d7fd983d5198a74653a589e6f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Constant Expr nodes as LLVM code.
//
//===----------------------------------------------------------------------===//

#include "CGCXXABI.h"
#include "CGObjCRuntime.h"
#include "CGRecordLayout.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "ConstantEmitter.h"
#include "TargetInfo.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Builtins.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
using namespace clang;
using namespace CodeGen;

//===----------------------------------------------------------------------===//
//                            ConstantAggregateBuilder
//===----------------------------------------------------------------------===//

namespace {
class ConstExprEmitter;

struct ConstantAggregateBuilderUtils {
  CodeGenModule &CGM;

  ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}

  CharUnits getAlignment(const llvm::Constant *C) const {
    return CharUnits::fromQuantity(
        CGM.getDataLayout().getABITypeAlignment(C->getType()));
  }

  CharUnits getSize(llvm::Type *Ty) const {
    return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
  }

  CharUnits getSize(const llvm::Constant *C) const {
    return getSize(C->getType());
  }

  llvm::Constant *getPadding(CharUnits PadSize) const {
    llvm::Type *Ty = CGM.CharTy;
    if (PadSize > CharUnits::One())
      Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
    return llvm::UndefValue::get(Ty);
  }

  llvm::Constant *getZeroes(CharUnits ZeroSize) const {
    llvm::Type *Ty = llvm::ArrayType::get(CGM.CharTy, ZeroSize.getQuantity());
    return llvm::ConstantAggregateZero::get(Ty);
  }
};

/// Incremental builder for an llvm::Constant* holding a struct or array
/// constant.
class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
  /// The elements of the constant. These two arrays must have the same size;
  /// Offsets[i] describes the offset of Elems[i] within the constant. The
  /// elements are kept in increasing offset order, and we ensure that there
  /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
  ///
  /// This may contain explicit padding elements (in order to create a
  /// natural layout), but need not. Gaps between elements are implicitly
  /// considered to be filled with undef.
  llvm::SmallVector<llvm::Constant*, 32> Elems;
  llvm::SmallVector<CharUnits, 32> Offsets;

  /// The size of the constant (the maximum end offset of any added element).
  /// May be larger than the end of Elems.back() if we split the last element
  /// and removed some trailing undefs.
  CharUnits Size = CharUnits::Zero();

  /// This is true only if laying out Elems in order as the elements of a
  /// non-packed LLVM struct will give the correct layout.
  bool NaturalLayout = true;

  bool split(size_t Index, CharUnits Hint);
  Optional<size_t> splitAt(CharUnits Pos);

  static llvm::Constant *buildFrom(CodeGenModule &CGM,
                                   ArrayRef<llvm::Constant *> Elems,
                                   ArrayRef<CharUnits> Offsets,
                                   CharUnits StartOffset, CharUnits Size,
                                   bool NaturalLayout, llvm::Type *DesiredTy,
                                   bool AllowOversized);

public:
  ConstantAggregateBuilder(CodeGenModule &CGM)
      : ConstantAggregateBuilderUtils(CGM) {}

  /// Update or overwrite the value starting at \p Offset with \c C.
  ///
  /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
  ///        a constant that has already been added. This flag is only used to
  ///        detect bugs.
  bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);

  /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
  bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);

  /// Attempt to condense the value starting at \p Offset to a constant of type
  /// \p DesiredTy.
  void condense(CharUnits Offset, llvm::Type *DesiredTy);

  /// Produce a constant representing the entire accumulated value, ideally of
  /// the specified type. If \p AllowOversized, the constant might be larger
  /// than implied by \p DesiredTy (eg, if there is a flexible array member).
  /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
  /// even if we can't represent it as that type.
  llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
    return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
                     NaturalLayout, DesiredTy, AllowOversized);
  }
};

template<typename Container, typename Range = std::initializer_list<
                                 typename Container::value_type>>
static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
  assert(BeginOff <= EndOff && "invalid replacement range");
  llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
}

bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
                          bool AllowOverwrite) {
  // Common case: appending to a layout.
  if (Offset >= Size) {
    CharUnits Align = getAlignment(C);
    CharUnits AlignedSize = Size.alignTo(Align);
    if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
      NaturalLayout = false;
    else if (AlignedSize < Offset) {
      Elems.push_back(getPadding(Offset - Size));
      Offsets.push_back(Size);
    }
    Elems.push_back(C);
    Offsets.push_back(Offset);
    Size = Offset + getSize(C);
    return true;
  }

  // Uncommon case: constant overlaps what we've already created.
  llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
  if (!FirstElemToReplace)
    return false;

  CharUnits CSize = getSize(C);
  llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
  if (!LastElemToReplace)
    return false;

  assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
         "unexpectedly overwriting field");

  replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
  replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
  Size = std::max(Size, Offset + CSize);
  NaturalLayout = false;
  return true;
}

bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
                              bool AllowOverwrite) {
  const ASTContext &Context = CGM.getContext();
  const uint64_t CharWidth = CGM.getContext().getCharWidth();

  // Offset of where we want the first bit to go within the bits of the
  // current char.
  unsigned OffsetWithinChar = OffsetInBits % CharWidth;

  // We split bit-fields up into individual bytes. Walk over the bytes and
  // update them.
  for (CharUnits OffsetInChars =
           Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
       /**/; ++OffsetInChars) {
    // Number of bits we want to fill in this char.
    unsigned WantedBits =
        std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);

    // Get a char containing the bits we want in the right places. The other
    // bits have unspecified values.
    llvm::APInt BitsThisChar = Bits;
    if (BitsThisChar.getBitWidth() < CharWidth)
      BitsThisChar = BitsThisChar.zext(CharWidth);
    if (CGM.getDataLayout().isBigEndian()) {
      // Figure out how much to shift by. We may need to left-shift if we have
      // less than one byte of Bits left.
      int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
      if (Shift > 0)
        BitsThisChar.lshrInPlace(Shift);
      else if (Shift < 0)
        BitsThisChar = BitsThisChar.shl(-Shift);
    } else {
      BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
    }
    if (BitsThisChar.getBitWidth() > CharWidth)
      BitsThisChar = BitsThisChar.trunc(CharWidth);

    if (WantedBits == CharWidth) {
      // Got a full byte: just add it directly.
      add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
          OffsetInChars, AllowOverwrite);
    } else {
      // Partial byte: update the existing integer if there is one. If we
      // can't split out a 1-CharUnit range to update, then we can't add
      // these bits and fail the entire constant emission.
      llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
      if (!FirstElemToUpdate)
        return false;
      llvm::Optional<size_t> LastElemToUpdate =
          splitAt(OffsetInChars + CharUnits::One());
      if (!LastElemToUpdate)
        return false;
      assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
             "should have at most one element covering one byte");

      // Figure out which bits we want and discard the rest.
      llvm::APInt UpdateMask(CharWidth, 0);
      if (CGM.getDataLayout().isBigEndian())
        UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
                           CharWidth - OffsetWithinChar);
      else
        UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
      BitsThisChar &= UpdateMask;

      if (*FirstElemToUpdate == *LastElemToUpdate ||
          Elems[*FirstElemToUpdate]->isNullValue() ||
          isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
        // All existing bits are either zero or undef.
        add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
            OffsetInChars, /*AllowOverwrite*/ true);
      } else {
        llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
        // In order to perform a partial update, we need the existing bitwise
        // value, which we can only extract for a constant int.
        auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
        if (!CI)
          return false;
        // Because this is a 1-CharUnit range, the constant occupying it must
        // be exactly one CharUnit wide.
        assert(CI->getBitWidth() == CharWidth && "splitAt failed");
        assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
               "unexpectedly overwriting bitfield");
        BitsThisChar |= (CI->getValue() & ~UpdateMask);
        ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
      }
    }

    // Stop if we've added all the bits.
    if (WantedBits == Bits.getBitWidth())
      break;

    // Remove the consumed bits from Bits.
    if (!CGM.getDataLayout().isBigEndian())
      Bits.lshrInPlace(WantedBits);
    Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);

