aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang14/include/clang/CodeGen/CGFunctionInfo.h
blob: 811fd9abf1a364ebe21450b9ccbfa35734c62be6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//==-- CGFunctionInfo.h - Representation of function argument/return types -==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Defines CGFunctionInfo and associated types used in representing the
// LLVM source types and ABI-coerced types for function arguments and
// return values.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_CODEGEN_CGFUNCTIONINFO_H
#define LLVM_CLANG_CODEGEN_CGFUNCTIONINFO_H

#include "clang/AST/CanonicalType.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/Type.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/Support/TrailingObjects.h"
#include <cassert>

namespace clang {
namespace CodeGen {

/// ABIArgInfo - Helper class to encapsulate information about how a
/// specific C type should be passed to or returned from a function.
class ABIArgInfo {
public:
  enum Kind : uint8_t {
    /// Direct - Pass the argument directly using the normal converted LLVM
    /// type, or by coercing to another specified type stored in
    /// 'CoerceToType').  If an offset is specified (in UIntData), then the
    /// argument passed is offset by some number of bytes in the memory
    /// representation. A dummy argument is emitted before the real argument
    /// if the specified type stored in "PaddingType" is not zero.
    Direct,

    /// Extend - Valid only for integer argument types. Same as 'direct'
    /// but also emit a zero/sign extension attribute.
    Extend,

    /// Indirect - Pass the argument indirectly via a hidden pointer with the
    /// specified alignment (0 indicates default alignment) and address space.
    Indirect,

    /// IndirectAliased - Similar to Indirect, but the pointer may be to an
    /// object that is otherwise referenced.  The object is known to not be
    /// modified through any other references for the duration of the call, and
    /// the callee must not itself modify the object.  Because C allows
    /// parameter variables to be modified and guarantees that they have unique
    /// addresses, the callee must defensively copy the object into a local
    /// variable if it might be modified or its address might be compared.
    /// Since those are uncommon, in principle this convention allows programs
    /// to avoid copies in more situations.  However, it may introduce *extra*
    /// copies if the callee fails to prove that a copy is unnecessary and the
    /// caller naturally produces an unaliased object for the argument.
    IndirectAliased,

    /// Ignore - Ignore the argument (treat as void). Useful for void and
    /// empty structs.
    Ignore,

    /// Expand - Only valid for aggregate argument types. The structure should
    /// be expanded into consecutive arguments for its constituent fields.
    /// Currently expand is only allowed on structures whose fields
    /// are all scalar types or are themselves expandable types.
    Expand,

    /// CoerceAndExpand - Only valid for aggregate argument types. The
    /// structure should be expanded into consecutive arguments corresponding
    /// to the non-array elements of the type stored in CoerceToType.
    /// Array elements in the type are assumed to be padding and skipped.
    CoerceAndExpand,

    /// InAlloca - Pass the argument directly using the LLVM inalloca attribute.
    /// This is similar to indirect with byval, except it only applies to
    /// arguments stored in memory and forbids any implicit copies.  When
    /// applied to a return type, it means the value is returned indirectly via
    /// an implicit sret parameter stored in the argument struct.
    InAlloca,
    KindFirst = Direct,
    KindLast = InAlloca
  };

private:
  llvm::Type *TypeData; // canHaveCoerceToType()
  union {
    llvm::Type *PaddingType; // canHavePaddingType()
    llvm::Type *UnpaddedCoerceAndExpandType; // isCoerceAndExpand()
  };
  struct DirectAttrInfo {
    unsigned Offset;
    unsigned Align;
  };
  struct IndirectAttrInfo {
    unsigned Align;
    unsigned AddrSpace;
  };
  union {
    DirectAttrInfo DirectAttr;     // isDirect() || isExtend()
    IndirectAttrInfo IndirectAttr; // isIndirect()
    unsigned AllocaFieldIndex; // isInAlloca()
  };
  Kind TheKind;
  bool PaddingInReg : 1;
  bool InAllocaSRet : 1;    // isInAlloca()
  bool InAllocaIndirect : 1;// isInAlloca()
  bool IndirectByVal : 1;   // isIndirect()
  bool IndirectRealign : 1; // isIndirect()
  bool SRetAfterThis : 1;   // isIndirect()
  bool InReg : 1;           // isDirect() || isExtend() || isIndirect()
  bool CanBeFlattened: 1;   // isDirect()
  bool SignExt : 1;         // isExtend()