    // The remanining bits go at the start of the following bytes.
    OffsetWithinChar = 0;
  }

  return true;
}

/// Returns a position within Elems and Offsets such that all elements
/// before the returned index end before Pos and all elements at or after
/// the returned index begin at or after Pos. Splits elements as necessary
/// to ensure this. Returns None if we find something we can't split.
Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
  if (Pos >= Size)
    return Offsets.size();

  while (true) {
    auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
    if (FirstAfterPos == Offsets.begin())
      return 0;

    // If we already have an element starting at Pos, we're done.
    size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
    if (Offsets[LastAtOrBeforePosIndex] == Pos)
      return LastAtOrBeforePosIndex;

    // We found an element starting before Pos. Check for overlap.
    if (Offsets[LastAtOrBeforePosIndex] +
        getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
      return LastAtOrBeforePosIndex + 1;

    // Try to decompose it into smaller constants.
    if (!split(LastAtOrBeforePosIndex, Pos))
      return None;
  }
}

/// Split the constant at index Index, if possible. Return true if we did.
/// Hint indicates the location at which we'd like to split, but may be
/// ignored.
bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
  NaturalLayout = false;
  llvm::Constant *C = Elems[Index];
  CharUnits Offset = Offsets[Index];

  if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
    // Expand the sequence into its contained elements.
    // FIXME: This assumes vector elements are byte-sized.
    replace(Elems, Index, Index + 1,
            llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
                            [&](unsigned Op) { return CA->getOperand(Op); }));
    if (isa<llvm::ArrayType>(CA->getType()) ||
        isa<llvm::VectorType>(CA->getType())) {
      // Array or vector.
      llvm::Type *ElemTy =
          llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0);
      CharUnits ElemSize = getSize(ElemTy);
      replace(
          Offsets, Index, Index + 1,
          llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
                          [&](unsigned Op) { return Offset + Op * ElemSize; }));
    } else {
      // Must be a struct.
      auto *ST = cast<llvm::StructType>(CA->getType());
      const llvm::StructLayout *Layout =
          CGM.getDataLayout().getStructLayout(ST);
      replace(Offsets, Index, Index + 1,
              llvm::map_range(
                  llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
                    return Offset + CharUnits::fromQuantity(
                                        Layout->getElementOffset(Op));
                  }));
    }
    return true;
  }

  if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
    // Expand the sequence into its contained elements.
    // FIXME: This assumes vector elements are byte-sized.
    // FIXME: If possible, split into two ConstantDataSequentials at Hint.
    CharUnits ElemSize = getSize(CDS->getElementType());
    replace(Elems, Index, Index + 1,
            llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
                            [&](unsigned Elem) {
                              return CDS->getElementAsConstant(Elem);
                            }));
    replace(Offsets, Index, Index + 1,
            llvm::map_range(
                llvm::seq(0u, CDS->getNumElements()),
                [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
    return true;
  }

  if (isa<llvm::ConstantAggregateZero>(C)) {
    // Split into two zeros at the hinted offset.
    CharUnits ElemSize = getSize(C);
    assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
    replace(Elems, Index, Index + 1,
            {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
    replace(Offsets, Index, Index + 1, {Offset, Hint});
    return true;
  }

  if (isa<llvm::UndefValue>(C)) {
    // Drop undef; it doesn't contribute to the final layout.
    replace(Elems, Index, Index + 1, {});
    replace(Offsets, Index, Index + 1, {});
    return true;
  }

  // FIXME: We could split a ConstantInt if the need ever arose.
  // We don't need to do this to handle bit-fields because we always eagerly
  // split them into 1-byte chunks.

  return false;
}

static llvm::Constant *
EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
                  llvm::Type *CommonElementType, unsigned ArrayBound,
                  SmallVectorImpl<llvm::Constant *> &Elements,
                  llvm::Constant *Filler);

llvm::Constant *ConstantAggregateBuilder::buildFrom(
    CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
    ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
    bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
  ConstantAggregateBuilderUtils Utils(CGM);

  if (Elems.empty())
    return llvm::UndefValue::get(DesiredTy);

  auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };

  // If we want an array type, see if all the elements are the same type and
  // appropriately spaced.
  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
    assert(!AllowOversized && "oversized array emission not supported");

    bool CanEmitArray = true;
    llvm::Type *CommonType = Elems[0]->getType();
    llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
    CharUnits ElemSize = Utils.getSize(ATy->getElementType());
    SmallVector<llvm::Constant*, 32> ArrayElements;
    for (size_t I = 0; I != Elems.size(); ++I) {
      // Skip zeroes; we'll use a zero value as our array filler.
      if (Elems[I]->isNullValue())
        continue;

      // All remaining elements must be the same type.
      if (Elems[I]->getType() != CommonType ||
          Offset(I) % ElemSize != 0) {
        CanEmitArray = false;
        break;
      }
      ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
      ArrayElements.back() = Elems[I];
    }

    if (CanEmitArray) {
      return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
                               ArrayElements, Filler);
    }

    // Can't emit as an array, carry on to emit as a struct.
  }

  CharUnits DesiredSize = Utils.getSize(DesiredTy);
  CharUnits Align = CharUnits::One();
  for (llvm::Constant *C : Elems)
    Align = std::max(Align, Utils.getAlignment(C));
  CharUnits AlignedSize = Size.alignTo(Align);

  bool Packed = false;
  ArrayRef<llvm::Constant*> UnpackedElems = Elems;
  llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
  if ((DesiredSize < AlignedSize && !AllowOversized) ||
      DesiredSize.alignTo(Align) != DesiredSize) {
    // The natural layout would be the wrong size; force use of a packed layout.
    NaturalLayout = false;
    Packed = true;
  } else if (DesiredSize > AlignedSize) {
    // The constant would be too small. Add padding to fix it.
    UnpackedElemStorage.assign(Elems.begin(), Elems.end());
    UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
    UnpackedElems = UnpackedElemStorage;
  }

  // If we don't have a natural layout, insert padding as necessary.
  // As we go, double-check to see if we can actually just emit Elems
  // as a non-packed struct and do so opportunistically if possible.
  llvm::SmallVector<llvm::Constant*, 32> PackedElems;
  if (!NaturalLayout) {
    CharUnits SizeSoFar = CharUnits::Zero();
    for (size_t I = 0; I != Elems.size(); ++I) {
      CharUnits Align = Utils.getAlignment(Elems[I]);
      CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
      CharUnits DesiredOffset = Offset(I);
      assert(DesiredOffset >= SizeSoFar && "elements out of order");

      if (DesiredOffset != NaturalOffset)
        Packed = true;
      if (DesiredOffset != SizeSoFar)
        PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
      PackedElems.push_back(Elems[I]);
      SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
    }
    // If we're using the packed layout, pad it out to the desired size if
    // necessary.
    if (Packed) {
      assert((SizeSoFar <= DesiredSize || AllowOversized) &&
             "requested size is too small for contents");
      if (SizeSoFar < DesiredSize)
        PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
    }
  }

  llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
      CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);

  // Pick the type to use.  If the type is layout identical to the desired
  // type then use it, otherwise use whatever the builder produced for us.
  if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
    if (DesiredSTy->isLayoutIdentical(STy))
      STy = DesiredSTy;
  }

  return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
}

void ConstantAggregateBuilder::condense(CharUnits Offset,
                                        llvm::Type *DesiredTy) {
  CharUnits Size = getSize(DesiredTy);

  llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
  if (!FirstElemToReplace)
    return;
  size_t First = *FirstElemToReplace;

  llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size);
  if (!LastElemToReplace)
    return;
  size_t Last = *LastElemToReplace;

  size_t Length = Last - First;
  if (Length == 0)
    return;

  if (Length == 1 && Offsets[First] == Offset &&
      getSize(Elems[First]) == Size) {
    // Re-wrap single element structs if necessary. Otherwise, leave any single
    // element constant of the right size alone even if it has the wrong type.
    auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
    if (STy && STy->getNumElements() == 1 &&
        STy->getElementType(0) == Elems[First]->getType())
      Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
    return;
  }

  llvm::Constant *Replacement = buildFrom(
      CGM, makeArrayRef(Elems).slice(First, Length),
      makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
      /*known to have natural layout=*/false, DesiredTy, false);
  replace(Elems, First, Last, {Replacement});
  replace(Offsets, First, Last, {Offset});
}

//===----------------------------------------------------------------------===//
//                            ConstStructBuilder
//===----------------------------------------------------------------------===//

class ConstStructBuilder {
  CodeGenModule &CGM;
  ConstantEmitter &Emitter;
  ConstantAggregateBuilder &Builder;
  CharUnits StartOffset;

public:
  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
                                     InitListExpr *ILE, QualType StructTy);
  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
                                     const APValue &Value, QualType ValTy);
  static bool UpdateStruct(ConstantEmitter &Emitter,
                           ConstantAggregateBuilder &Const, CharUnits Offset,
                           InitListExpr *Updater);

private:
  ConstStructBuilder(ConstantEmitter &Emitter,
                     ConstantAggregateBuilder &Builder, CharUnits StartOffset)
      : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
        StartOffset(StartOffset) {}

  bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
                   llvm::Constant *InitExpr, bool AllowOverwrite = false);

  bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
                   bool AllowOverwrite = false);

  bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
                      llvm::ConstantInt *InitExpr, bool AllowOverwrite = false);

  bool Build(InitListExpr *ILE, bool AllowOverwrite);
  bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
             const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
  llvm::Constant *Finalize(QualType Ty);
};

bool ConstStructBuilder::AppendField(
    const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
    bool AllowOverwrite) {
  const ASTContext &Context = CGM.getContext();

  CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);

  return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
}

bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
                                     llvm::Constant *InitCst,
                                     bool AllowOverwrite) {
  return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
}

bool ConstStructBuilder::AppendBitField(
    const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI,
    bool AllowOverwrite) {
  const CGRecordLayout &RL =
      CGM.getTypes().getCGRecordLayout(Field->getParent());
  const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
  llvm::APInt FieldValue = CI->getValue();

  // Promote the size of FieldValue if necessary
  // FIXME: This should never occur, but currently it can because initializer
  // constants are cast to bool, and because clang is not enforcing bitfield
  // width limits.
  if (Info.Size > FieldValue.getBitWidth())
    FieldValue = FieldValue.zext(Info.Size);

  // Truncate the size of FieldValue to the bit field size.
  if (Info.Size < FieldValue.getBitWidth())
    FieldValue = FieldValue.trunc(Info.Size);

  return Builder.addBits(FieldValue,
                         CGM.getContext().toBits(StartOffset) + FieldOffset,
                         AllowOverwrite);
}

static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
                                      ConstantAggregateBuilder &Const,
                                      CharUnits Offset, QualType Type,
                                      InitListExpr *Updater) {
  if (Type->isRecordType())
    return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);

  auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
  if (!CAT)
    return false;
  QualType ElemType = CAT->getElementType();
  CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
  llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);

  llvm::Constant *FillC = nullptr;
  if (Expr *Filler = Updater->getArrayFiller()) {
    if (!isa<NoInitExpr>(Filler)) {
      FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
      if (!FillC)
        return false;
    }
  }

  unsigned NumElementsToUpdate =
      FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits();
  for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
    Expr *Init = nullptr;
    if (I < Updater->getNumInits())
      Init = Updater->getInit(I);

    if (!Init && FillC) {
      if (!Const.add(FillC, Offset, true))
        return false;
    } else if (!Init || isa<NoInitExpr>(Init)) {
      continue;
    } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) {
      if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
                                     ChildILE))
        return false;
      // Attempt to reduce the array element to a single constant if necessary.
      Const.condense(Offset, ElemTy);
    } else {
      llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
      if (!Const.add(Val, Offset, true))
        return false;
    }
  }

  return true;
}

bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) {
  RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);

  unsigned FieldNo = -1;
  unsigned ElementNo = 0;

  // Bail out if we have base classes. We could support these, but they only
  // arise in C++1z where we will have already constant folded most interesting
  // cases. FIXME: There are still a few more cases we can handle this way.
  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
    if (CXXRD->getNumBases())
      return false;

  for (FieldDecl *Field : RD->fields()) {
    ++FieldNo;

    // If this is a union, skip all the fields that aren't being initialized.
    if (RD->isUnion() &&
        !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
      continue;

    // Don't emit anonymous bitfields or zero-sized fields.
    if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
      continue;

    // Get the initializer.  A struct can include fields without initializers,
    // we just use explicit null values for them.
    Expr *Init = nullptr;
    if (ElementNo < ILE->getNumInits())
      Init = ILE->getInit(ElementNo++);
    if (Init && isa<NoInitExpr>(Init))
      continue;

    // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
    // represents additional overwriting of our current constant value, and not
    // a new constant to emit independently.
    if (AllowOverwrite &&
        (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
      if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
        CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
            Layout.getFieldOffset(FieldNo));
        if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
                                       Field->getType(), SubILE))
          return false;
        // If we split apart the field's value, try to collapse it down to a
        // single value now.
        Builder.condense(StartOffset + Offset,
                         CGM.getTypes().ConvertTypeForMem(Field->getType()));
        continue;
      }
    }

    llvm::Constant *EltInit =
        Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
             : Emitter.emitNullForMemory(Field->getType());
    if (!EltInit)
      return false;

    if (!Field->isBitField()) {
      // Handle non-bitfield members.
      if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
                       AllowOverwrite))
        return false;
      // After emitting a non-empty field with [[no_unique_address]], we may
      // need to overwrite its tail padding.
      if (Field->hasAttr<NoUniqueAddressAttr>())
        AllowOverwrite = true;
    } else {
      // Otherwise we have a bitfield.
      if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
        if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI,
                            AllowOverwrite))
          return false;
      } else {
        // We are trying to initialize a bitfield with a non-trivial constant,
        // this must require run-time code.
        return false;
      }
    }
  }

  return true;
}

namespace {
struct BaseInfo {
  BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
    : Decl(Decl), Offset(Offset), Index(Index) {
  }

  const CXXRecordDecl *Decl;
  CharUnits Offset;
  unsigned Index;

  bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
};
}

bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
                               bool IsPrimaryBase,
                               const CXXRecordDecl *VTableClass,
                               CharUnits Offset) {
  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);

  if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
    // Add a vtable pointer, if we need one and it hasn't already been added.
    if (Layout.hasOwnVFPtr()) {
      llvm::Constant *VTableAddressPoint =
          CGM.getCXXABI().getVTableAddressPointForConstExpr(
              BaseSubobject(CD, Offset), VTableClass);
      if (!AppendBytes(Offset, VTableAddressPoint))
        return false;
    }

    // Accumulate and sort bases, in order to visit them in address order, which
    // may not be the same as declaration order.
    SmallVector<BaseInfo, 8> Bases;
    Bases.reserve(CD->getNumBases());
    unsigned BaseNo = 0;
    for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
         BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
      assert(!Base->isVirtual() && "should not have virtual bases here");
      const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
      CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
      Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
    }
    llvm::stable_sort(Bases);

    for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
      BaseInfo &Base = Bases[I];

      bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
      Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
            VTableClass, Offset + Base.Offset);
    }
  }

  unsigned FieldNo = 0;
  uint64_t OffsetBits = CGM.getContext().toBits(Offset);

  bool AllowOverwrite = false;
  for (RecordDecl::field_iterator Field = RD->field_begin(),
       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
    // If this is a union, skip all the fields that aren't being initialized.
    if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
      continue;

    // Don't emit anonymous bitfields or zero-sized fields.
    if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
      continue;

    // Emit the value of the initializer.
    const APValue &FieldValue =
      RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
    llvm::Constant *EltInit =
      Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
    if (!EltInit)
      return false;

    if (!Field->isBitField()) {
      // Handle non-bitfield members.
      if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
                       EltInit, AllowOverwrite))
        return false;
      // After emitting a non-empty field with [[no_unique_address]], we may
      // need to overwrite its tail padding.
      if (Field->hasAttr<NoUniqueAddressAttr>())
        AllowOverwrite = true;
    } else {
      // Otherwise we have a bitfield.
      if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
                          cast<llvm::ConstantInt>(EltInit), AllowOverwrite))
        return false;
    }
  }

  return true;
}

llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
  Type = Type.getNonReferenceType();
  RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
  llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
  return Builder.build(ValTy, RD->hasFlexibleArrayMember());
}

llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
                                                InitListExpr *ILE,
                                                QualType ValTy) {
  ConstantAggregateBuilder Const(Emitter.CGM);
  ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());

  if (!Builder.Build(ILE, /*AllowOverwrite*/false))
    return nullptr;

  return Builder.Finalize(ValTy);
}

llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
                                                const APValue &Val,
                                                QualType ValTy) {
  ConstantAggregateBuilder Const(Emitter.CGM);
  ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());

  const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
  if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
    return nullptr;

  return Builder.Finalize(ValTy);
}

bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
                                      ConstantAggregateBuilder &Const,
                                      CharUnits Offset, InitListExpr *Updater) {
  return ConstStructBuilder(Emitter, Const, Offset)
      .Build(Updater, /*AllowOverwrite*/ true);
}