  bool canHavePaddingType() const {
    return isDirect() || isExtend() || isIndirect() || isIndirectAliased() ||
           isExpand();
  }
  void setPaddingType(llvm::Type *T) {
    assert(canHavePaddingType());
    PaddingType = T;
  }

  void setUnpaddedCoerceToType(llvm::Type *T) {
    assert(isCoerceAndExpand());
    UnpaddedCoerceAndExpandType = T;
  }

public:
  ABIArgInfo(Kind K = Direct)
      : TypeData(nullptr), PaddingType(nullptr), DirectAttr{0, 0}, TheKind(K),
        PaddingInReg(false), InAllocaSRet(false),
        InAllocaIndirect(false), IndirectByVal(false), IndirectRealign(false),
        SRetAfterThis(false), InReg(false), CanBeFlattened(false),
        SignExt(false) {}

  static ABIArgInfo getDirect(llvm::Type *T = nullptr, unsigned Offset = 0,
                              llvm::Type *Padding = nullptr,
                              bool CanBeFlattened = true, unsigned Align = 0) {
    auto AI = ABIArgInfo(Direct);
    AI.setCoerceToType(T);
    AI.setPaddingType(Padding);
    AI.setDirectOffset(Offset);
    AI.setDirectAlign(Align);
    AI.setCanBeFlattened(CanBeFlattened);
    return AI;
  }
  static ABIArgInfo getDirectInReg(llvm::Type *T = nullptr) {
    auto AI = getDirect(T);
    AI.setInReg(true);
    return AI;
  }

  static ABIArgInfo getSignExtend(QualType Ty, llvm::Type *T = nullptr) {
    assert(Ty->isIntegralOrEnumerationType() && "Unexpected QualType");
    auto AI = ABIArgInfo(Extend);
    AI.setCoerceToType(T);
    AI.setPaddingType(nullptr);
    AI.setDirectOffset(0);
    AI.setDirectAlign(0);
    AI.setSignExt(true);
    return AI;
  }

  static ABIArgInfo getZeroExtend(QualType Ty, llvm::Type *T = nullptr) {
    assert(Ty->isIntegralOrEnumerationType() && "Unexpected QualType");
    auto AI = ABIArgInfo(Extend);
    AI.setCoerceToType(T);
    AI.setPaddingType(nullptr);
    AI.setDirectOffset(0);
    AI.setDirectAlign(0);
    AI.setSignExt(false);
    return AI;
  }

  // ABIArgInfo will record the argument as being extended based on the sign
  // of its type.
  static ABIArgInfo getExtend(QualType Ty, llvm::Type *T = nullptr) {
    assert(Ty->isIntegralOrEnumerationType() && "Unexpected QualType");
    if (Ty->hasSignedIntegerRepresentation())
      return getSignExtend(Ty, T);
    return getZeroExtend(Ty, T);
  }

  static ABIArgInfo getExtendInReg(QualType Ty, llvm::Type *T = nullptr) {
    auto AI = getExtend(Ty, T);
    AI.setInReg(true);
    return AI;
  }
  static ABIArgInfo getIgnore() {
    return ABIArgInfo(Ignore);
  }
  static ABIArgInfo getIndirect(CharUnits Alignment, bool ByVal = true,
                                bool Realign = false,
                                llvm::Type *Padding = nullptr) {
    auto AI = ABIArgInfo(Indirect);
    AI.setIndirectAlign(Alignment);
    AI.setIndirectByVal(ByVal);
    AI.setIndirectRealign(Realign);
    AI.setSRetAfterThis(false);
    AI.setPaddingType(Padding);
    return AI;
  }