//===----------------------------------------------------------------------===//
//                             ConstExprEmitter
//===----------------------------------------------------------------------===//

static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM,
                                                    CodeGenFunction *CGF,
                                              const CompoundLiteralExpr *E) {
  CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
  if (llvm::GlobalVariable *Addr =
          CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
    return ConstantAddress(Addr, Addr->getValueType(), Align);

  LangAS addressSpace = E->getType().getAddressSpace();

  ConstantEmitter emitter(CGM, CGF);
  llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
                                                    addressSpace, E->getType());
  if (!C) {
    assert(!E->isFileScope() &&
           "file-scope compound literal did not have constant initializer!");
    return ConstantAddress::invalid();
  }

  auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
                                     CGM.isTypeConstant(E->getType(), true),
                                     llvm::GlobalValue::InternalLinkage,
                                     C, ".compoundliteral", nullptr,
                                     llvm::GlobalVariable::NotThreadLocal,
                    CGM.getContext().getTargetAddressSpace(addressSpace));
  emitter.finalize(GV);
  GV->setAlignment(Align.getAsAlign());
  CGM.setAddrOfConstantCompoundLiteral(E, GV);
  return ConstantAddress(GV, GV->getValueType(), Align);
}

static llvm::Constant *
EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
                  llvm::Type *CommonElementType, unsigned ArrayBound,
                  SmallVectorImpl<llvm::Constant *> &Elements,
                  llvm::Constant *Filler) {
  // Figure out how long the initial prefix of non-zero elements is.
  unsigned NonzeroLength = ArrayBound;
  if (Elements.size() < NonzeroLength && Filler->isNullValue())
    NonzeroLength = Elements.size();
  if (NonzeroLength == Elements.size()) {
    while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
      --NonzeroLength;
  }

  if (NonzeroLength == 0)
    return llvm::ConstantAggregateZero::get(DesiredType);

  // Add a zeroinitializer array filler if we have lots of trailing zeroes.
  unsigned TrailingZeroes = ArrayBound - NonzeroLength;
  if (TrailingZeroes >= 8) {
    assert(Elements.size() >= NonzeroLength &&
           "missing initializer for non-zero element");

    // If all the elements had the same type up to the trailing zeroes, emit a
    // struct of two arrays (the nonzero data and the zeroinitializer).
    if (CommonElementType && NonzeroLength >= 8) {
      llvm::Constant *Initial = llvm::ConstantArray::get(
          llvm::ArrayType::get(CommonElementType, NonzeroLength),
          makeArrayRef(Elements).take_front(NonzeroLength));
      Elements.resize(2);
      Elements[0] = Initial;
    } else {
      Elements.resize(NonzeroLength + 1);
    }

    auto *FillerType =
        CommonElementType ? CommonElementType : DesiredType->getElementType();
    FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
    Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
    CommonElementType = nullptr;
  } else if (Elements.size() != ArrayBound) {
    // Otherwise pad to the right size with the filler if necessary.
    Elements.resize(ArrayBound, Filler);
    if (Filler->getType() != CommonElementType)
      CommonElementType = nullptr;
  }

  // If all elements have the same type, just emit an array constant.
  if (CommonElementType)
    return llvm::ConstantArray::get(
        llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);

  // We have mixed types. Use a packed struct.
  llvm::SmallVector<llvm::Type *, 16> Types;
  Types.reserve(Elements.size());
  for (llvm::Constant *Elt : Elements)
    Types.push_back(Elt->getType());
  llvm::StructType *SType =
      llvm::StructType::get(CGM.getLLVMContext(), Types, true);
  return llvm::ConstantStruct::get(SType, Elements);
}

// This class only needs to handle arrays, structs and unions. Outside C++11
// mode, we don't currently constant fold those types.  All other types are
// handled by constant folding.
//
// Constant folding is currently missing support for a few features supported
// here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
class ConstExprEmitter :
  public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
  CodeGenModule &CGM;
  ConstantEmitter &Emitter;
  llvm::LLVMContext &VMContext;
public:
  ConstExprEmitter(ConstantEmitter &emitter)
    : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
  }

  //===--------------------------------------------------------------------===//
  //                            Visitor Methods
  //===--------------------------------------------------------------------===//

  llvm::Constant *VisitStmt(Stmt *S, QualType T) {
    return nullptr;
  }

  llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) {
    if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE))
      return Result;
    return Visit(CE->getSubExpr(), T);
  }

  llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
    return Visit(PE->getSubExpr(), T);
  }

  llvm::Constant *
  VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
                                    QualType T) {
    return Visit(PE->getReplacement(), T);
  }

  llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
                                            QualType T) {
    return Visit(GE->getResultExpr(), T);
  }

  llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
    return Visit(CE->getChosenSubExpr(), T);
  }

  llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
    return Visit(E->getInitializer(), T);
  }

  llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
    if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
      CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
    Expr *subExpr = E->getSubExpr();

    switch (E->getCastKind()) {
    case CK_ToUnion: {
      // GCC cast to union extension
      assert(E->getType()->isUnionType() &&
             "Destination type is not union type!");

      auto field = E->getTargetUnionField();

      auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
      if (!C) return nullptr;

      auto destTy = ConvertType(destType);
      if (C->getType() == destTy) return C;

      // Build a struct with the union sub-element as the first member,
      // and padded to the appropriate size.
      SmallVector<llvm::Constant*, 2> Elts;
      SmallVector<llvm::Type*, 2> Types;
      Elts.push_back(C);
      Types.push_back(C->getType());
      unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
      unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);

      assert(CurSize <= TotalSize && "Union size mismatch!");
      if (unsigned NumPadBytes = TotalSize - CurSize) {
        llvm::Type *Ty = CGM.CharTy;
        if (NumPadBytes > 1)
          Ty = llvm::ArrayType::get(Ty, NumPadBytes);

        Elts.push_back(llvm::UndefValue::get(Ty));
        Types.push_back(Ty);
      }

      llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
      return llvm::ConstantStruct::get(STy, Elts);
    }

    case CK_AddressSpaceConversion: {
      auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
      if (!C) return nullptr;
      LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
      LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
      llvm::Type *destTy = ConvertType(E->getType());
      return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
                                                             destAS, destTy);
    }

    case CK_LValueToRValue:
    case CK_AtomicToNonAtomic:
    case CK_NonAtomicToAtomic:
    case CK_NoOp:
    case CK_ConstructorConversion:
      return Visit(subExpr, destType);

    case CK_IntToOCLSampler:
      llvm_unreachable("global sampler variables are not generated");

    case CK_Dependent: llvm_unreachable("saw dependent cast!");

    case CK_BuiltinFnToFnPtr:
      llvm_unreachable("builtin functions are handled elsewhere");

    case CK_ReinterpretMemberPointer:
    case CK_DerivedToBaseMemberPointer:
    case CK_BaseToDerivedMemberPointer: {
      auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
      if (!C) return nullptr;
      return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
    }

    // These will never be supported.
    case CK_ObjCObjectLValueCast:
    case CK_ARCProduceObject:
    case CK_ARCConsumeObject:
    case CK_ARCReclaimReturnedObject:
    case CK_ARCExtendBlockObject:
    case CK_CopyAndAutoreleaseBlockObject:
      return nullptr;