  /// Pass this in memory using the IR byref attribute.
  static ABIArgInfo getIndirectAliased(CharUnits Alignment, unsigned AddrSpace,
                                       bool Realign = false,
                                       llvm::Type *Padding = nullptr) {
    auto AI = ABIArgInfo(IndirectAliased);
    AI.setIndirectAlign(Alignment);
    AI.setIndirectRealign(Realign);
    AI.setPaddingType(Padding);
    AI.setIndirectAddrSpace(AddrSpace);
    return AI;
  }

  static ABIArgInfo getIndirectInReg(CharUnits Alignment, bool ByVal = true,
                                     bool Realign = false) {
    auto AI = getIndirect(Alignment, ByVal, Realign);
    AI.setInReg(true);
    return AI;
  }
  static ABIArgInfo getInAlloca(unsigned FieldIndex, bool Indirect = false) {
    auto AI = ABIArgInfo(InAlloca);
    AI.setInAllocaFieldIndex(FieldIndex);
    AI.setInAllocaIndirect(Indirect);
    return AI;
  }
  static ABIArgInfo getExpand() {
    auto AI = ABIArgInfo(Expand);
    AI.setPaddingType(nullptr);
    return AI;
  }
  static ABIArgInfo getExpandWithPadding(bool PaddingInReg,
                                         llvm::Type *Padding) {
    auto AI = getExpand();
    AI.setPaddingInReg(PaddingInReg);
    AI.setPaddingType(Padding);
    return AI;
  }

  /// \param unpaddedCoerceToType The coerce-to type with padding elements
  ///   removed, canonicalized to a single element if it would otherwise
  ///   have exactly one element.
  static ABIArgInfo getCoerceAndExpand(llvm::StructType *coerceToType,
                                       llvm::Type *unpaddedCoerceToType) {
#ifndef NDEBUG
    // Check that unpaddedCoerceToType has roughly the right shape.

    // Assert that we only have a struct type if there are multiple elements.
    auto unpaddedStruct = dyn_cast<llvm::StructType>(unpaddedCoerceToType);
    assert(!unpaddedStruct || unpaddedStruct->getNumElements() != 1);

    // Assert that all the non-padding elements have a corresponding element
    // in the unpadded type.
    unsigned unpaddedIndex = 0;
    for (auto eltType : coerceToType->elements()) {
      if (isPaddingForCoerceAndExpand(eltType)) continue;
      if (unpaddedStruct) {
        assert(unpaddedStruct->getElementType(unpaddedIndex) == eltType);
      } else {
        assert(unpaddedIndex == 0 && unpaddedCoerceToType == eltType);
      }
      unpaddedIndex++;
    }

    // Assert that there aren't extra elements in the unpadded type.
    if (unpaddedStruct) {
      assert(unpaddedStruct->getNumElements() == unpaddedIndex);
    } else {
      assert(unpaddedIndex == 1);
    }
#endif

    auto AI = ABIArgInfo(CoerceAndExpand);
    AI.setCoerceToType(coerceToType);
    AI.setUnpaddedCoerceToType(unpaddedCoerceToType);
    return AI;
  }

  static bool isPaddingForCoerceAndExpand(llvm::Type *eltType) {
    if (eltType->isArrayTy()) {
      assert(eltType->getArrayElementType()->isIntegerTy(8));
      return true;
    } else {
      return false;
    }
  }

  Kind getKind() const { return TheKind; }
  bool isDirect() const { return TheKind == Direct; }
  bool isInAlloca() const { return TheKind == InAlloca; }
  bool isExtend() const { return TheKind == Extend; }
  bool isIgnore() const { return TheKind == Ignore; }
  bool isIndirect() const { return TheKind == Indirect; }
  bool isIndirectAliased() const { return TheKind == IndirectAliased; }
  bool isExpand() const { return TheKind == Expand; }
  bool isCoerceAndExpand() const { return TheKind == CoerceAndExpand; }

  bool canHaveCoerceToType() const {
    return isDirect() || isExtend() || isCoerceAndExpand();
  }

  // Direct/Extend accessors
  unsigned getDirectOffset() const {
    assert((isDirect() || isExtend()) && "Not a direct or extend kind");
    return DirectAttr.Offset;
  }
  void setDirectOffset(unsigned Offset) {
    assert((isDirect() || isExtend()) && "Not a direct or extend kind");
    DirectAttr.Offset = Offset;
  }

  unsigned getDirectAlign() const {
    assert((isDirect() || isExtend()) && "Not a direct or extend kind");
    return DirectAttr.Align;
  }
  void setDirectAlign(unsigned Align) {
    assert((isDirect() || isExtend()) && "Not a direct or extend kind");
    DirectAttr.Align = Align;
  }

  bool isSignExt() const {
    assert(isExtend() && "Invalid kind!");
    return SignExt;
  }
  void setSignExt(bool SExt) {
    assert(isExtend() && "Invalid kind!");
    SignExt = SExt;
  }

  llvm::Type *getPaddingType() const {
    return (canHavePaddingType() ? PaddingType : nullptr);
  }

  bool getPaddingInReg() const {
    return PaddingInReg;
  }
  void setPaddingInReg(bool PIR) {
    PaddingInReg = PIR;
  }

  llvm::Type *getCoerceToType() const {
    assert(canHaveCoerceToType() && "Invalid kind!");
    return TypeData;
  }

  void setCoerceToType(llvm::Type *T) {
    assert(canHaveCoerceToType() && "Invalid kind!");
    TypeData = T;
  }

  llvm::StructType *getCoerceAndExpandType() const {
    assert(isCoerceAndExpand());
    return cast<llvm::StructType>(TypeData);
  }

  llvm::Type *getUnpaddedCoerceAndExpandType() const {
    assert(isCoerceAndExpand());
    return UnpaddedCoerceAndExpandType;
  }

  ArrayRef<llvm::Type *>getCoerceAndExpandTypeSequence() const {
    assert(isCoerceAndExpand());
    if (auto structTy =
          dyn_cast<llvm::StructType>(UnpaddedCoerceAndExpandType)) {
      return structTy->elements();
    } else {
      return llvm::makeArrayRef(&UnpaddedCoerceAndExpandType, 1);
    }
  }

  bool getInReg() const {
    assert((isDirect() || isExtend() || isIndirect()) && "Invalid kind!");
    return InReg;
  }

  void setInReg(bool IR) {
    assert((isDirect() || isExtend() || isIndirect()) && "Invalid kind!");
    InReg = IR;
  }

  // Indirect accessors
  CharUnits getIndirectAlign() const {
    assert((isIndirect() || isIndirectAliased()) && "Invalid kind!");
    return CharUnits::fromQuantity(IndirectAttr.Align);
  }
  void setIndirectAlign(CharUnits IA) {
    assert((isIndirect() || isIndirectAliased()) && "Invalid kind!");
    IndirectAttr.Align = IA.getQuantity();
  }

  bool getIndirectByVal() const {
    assert(isIndirect() && "Invalid kind!");
    return IndirectByVal;
  }
  void setIndirectByVal(bool IBV) {
    assert(isIndirect() && "Invalid kind!");
    IndirectByVal = IBV;
  }

  unsigned getIndirectAddrSpace() const {
    assert(isIndirectAliased() && "Invalid kind!");
    return IndirectAttr.AddrSpace;
  }

  void setIndirectAddrSpace(unsigned AddrSpace) {
    assert(isIndirectAliased() && "Invalid kind!");
    IndirectAttr.AddrSpace = AddrSpace;
  }

  bool getIndirectRealign() const {
    assert((isIndirect() || isIndirectAliased()) && "Invalid kind!");
    return IndirectRealign;
  }
  void setIndirectRealign(bool IR) {
    assert((isIndirect() || isIndirectAliased()) && "Invalid kind!");
    IndirectRealign = IR;
  }

  bool isSRetAfterThis() const {
    assert(isIndirect() && "Invalid kind!");
    return SRetAfterThis;
  }
  void setSRetAfterThis(bool AfterThis) {
    assert(isIndirect() && "Invalid kind!");
    SRetAfterThis = AfterThis;
  }

  unsigned getInAllocaFieldIndex() const {
    assert(isInAlloca() && "Invalid kind!");
    return AllocaFieldIndex;
  }
  void setInAllocaFieldIndex(unsigned FieldIndex) {
    assert(isInAlloca() && "Invalid kind!");
    AllocaFieldIndex = FieldIndex;
  }

  unsigned getInAllocaIndirect() const {
    assert(isInAlloca() && "Invalid kind!");
    return InAllocaIndirect;
  }
  void setInAllocaIndirect(bool Indirect) {
    assert(isInAlloca() && "Invalid kind!");
    InAllocaIndirect = Indirect;
  }