    // These don't need to be handled here because Evaluate knows how to
    // evaluate them in the cases where they can be folded.
    case CK_BitCast:
    case CK_ToVoid:
    case CK_Dynamic:
    case CK_LValueBitCast:
    case CK_LValueToRValueBitCast:
    case CK_NullToMemberPointer:
    case CK_UserDefinedConversion:
    case CK_CPointerToObjCPointerCast:
    case CK_BlockPointerToObjCPointerCast:
    case CK_AnyPointerToBlockPointerCast:
    case CK_ArrayToPointerDecay:
    case CK_FunctionToPointerDecay:
    case CK_BaseToDerived:
    case CK_DerivedToBase:
    case CK_UncheckedDerivedToBase:
    case CK_MemberPointerToBoolean:
    case CK_VectorSplat:
    case CK_FloatingRealToComplex:
    case CK_FloatingComplexToReal:
    case CK_FloatingComplexToBoolean:
    case CK_FloatingComplexCast:
    case CK_FloatingComplexToIntegralComplex:
    case CK_IntegralRealToComplex:
    case CK_IntegralComplexToReal:
    case CK_IntegralComplexToBoolean:
    case CK_IntegralComplexCast:
    case CK_IntegralComplexToFloatingComplex:
    case CK_PointerToIntegral:
    case CK_PointerToBoolean:
    case CK_NullToPointer:
    case CK_IntegralCast:
    case CK_BooleanToSignedIntegral:
    case CK_IntegralToPointer:
    case CK_IntegralToBoolean:
    case CK_IntegralToFloating:
    case CK_FloatingToIntegral:
    case CK_FloatingToBoolean:
    case CK_FloatingCast:
    case CK_FloatingToFixedPoint:
    case CK_FixedPointToFloating:
    case CK_FixedPointCast:
    case CK_FixedPointToBoolean:
    case CK_FixedPointToIntegral:
    case CK_IntegralToFixedPoint:
    case CK_ZeroToOCLOpaqueType:
    case CK_MatrixCast:
      return nullptr;
    }
    llvm_unreachable("Invalid CastKind");
  }

  llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
    // No need for a DefaultInitExprScope: we don't handle 'this' in a
    // constant expression.
    return Visit(DIE->getExpr(), T);
  }

  llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
    return Visit(E->getSubExpr(), T);
  }

  llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E,
                                                QualType T) {
    return Visit(E->getSubExpr(), T);
  }

  llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
    auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
    assert(CAT && "can't emit array init for non-constant-bound array");
    unsigned NumInitElements = ILE->getNumInits();
    unsigned NumElements = CAT->getSize().getZExtValue();

    // Initialising an array requires us to automatically
    // initialise any elements that have not been initialised explicitly
    unsigned NumInitableElts = std::min(NumInitElements, NumElements);

    QualType EltType = CAT->getElementType();

    // Initialize remaining array elements.
    llvm::Constant *fillC = nullptr;
    if (Expr *filler = ILE->getArrayFiller()) {
      fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
      if (!fillC)
        return nullptr;
    }

    // Copy initializer elements.
    SmallVector<llvm::Constant*, 16> Elts;
    if (fillC && fillC->isNullValue())
      Elts.reserve(NumInitableElts + 1);
    else
      Elts.reserve(NumElements);

    llvm::Type *CommonElementType = nullptr;
    for (unsigned i = 0; i < NumInitableElts; ++i) {
      Expr *Init = ILE->getInit(i);
      llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
      if (!C)
        return nullptr;
      if (i == 0)
        CommonElementType = C->getType();
      else if (C->getType() != CommonElementType)
        CommonElementType = nullptr;
      Elts.push_back(C);
    }

    llvm::ArrayType *Desired =
        cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
    return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
                             fillC);
  }

  llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
    return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
  }

  llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
                                             QualType T) {
    return CGM.EmitNullConstant(T);
  }

  llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
    if (ILE->isTransparent())
      return Visit(ILE->getInit(0), T);

    if (ILE->getType()->isArrayType())
      return EmitArrayInitialization(ILE, T);

    if (ILE->getType()->isRecordType())
      return EmitRecordInitialization(ILE, T);

    return nullptr;
  }

  llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
                                                QualType destType) {
    auto C = Visit(E->getBase(), destType);
    if (!C)
      return nullptr;

    ConstantAggregateBuilder Const(CGM);
    Const.add(C, CharUnits::Zero(), false);

    if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
                                   E->getUpdater()))
      return nullptr;

    llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
    bool HasFlexibleArray = false;
    if (auto *RT = destType->getAs<RecordType>())
      HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
    return Const.build(ValTy, HasFlexibleArray);
  }

  llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
    if (!E->getConstructor()->isTrivial())
      return nullptr;

    // Only default and copy/move constructors can be trivial.
    if (E->getNumArgs()) {
      assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
      assert(E->getConstructor()->isCopyOrMoveConstructor() &&
             "trivial ctor has argument but isn't a copy/move ctor");

      Expr *Arg = E->getArg(0);
      assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
             "argument to copy ctor is of wrong type");

      return Visit(Arg, Ty);
    }

    return CGM.EmitNullConstant(Ty);
  }

  llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
    // This is a string literal initializing an array in an initializer.
    return CGM.GetConstantArrayFromStringLiteral(E);
  }

  llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
    // This must be an @encode initializing an array in a static initializer.
    // Don't emit it as the address of the string, emit the string data itself
    // as an inline array.
    std::string Str;
    CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
    const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);

    // Resize the string to the right size, adding zeros at the end, or
    // truncating as needed.
    Str.resize(CAT->getSize().getZExtValue(), '\0');
    return llvm::ConstantDataArray::getString(VMContext, Str, false);
  }

  llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
    return Visit(E->getSubExpr(), T);
  }

  // Utility methods
  llvm::Type *ConvertType(QualType T) {
    return CGM.getTypes().ConvertType(T);
  }
};

}  // end anonymous namespace.

llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
                                                        AbstractState saved) {
  Abstract = saved.OldValue;

  assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
         "created a placeholder while doing an abstract emission?");

  // No validation necessary for now.
  // No cleanup to do for now.
  return C;
}

llvm::Constant *
ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
  auto state = pushAbstract();
  auto C = tryEmitPrivateForVarInit(D);
  return validateAndPopAbstract(C, state);
}

llvm::Constant *
ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
  auto state = pushAbstract();
  auto C = tryEmitPrivate(E, destType);
  return validateAndPopAbstract(C, state);
}

llvm::Constant *
ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
  auto state = pushAbstract();
  auto C = tryEmitPrivate(value, destType);
  return validateAndPopAbstract(C, state);
}

llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) {
  if (!CE->hasAPValueResult())
    return nullptr;
  const Expr *Inner = CE->getSubExpr()->IgnoreImplicit();
  QualType RetType;
  if (auto *Call = dyn_cast<CallExpr>(Inner))
    RetType = Call->getCallReturnType(CGM.getContext());
  else if (auto *Ctor = dyn_cast<CXXConstructExpr>(Inner))
    RetType = Ctor->getType();
  llvm::Constant *Res =
      emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), RetType);
  return Res;
}

llvm::Constant *
ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
  auto state = pushAbstract();
  auto C = tryEmitPrivate(E, destType);
  C = validateAndPopAbstract(C, state);
  if (!C) {
    CGM.Error(E->getExprLoc(),
              "internal error: could not emit constant value \"abstractly\"");
    C = CGM.EmitNullConstant(destType);
  }
  return C;
}

llvm::Constant *
ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
                              QualType destType) {
  auto state = pushAbstract();
  auto C = tryEmitPrivate(value, destType);
  C = validateAndPopAbstract(C, state);
  if (!C) {
    CGM.Error(loc,
              "internal error: could not emit constant value \"abstractly\"");
    C = CGM.EmitNullConstant(destType);
  }
  return C;
}

llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
  initializeNonAbstract(D.getType().getAddressSpace());
  return markIfFailed(tryEmitPrivateForVarInit(D));
}

llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
                                                       LangAS destAddrSpace,
                                                       QualType destType) {
  initializeNonAbstract(destAddrSpace);
  return markIfFailed(tryEmitPrivateForMemory(E, destType));
}

llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
                                                    LangAS destAddrSpace,
                                                    QualType destType) {
  initializeNonAbstract(destAddrSpace);
  auto C = tryEmitPrivateForMemory(value, destType);
  assert(C && "couldn't emit constant value non-abstractly?");
  return C;
}

llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
  assert(!Abstract && "cannot get current address for abstract constant");



  // Make an obviously ill-formed global that should blow up compilation
  // if it survives.
  auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
                                         llvm::GlobalValue::PrivateLinkage,
                                         /*init*/ nullptr,
                                         /*name*/ "",
                                         /*before*/ nullptr,
                                         llvm::GlobalVariable::NotThreadLocal,
                                         CGM.getContext().getTargetAddressSpace(DestAddressSpace));

  PlaceholderAddresses.push_back(std::make_pair(nullptr, global));

  return global;
}

void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
                                           llvm::GlobalValue *placeholder) {
  assert(!PlaceholderAddresses.empty());
  assert(PlaceholderAddresses.back().first == nullptr);
  assert(PlaceholderAddresses.back().second == placeholder);
  PlaceholderAddresses.back().first = signal;
}

namespace {
  struct ReplacePlaceholders {
    CodeGenModule &CGM;

    /// The base address of the global.
    llvm::Constant *Base;
    llvm::Type *BaseValueTy = nullptr;

    /// The placeholder addresses that were registered during emission.
    llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;

    /// The locations of the placeholder signals.
    llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;

    /// The current index stack.  We use a simple unsigned stack because
    /// we assume that placeholders will be relatively sparse in the
    /// initializer, but we cache the index values we find just in case.
    llvm::SmallVector<unsigned, 8> Indices;
    llvm::SmallVector<llvm::Constant*, 8> IndexValues;

    ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
                        ArrayRef<std::pair<llvm::Constant*,
                                           llvm::GlobalVariable*>> addresses)
        : CGM(CGM), Base(base),
          PlaceholderAddresses(addresses.begin(), addresses.end()) {
    }

    void replaceInInitializer(llvm::Constant *init) {
      // Remember the type of the top-most initializer.
      BaseValueTy = init->getType();

      // Initialize the stack.
      Indices.push_back(0);
      IndexValues.push_back(nullptr);

      // Recurse into the initializer.
      findLocations(init);

      // Check invariants.
      assert(IndexValues.size() == Indices.size() && "mismatch");
      assert(Indices.size() == 1 && "didn't pop all indices");

      // Do the replacement; this basically invalidates 'init'.
      assert(Locations.size() == PlaceholderAddresses.size() &&
             "missed a placeholder?");

      // We're iterating over a hashtable, so this would be a source of
      // non-determinism in compiler output *except* that we're just
      // messing around with llvm::Constant structures, which never itself
      // does anything that should be visible in compiler output.
      for (auto &entry : Locations) {
        assert(entry.first->getParent() == nullptr && "not a placeholder!");
        entry.first->replaceAllUsesWith(entry.second);
        entry.first->eraseFromParent();
      }
    }

  private:
    void findLocations(llvm::Constant *init) {
      // Recurse into aggregates.
      if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
        for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
          Indices.push_back(i);
          IndexValues.push_back(nullptr);

          findLocations(agg->getOperand(i));

          IndexValues.pop_back();
          Indices.pop_back();
        }
        return;
      }

      // Otherwise, check for registered constants.
      while (true) {
        auto it = PlaceholderAddresses.find(init);
        if (it != PlaceholderAddresses.end()) {
          setLocation(it->second);
          break;
        }

        // Look through bitcasts or other expressions.
        if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
          init = expr->getOperand(0);
        } else {
          break;
        }
      }
    }

    void setLocation(llvm::GlobalVariable *placeholder) {
      assert(Locations.find(placeholder) == Locations.end() &&
             "already found location for placeholder!");

      // Lazily fill in IndexValues with the values from Indices.
      // We do this in reverse because we should always have a strict
      // prefix of indices from the start.
      assert(Indices.size() == IndexValues.size());
      for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
        if (IndexValues[i]) {
#ifndef NDEBUG
          for (size_t j = 0; j != i + 1; ++j) {
            assert(IndexValues[j] &&
                   isa<llvm::ConstantInt>(IndexValues[j]) &&
                   cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
                     == Indices[j]);
          }
#endif
          break;
        }

        IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
      }

      // Form a GEP and then bitcast to the placeholder type so that the
      // replacement will succeed.
      llvm::Constant *location =
        llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy,
                                                     Base, IndexValues);
      location = llvm::ConstantExpr::getBitCast(location,
                                                placeholder->getType());

      Locations.insert({placeholder, location});
    }
  };
}

void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
  assert(InitializedNonAbstract &&
         "finalizing emitter that was used for abstract emission?");
  assert(!Finalized && "finalizing emitter multiple times");
  assert(global->getInitializer());

  // Note that we might also be Failed.
  Finalized = true;

  if (!PlaceholderAddresses.empty()) {
    ReplacePlaceholders(CGM, global, PlaceholderAddresses)
      .replaceInInitializer(global->getInitializer());
    PlaceholderAddresses.clear(); // satisfy
  }
}

ConstantEmitter::~ConstantEmitter() {
  assert((!InitializedNonAbstract || Finalized || Failed) &&
         "not finalized after being initialized for non-abstract emission");
  assert(PlaceholderAddresses.empty() && "unhandled placeholders");
}

static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
  if (auto AT = type->getAs<AtomicType>()) {
    return CGM.getContext().getQualifiedType(AT->getValueType(),
                                             type.getQualifiers());
  }
  return type;
}

llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
  // Make a quick check if variable can be default NULL initialized
  // and avoid going through rest of code which may do, for c++11,
  // initialization of memory to all NULLs.
  if (!D.hasLocalStorage()) {
    QualType Ty = CGM.getContext().getBaseElementType(D.getType());
    if (Ty->isRecordType())
      if (const CXXConstructExpr *E =
          dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
        const CXXConstructorDecl *CD = E->getConstructor();
        if (CD->isTrivial() && CD->isDefaultConstructor())
          return CGM.EmitNullConstant(D.getType());
      }
  }
  InConstantContext = D.hasConstantInitialization();

  QualType destType = D.getType();

  // Try to emit the initializer.  Note that this can allow some things that
  // are not allowed by tryEmitPrivateForMemory alone.
  if (auto value = D.evaluateValue()) {
    return tryEmitPrivateForMemory(*value, destType);
  }

  // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
  // reference is a constant expression, and the reference binds to a temporary,
  // then constant initialization is performed. ConstExprEmitter will
  // incorrectly emit a prvalue constant in this case, and the calling code
  // interprets that as the (pointer) value of the reference, rather than the
  // desired value of the referee.
  if (destType->isReferenceType())
    return nullptr;

  const Expr *E = D.getInit();
  assert(E && "No initializer to emit");

  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
  auto C =
    ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType);
  return (C ? emitForMemory(C, destType) : nullptr);
}

llvm::Constant *
ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
  auto C = tryEmitAbstract(E, nonMemoryDestType);
  return (C ? emitForMemory(C, destType) : nullptr);
}

llvm::Constant *
ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
                                          QualType destType) {
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
  auto C = tryEmitAbstract(value, nonMemoryDestType);
  return (C ? emitForMemory(C, destType) : nullptr);
}

llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
                                                         QualType destType) {
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
  llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
  return (C ? emitForMemory(C, destType) : nullptr);
}

llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
                                                         QualType destType) {
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
  auto C = tryEmitPrivate(value, nonMemoryDestType);
  return (C ? emitForMemory(C, destType) : nullptr);
}

llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
                                               llvm::Constant *C,
                                               QualType destType) {
  // For an _Atomic-qualified constant, we may need to add tail padding.
  if (auto AT = destType->getAs<AtomicType>()) {
    QualType destValueType = AT->getValueType();
    C = emitForMemory(CGM, C, destValueType);

    uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
    uint64_t outerSize = CGM.getContext().getTypeSize(destType);
    if (innerSize == outerSize)
      return C;

    assert(innerSize < outerSize && "emitted over-large constant for atomic");
    llvm::Constant *elts[] = {
      C,
      llvm::ConstantAggregateZero::get(
          llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
    };
    return llvm::ConstantStruct::getAnon(elts);
  }

  // Zero-extend bool.
  if (C->getType()->isIntegerTy(1)) {
    llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
    return llvm::ConstantExpr::getZExt(C, boolTy);
  }

  return C;
}

llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
                                                QualType destType) {
  assert(!destType->isVoidType() && "can't emit a void constant");