  /// Return true if this field of an inalloca struct should be returned
  /// to implement a struct return calling convention.
  bool getInAllocaSRet() const {
    assert(isInAlloca() && "Invalid kind!");
    return InAllocaSRet;
  }

  void setInAllocaSRet(bool SRet) {
    assert(isInAlloca() && "Invalid kind!");
    InAllocaSRet = SRet;
  }

  bool getCanBeFlattened() const {
    assert(isDirect() && "Invalid kind!");
    return CanBeFlattened;
  }

  void setCanBeFlattened(bool Flatten) {
    assert(isDirect() && "Invalid kind!");
    CanBeFlattened = Flatten;
  }

  void dump() const;
};

/// A class for recording the number of arguments that a function
/// signature requires.
class RequiredArgs {
  /// The number of required arguments, or ~0 if the signature does
  /// not permit optional arguments.
  unsigned NumRequired;
public:
  enum All_t { All };

  RequiredArgs(All_t _) : NumRequired(~0U) {}
  explicit RequiredArgs(unsigned n) : NumRequired(n) {
    assert(n != ~0U);
  }

  /// Compute the arguments required by the given formal prototype,
  /// given that there may be some additional, non-formal arguments
  /// in play.
  ///
  /// If FD is not null, this will consider pass_object_size params in FD.
  static RequiredArgs forPrototypePlus(const FunctionProtoType *prototype,
                                       unsigned additional) {
    if (!prototype->isVariadic()) return All;

    if (prototype->hasExtParameterInfos())
      additional += llvm::count_if(
          prototype->getExtParameterInfos(),
          [](const FunctionProtoType::ExtParameterInfo &ExtInfo) {
            return ExtInfo.hasPassObjectSize();
          });

    return RequiredArgs(prototype->getNumParams() + additional);
  }

  static RequiredArgs forPrototypePlus(CanQual<FunctionProtoType> prototype,
                                       unsigned additional) {
    return forPrototypePlus(prototype.getTypePtr(), additional);
  }

  static RequiredArgs forPrototype(const FunctionProtoType *prototype) {
    return forPrototypePlus(prototype, 0);
  }

  static RequiredArgs forPrototype(CanQual<FunctionProtoType> prototype) {
    return forPrototypePlus(prototype.getTypePtr(), 0);
  }

  bool allowsOptionalArgs() const { return NumRequired != ~0U; }
  unsigned getNumRequiredArgs() const {
    assert(allowsOptionalArgs());
    return NumRequired;
  }

  unsigned getOpaqueData() const { return NumRequired; }
  static RequiredArgs getFromOpaqueData(unsigned value) {
    if (value == ~0U) return All;
    return RequiredArgs(value);
  }
};

// Implementation detail of CGFunctionInfo, factored out so it can be named
// in the TrailingObjects base class of CGFunctionInfo.
struct CGFunctionInfoArgInfo {
  CanQualType type;
  ABIArgInfo info;
};

/// CGFunctionInfo - Class to encapsulate the information about a
/// function definition.
class CGFunctionInfo final
    : public llvm::FoldingSetNode,
      private llvm::TrailingObjects<CGFunctionInfo, CGFunctionInfoArgInfo,
                                    FunctionProtoType::ExtParameterInfo> {
  typedef CGFunctionInfoArgInfo ArgInfo;
  typedef FunctionProtoType::ExtParameterInfo ExtParameterInfo;

  /// The LLVM::CallingConv to use for this function (as specified by the
  /// user).
  unsigned CallingConvention : 8;

  /// The LLVM::CallingConv to actually use for this function, which may
  /// depend on the ABI.
  unsigned EffectiveCallingConvention : 8;

  /// The clang::CallingConv that this was originally created with.
  unsigned ASTCallingConvention : 6;

  /// Whether this is an instance method.
  unsigned InstanceMethod : 1;

  /// Whether this is a chain call.
  unsigned ChainCall : 1;

  /// Whether this function is a CMSE nonsecure call
  unsigned CmseNSCall : 1;

  /// Whether this function is noreturn.
  unsigned NoReturn : 1;

  /// Whether this function is returns-retained.
  unsigned ReturnsRetained : 1;

  /// Whether this function saved caller registers.
  unsigned NoCallerSavedRegs : 1;

  /// How many arguments to pass inreg.
  unsigned HasRegParm : 1;
  unsigned RegParm : 3;

  /// Whether this function has nocf_check attribute.
  unsigned NoCfCheck : 1;

  RequiredArgs Required;

  /// The struct representing all arguments passed in memory.  Only used when
  /// passing non-trivial types with inalloca.  Not part of the profile.
  llvm::StructType *ArgStruct;
  unsigned ArgStructAlign : 31;
  unsigned HasExtParameterInfos : 1;

  unsigned NumArgs;

  ArgInfo *getArgsBuffer() {
    return getTrailingObjects<ArgInfo>();
  }
  const ArgInfo *getArgsBuffer() const {
    return getTrailingObjects<ArgInfo>();
  }

  ExtParameterInfo *getExtParameterInfosBuffer() {
    return getTrailingObjects<ExtParameterInfo>();
  }
  const ExtParameterInfo *getExtParameterInfosBuffer() const{
    return getTrailingObjects<ExtParameterInfo>();
  }

  CGFunctionInfo() : Required(RequiredArgs::All) {}

public:
  static CGFunctionInfo *create(unsigned llvmCC,
                                bool instanceMethod,
                                bool chainCall,
                                const FunctionType::ExtInfo &extInfo,
                                ArrayRef<ExtParameterInfo> paramInfos,
                                CanQualType resultType,
                                ArrayRef<CanQualType> argTypes,
                                RequiredArgs required);
  void operator delete(void *p) { ::operator delete(p); }

  // Friending class TrailingObjects is apparently not good enough for MSVC,
  // so these have to be public.
  friend class TrailingObjects;
  size_t numTrailingObjects(OverloadToken<ArgInfo>) const {
    return NumArgs + 1;
  }
  size_t numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
    return (HasExtParameterInfos ? NumArgs : 0);
  }

  typedef const ArgInfo *const_arg_iterator;
  typedef ArgInfo *arg_iterator;

  MutableArrayRef<ArgInfo> arguments() {
    return MutableArrayRef<ArgInfo>(arg_begin(), NumArgs);
  }
  ArrayRef<ArgInfo> arguments() const {
    return ArrayRef<ArgInfo>(arg_begin(), NumArgs);
  }

  const_arg_iterator arg_begin() const { return getArgsBuffer() + 1; }
  const_arg_iterator arg_end() const { return getArgsBuffer() + 1 + NumArgs; }
  arg_iterator arg_begin() { return getArgsBuffer() + 1; }
  arg_iterator arg_end() { return getArgsBuffer() + 1 + NumArgs; }

  unsigned  arg_size() const { return NumArgs; }

  bool isVariadic() const { return Required.allowsOptionalArgs(); }
  RequiredArgs getRequiredArgs() const { return Required; }
  unsigned getNumRequiredArgs() const {
    return isVariadic() ? getRequiredArgs().getNumRequiredArgs() : arg_size();
  }

  bool isInstanceMethod() const { return InstanceMethod; }

  bool isChainCall() const { return ChainCall; }

  bool isCmseNSCall() const { return CmseNSCall; }

  bool isNoReturn() const { return NoReturn; }

  /// In ARC, whether this function retains its return value.  This
  /// is not always reliable for call sites.
  bool isReturnsRetained() const { return ReturnsRetained; }

  /// Whether this function no longer saves caller registers.
  bool isNoCallerSavedRegs() const { return NoCallerSavedRegs; }

  /// Whether this function has nocf_check attribute.
  bool isNoCfCheck() const { return NoCfCheck; }

  /// getASTCallingConvention() - Return the AST-specified calling
  /// convention.
  CallingConv getASTCallingConvention() const {
    return CallingConv(ASTCallingConvention);
  }

  /// getCallingConvention - Return the user specified calling
  /// convention, which has been translated into an LLVM CC.
  unsigned getCallingConvention() const { return CallingConvention; }