  Expr::EvalResult Result;

  bool Success = false;

  if (destType->isReferenceType())
    Success = E->EvaluateAsLValue(Result, CGM.getContext());
  else
    Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);

  llvm::Constant *C;
  if (Success && !Result.HasSideEffects)
    C = tryEmitPrivate(Result.Val, destType);
  else
    C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType);

  return C;
}

llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
  return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
}

namespace {
/// A struct which can be used to peephole certain kinds of finalization
/// that normally happen during l-value emission.
struct ConstantLValue {
  llvm::Constant *Value;
  bool HasOffsetApplied;

  /*implicit*/ ConstantLValue(llvm::Constant *value,
                              bool hasOffsetApplied = false)
    : Value(value), HasOffsetApplied(hasOffsetApplied) {}

  /*implicit*/ ConstantLValue(ConstantAddress address)
    : ConstantLValue(address.getPointer()) {}
};

/// A helper class for emitting constant l-values.
class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
                                                      ConstantLValue> {
  CodeGenModule &CGM;
  ConstantEmitter &Emitter;
  const APValue &Value;
  QualType DestType;

  // Befriend StmtVisitorBase so that we don't have to expose Visit*.
  friend StmtVisitorBase;

public:
  ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
                        QualType destType)
    : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}

  llvm::Constant *tryEmit();

private:
  llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
  ConstantLValue tryEmitBase(const APValue::LValueBase &base);

  ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
  ConstantLValue VisitConstantExpr(const ConstantExpr *E);
  ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
  ConstantLValue VisitStringLiteral(const StringLiteral *E);
  ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
  ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
  ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
  ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
  ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
  ConstantLValue VisitCallExpr(const CallExpr *E);
  ConstantLValue VisitBlockExpr(const BlockExpr *E);
  ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
  ConstantLValue VisitMaterializeTemporaryExpr(
                                         const MaterializeTemporaryExpr *E);

  bool hasNonZeroOffset() const {
    return !Value.getLValueOffset().isZero();
  }

  /// Return the value offset.
  llvm::Constant *getOffset() {
    return llvm::ConstantInt::get(CGM.Int64Ty,
                                  Value.getLValueOffset().getQuantity());
  }

  /// Apply the value offset to the given constant.
  llvm::Constant *applyOffset(llvm::Constant *C) {
    if (!hasNonZeroOffset())
      return C;

    llvm::Type *origPtrTy = C->getType();
    unsigned AS = origPtrTy->getPointerAddressSpace();
    llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS);
    C = llvm::ConstantExpr::getBitCast(C, charPtrTy);
    C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
    C = llvm::ConstantExpr::getPointerCast(C, origPtrTy);
    return C;
  }
};

}

llvm::Constant *ConstantLValueEmitter::tryEmit() {
  const APValue::LValueBase &base = Value.getLValueBase();

  // The destination type should be a pointer or reference
  // type, but it might also be a cast thereof.
  //
  // FIXME: the chain of casts required should be reflected in the APValue.
  // We need this in order to correctly handle things like a ptrtoint of a
  // non-zero null pointer and addrspace casts that aren't trivially
  // represented in LLVM IR.
  auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
  assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));

  // If there's no base at all, this is a null or absolute pointer,
  // possibly cast back to an integer type.
  if (!base) {
    return tryEmitAbsolute(destTy);
  }

  // Otherwise, try to emit the base.
  ConstantLValue result = tryEmitBase(base);

  // If that failed, we're done.
  llvm::Constant *value = result.Value;
  if (!value) return nullptr;

  // Apply the offset if necessary and not already done.
  if (!result.HasOffsetApplied) {
    value = applyOffset(value);
  }

  // Convert to the appropriate type; this could be an lvalue for
  // an integer.  FIXME: performAddrSpaceCast
  if (isa<llvm::PointerType>(destTy))
    return llvm::ConstantExpr::getPointerCast(value, destTy);

  return llvm::ConstantExpr::getPtrToInt(value, destTy);
}

/// Try to emit an absolute l-value, such as a null pointer or an integer
/// bitcast to pointer type.
llvm::Constant *
ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
  // If we're producing a pointer, this is easy.
  auto destPtrTy = cast<llvm::PointerType>(destTy);
  if (Value.isNullPointer()) {
    // FIXME: integer offsets from non-zero null pointers.
    return CGM.getNullPointer(destPtrTy, DestType);
  }

  // Convert the integer to a pointer-sized integer before converting it
  // to a pointer.
  // FIXME: signedness depends on the original integer type.
  auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
  llvm::Constant *C;
  C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy,
                                         /*isSigned*/ false);
  C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
  return C;
}

ConstantLValue
ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
  // Handle values.
  if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
    // The constant always points to the canonical declaration. We want to look
    // at properties of the most recent declaration at the point of emission.
    D = cast<ValueDecl>(D->getMostRecentDecl());

    if (D->hasAttr<WeakRefAttr>())
      return CGM.GetWeakRefReference(D).getPointer();

    if (auto FD = dyn_cast<FunctionDecl>(D))
      return CGM.GetAddrOfFunction(FD);

    if (auto VD = dyn_cast<VarDecl>(D)) {
      // We can never refer to a variable with local storage.
      if (!VD->hasLocalStorage()) {
        if (VD->isFileVarDecl() || VD->hasExternalStorage())
          return CGM.GetAddrOfGlobalVar(VD);

        if (VD->isLocalVarDecl()) {
          return CGM.getOrCreateStaticVarDecl(
              *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false));
        }
      }
    }

    if (auto *GD = dyn_cast<MSGuidDecl>(D))
      return CGM.GetAddrOfMSGuidDecl(GD);

    if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D))
      return CGM.GetAddrOfTemplateParamObject(TPO);

    return nullptr;
  }

  // Handle typeid(T).
  if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) {
    llvm::Type *StdTypeInfoPtrTy =
        CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo();
    llvm::Constant *TypeInfo =
        CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
    if (TypeInfo->getType() != StdTypeInfoPtrTy)
      TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy);
    return TypeInfo;
  }

  // Otherwise, it must be an expression.
  return Visit(base.get<const Expr*>());
}

ConstantLValue
ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
  if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(E))
    return Result;
  return Visit(E->getSubExpr());
}

ConstantLValue
ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
  return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E);
}

ConstantLValue
ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
  return CGM.GetAddrOfConstantStringFromLiteral(E);
}

ConstantLValue
ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
  return CGM.GetAddrOfConstantStringFromObjCEncode(E);
}

static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
                                                    QualType T,
                                                    CodeGenModule &CGM) {
  auto C = CGM.getObjCRuntime().GenerateConstantString(S);
  return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T));
}

ConstantLValue
ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
  return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
}

ConstantLValue
ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
  assert(E->isExpressibleAsConstantInitializer() &&
         "this boxed expression can't be emitted as a compile-time constant");
  auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
  return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
}

ConstantLValue
ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
  return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
}

ConstantLValue
ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
  assert(Emitter.CGF && "Invalid address of label expression outside function");
  llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
  Ptr = llvm::ConstantExpr::getBitCast(Ptr,
                                   CGM.getTypes().ConvertType(E->getType()));
  return Ptr;
}

ConstantLValue
ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
  unsigned builtin = E->getBuiltinCallee();
  if (builtin == Builtin::BI__builtin_function_start)
    return CGM.GetFunctionStart(
        E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext()));
  if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
      builtin != Builtin::BI__builtin___NSStringMakeConstantString)
    return nullptr;

  auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
  if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
    return CGM.getObjCRuntime().GenerateConstantString(literal);
  } else {
    // FIXME: need to deal with UCN conversion issues.
    return CGM.GetAddrOfConstantCFString(literal);
  }
}

ConstantLValue
ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
  StringRef functionName;
  if (auto CGF = Emitter.CGF)
    functionName = CGF->CurFn->getName();
  else
    functionName = "global";

  return CGM.GetAddrOfGlobalBlock(E, functionName);
}

ConstantLValue
ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
  QualType T;
  if (E->isTypeOperand())
    T = E->getTypeOperand(CGM.getContext());
  else
    T = E->getExprOperand()->getType();
  return CGM.GetAddrOfRTTIDescriptor(T);
}

ConstantLValue
ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
                                            const MaterializeTemporaryExpr *E) {
  assert(E->getStorageDuration() == SD_Static);
  SmallVector<const Expr *, 2> CommaLHSs;
  SmallVector<SubobjectAdjustment, 2> Adjustments;
  const Expr *Inner =
      E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
  return CGM.GetAddrOfGlobalTemporary(E, Inner);
}

llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
                                                QualType DestType) {
  switch (Value.getKind()) {
  case APValue::None:
  case APValue::Indeterminate:
    // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
    return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
  case APValue::LValue:
    return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
  case APValue::Int:
    return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
  case APValue::FixedPoint:
    return llvm::ConstantInt::get(CGM.getLLVMContext(),
                                  Value.getFixedPoint().getValue());
  case APValue::ComplexInt: {
    llvm::Constant *Complex[2];

    Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
                                        Value.getComplexIntReal());
    Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
                                        Value.getComplexIntImag());

    // FIXME: the target may want to specify that this is packed.
    llvm::StructType *STy =
        llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
    return llvm::ConstantStruct::get(STy, Complex);
  }
  case APValue::Float: {
    const llvm::APFloat &Init = Value.getFloat();
    if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
        !CGM.getContext().getLangOpts().NativeHalfType &&
        CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
      return llvm::ConstantInt::get(CGM.getLLVMContext(),
                                    Init.bitcastToAPInt());
    else
      return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
  }
  case APValue::ComplexFloat: {
    llvm::Constant *Complex[2];

    Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
                                       Value.getComplexFloatReal());
    Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
                                       Value.getComplexFloatImag());

    // FIXME: the target may want to specify that this is packed.
    llvm::StructType *STy =
        llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
    return llvm::ConstantStruct::get(STy, Complex);
  }
  case APValue::Vector: {
    unsigned NumElts = Value.getVectorLength();
    SmallVector<llvm::Constant *, 4> Inits(NumElts);

    for (unsigned I = 0; I != NumElts; ++I) {
      const APValue &Elt = Value.getVectorElt(I);
      if (Elt.isInt())
        Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
      else if (Elt.isFloat())
        Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
      else
        llvm_unreachable("unsupported vector element type");
    }
    return llvm::ConstantVector::get(Inits);
  }
  case APValue::AddrLabelDiff: {
    const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
    const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
    llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
    llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
    if (!LHS || !RHS) return nullptr;

    // Compute difference
    llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
    LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
    RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
    llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);

    // LLVM is a bit sensitive about the exact format of the
    // address-of-label difference; make sure to truncate after
    // the subtraction.
    return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
  }
  case APValue::Struct:
  case APValue::Union:
    return ConstStructBuilder::BuildStruct(*this, Value, DestType);
  case APValue::Array: {
    const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(DestType);
    unsigned NumElements = Value.getArraySize();
    unsigned NumInitElts = Value.getArrayInitializedElts();

    // Emit array filler, if there is one.
    llvm::Constant *Filler = nullptr;
    if (Value.hasArrayFiller()) {
      Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
                                        ArrayTy->getElementType());
      if (!Filler)
        return nullptr;
    }

    // Emit initializer elements.
    SmallVector<llvm::Constant*, 16> Elts;
    if (Filler && Filler->isNullValue())
      Elts.reserve(NumInitElts + 1);
    else
      Elts.reserve(NumElements);

    llvm::Type *CommonElementType = nullptr;
    for (unsigned I = 0; I < NumInitElts; ++I) {
      llvm::Constant *C = tryEmitPrivateForMemory(
          Value.getArrayInitializedElt(I), ArrayTy->getElementType());
      if (!C) return nullptr;

      if (I == 0)
        CommonElementType = C->getType();
      else if (C->getType() != CommonElementType)
        CommonElementType = nullptr;
      Elts.push_back(C);
    }

    llvm::ArrayType *Desired =
        cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
    return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
                             Filler);
  }
  case APValue::MemberPointer:
    return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
  }
  llvm_unreachable("Unknown APValue kind");
}

llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
    const CompoundLiteralExpr *E) {
  return EmittedCompoundLiterals.lookup(E);
}

void CodeGenModule::setAddrOfConstantCompoundLiteral(
    const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
  bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
  (void)Ok;
  assert(Ok && "CLE has already been emitted!");
}

ConstantAddress
CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
  assert(E->isFileScope() && "not a file-scope compound literal expr");
  return tryEmitGlobalCompoundLiteral(*this, nullptr, E);
}

llvm::Constant *
CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
  // Member pointer constants always have a very particular form.
  const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
  const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();

  // A member function pointer.
  if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
    return getCXXABI().EmitMemberFunctionPointer(method);

  // Otherwise, a member data pointer.
  uint64_t fieldOffset = getContext().getFieldOffset(decl);
  CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
  return getCXXABI().EmitMemberDataPointer(type, chars);
}

static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
                                               llvm::Type *baseType,
                                               const CXXRecordDecl *base);

static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
                                        const RecordDecl *record,
                                        bool asCompleteObject) {
  const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
  llvm::StructType *structure =
    (asCompleteObject ? layout.getLLVMType()
                      : layout.getBaseSubobjectLLVMType());

  unsigned numElements = structure->getNumElements();
  std::vector<llvm::Constant *> elements(numElements);

  auto CXXR = dyn_cast<CXXRecordDecl>(record);
  // Fill in all the bases.
  if (CXXR) {
    for (const auto &I : CXXR->bases()) {
      if (I.isVirtual()) {
        // Ignore virtual bases; if we're laying out for a complete
        // object, we'll lay these out later.
        continue;
      }

      const CXXRecordDecl *base =
        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());

      // Ignore empty bases.
      if (base->isEmpty() ||
          CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
              .isZero())
        continue;

      unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
      llvm::Type *baseType = structure->getElementType(fieldIndex);
      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
    }
  }

  // Fill in all the fields.
  for (const auto *Field : record->fields()) {
    // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
    // will fill in later.)
    if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) {
      unsigned fieldIndex = layout.getLLVMFieldNo(Field);
      elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
    }

    // For unions, stop after the first named field.
    if (record->isUnion()) {
      if (Field->getIdentifier())
        break;
      if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
        if (FieldRD->findFirstNamedDataMember())
          break;
    }
  }

  // Fill in the virtual bases, if we're working with the complete object.
  if (CXXR && asCompleteObject) {
    for (const auto &I : CXXR->vbases()) {
      const CXXRecordDecl *base =
        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());

      // Ignore empty bases.
      if (base->isEmpty())
        continue;

      unsigned fieldIndex = layout.getVirtualBaseIndex(base);

      // We might have already laid this field out.
      if (elements[fieldIndex]) continue;

      llvm::Type *baseType = structure->getElementType(fieldIndex);
      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
    }
  }

  // Now go through all other fields and zero them out.
  for (unsigned i = 0; i != numElements; ++i) {
    if (!elements[i])
      elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
  }

  return llvm::ConstantStruct::get(structure, elements);
}

/// Emit the null constant for a base subobject.
static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
                                               llvm::Type *baseType,
                                               const CXXRecordDecl *base) {
  const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);

  // Just zero out bases that don't have any pointer to data members.
  if (baseLayout.isZeroInitializableAsBase())
    return llvm::Constant::getNullValue(baseType);

  // Otherwise, we can just use its null constant.
  return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
}

llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
                                                   QualType T) {
  return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
}

llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
  if (T->getAs<PointerType>())
    return getNullPointer(
        cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);

  if (getTypes().isZeroInitializable(T))
    return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));

  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
    llvm::ArrayType *ATy =
      cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));

    QualType ElementTy = CAT->getElementType();

    llvm::Constant *Element =
      ConstantEmitter::emitNullForMemory(*this, ElementTy);
    unsigned NumElements = CAT->getSize().getZExtValue();
    SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
    return llvm::ConstantArray::get(ATy, Array);
  }

  if (const RecordType *RT = T->getAs<RecordType>())
    return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);

  assert(T->isMemberDataPointerType() &&
         "Should only see pointers to data members here!");

  return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
}

llvm::Constant *
CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
  return ::EmitNullConstant(*this, Record, false);
}