  /// getEffectiveCallingConvention - Return the actual calling convention to
  /// use, which may depend on the ABI.
  unsigned getEffectiveCallingConvention() const {
    return EffectiveCallingConvention;
  }
  void setEffectiveCallingConvention(unsigned Value) {
    EffectiveCallingConvention = Value;
  }

  bool getHasRegParm() const { return HasRegParm; }
  unsigned getRegParm() const { return RegParm; }

  FunctionType::ExtInfo getExtInfo() const {
    return FunctionType::ExtInfo(isNoReturn(), getHasRegParm(), getRegParm(),
                                 getASTCallingConvention(), isReturnsRetained(),
                                 isNoCallerSavedRegs(), isNoCfCheck(),
                                 isCmseNSCall());
  }

  CanQualType getReturnType() const { return getArgsBuffer()[0].type; }

  ABIArgInfo &getReturnInfo() { return getArgsBuffer()[0].info; }
  const ABIArgInfo &getReturnInfo() const { return getArgsBuffer()[0].info; }

  ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
    if (!HasExtParameterInfos) return {};
    return llvm::makeArrayRef(getExtParameterInfosBuffer(), NumArgs);
  }
  ExtParameterInfo getExtParameterInfo(unsigned argIndex) const {
    assert(argIndex <= NumArgs);
    if (!HasExtParameterInfos) return ExtParameterInfo();
    return getExtParameterInfos()[argIndex];
  }

  /// Return true if this function uses inalloca arguments.
  bool usesInAlloca() const { return ArgStruct; }

  /// Get the struct type used to represent all the arguments in memory.
  llvm::StructType *getArgStruct() const { return ArgStruct; }
  CharUnits getArgStructAlignment() const {
    return CharUnits::fromQuantity(ArgStructAlign);
  }
  void setArgStruct(llvm::StructType *Ty, CharUnits Align) {
    ArgStruct = Ty;
    ArgStructAlign = Align.getQuantity();
  }

  void Profile(llvm::FoldingSetNodeID &ID) {
    ID.AddInteger(getASTCallingConvention());
    ID.AddBoolean(InstanceMethod);
    ID.AddBoolean(ChainCall);
    ID.AddBoolean(NoReturn);
    ID.AddBoolean(ReturnsRetained);
    ID.AddBoolean(NoCallerSavedRegs);
    ID.AddBoolean(HasRegParm);
    ID.AddInteger(RegParm);
    ID.AddBoolean(NoCfCheck);
    ID.AddBoolean(CmseNSCall);
    ID.AddInteger(Required.getOpaqueData());
    ID.AddBoolean(HasExtParameterInfos);
    if (HasExtParameterInfos) {
      for (auto paramInfo : getExtParameterInfos())
        ID.AddInteger(paramInfo.getOpaqueValue());
    }
    getReturnType().Profile(ID);
    for (const auto &I : arguments())
      I.type.Profile(ID);
  }
  static void Profile(llvm::FoldingSetNodeID &ID,
                      bool InstanceMethod,
                      bool ChainCall,
                      const FunctionType::ExtInfo &info,
                      ArrayRef<ExtParameterInfo> paramInfos,
                      RequiredArgs required,
                      CanQualType resultType,
                      ArrayRef<CanQualType> argTypes) {
    ID.AddInteger(info.getCC());
    ID.AddBoolean(InstanceMethod);
    ID.AddBoolean(ChainCall);
    ID.AddBoolean(info.getNoReturn());
    ID.AddBoolean(info.getProducesResult());
    ID.AddBoolean(info.getNoCallerSavedRegs());
    ID.AddBoolean(info.getHasRegParm());
    ID.AddInteger(info.getRegParm());
    ID.AddBoolean(info.getNoCfCheck());
    ID.AddBoolean(info.getCmseNSCall());
    ID.AddInteger(required.getOpaqueData());
    ID.AddBoolean(!paramInfos.empty());
    if (!paramInfos.empty()) {
      for (auto paramInfo : paramInfos)
        ID.AddInteger(paramInfo.getOpaqueValue());
    }
    resultType.Profile(ID);
    for (ArrayRef<CanQualType>::iterator
           i = argTypes.begin(), e = argTypes.end(); i != e; ++i) {
      i->Profile(ID);
    }
  }
};

}  // end namespace CodeGen
}  // end namespace clang

#endif

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif