1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- DeclCXX.h - Classes for representing C++ declarations --*- C++ -*-=====//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Defines the C++ Decl subclasses, other than those for templates
/// (found in DeclTemplate.h) and friends (in DeclFriend.h).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECLCXX_H
#define LLVM_CLANG_AST_DECLCXX_H
#include "clang/AST/ASTUnresolvedSet.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/LambdaCapture.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/Redeclarable.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/UnresolvedSet.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Lambda.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/PointerLikeTypeTraits.h"
#include "llvm/Support/TrailingObjects.h"
#include <cassert>
#include <cstddef>
#include <iterator>
#include <memory>
#include <vector>
namespace clang {
class ASTContext;
class ClassTemplateDecl;
class ConstructorUsingShadowDecl;
class CXXBasePath;
class CXXBasePaths;
class CXXConstructorDecl;
class CXXDestructorDecl;
class CXXFinalOverriderMap;
class CXXIndirectPrimaryBaseSet;
class CXXMethodDecl;
class DecompositionDecl;
class FriendDecl;
class FunctionTemplateDecl;
class IdentifierInfo;
class MemberSpecializationInfo;
class BaseUsingDecl;
class TemplateDecl;
class TemplateParameterList;
class UsingDecl;
/// Represents an access specifier followed by colon ':'.
///
/// An objects of this class represents sugar for the syntactic occurrence
/// of an access specifier followed by a colon in the list of member
/// specifiers of a C++ class definition.
///
/// Note that they do not represent other uses of access specifiers,
/// such as those occurring in a list of base specifiers.
/// Also note that this class has nothing to do with so-called
/// "access declarations" (C++98 11.3 [class.access.dcl]).
class AccessSpecDecl : public Decl {
/// The location of the ':'.
SourceLocation ColonLoc;
AccessSpecDecl(AccessSpecifier AS, DeclContext *DC,
SourceLocation ASLoc, SourceLocation ColonLoc)
: Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) {
setAccess(AS);
}
AccessSpecDecl(EmptyShell Empty) : Decl(AccessSpec, Empty) {}
virtual void anchor();
public:
/// The location of the access specifier.
SourceLocation getAccessSpecifierLoc() const { return getLocation(); }
/// Sets the location of the access specifier.
void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); }
/// The location of the colon following the access specifier.
SourceLocation getColonLoc() const { return ColonLoc; }
/// Sets the location of the colon.
void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; }
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(getAccessSpecifierLoc(), getColonLoc());
}
static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS,
DeclContext *DC, SourceLocation ASLoc,
SourceLocation ColonLoc) {
return new (C, DC) AccessSpecDecl(AS, DC, ASLoc, ColonLoc);
}
static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == AccessSpec; }
};
/// Represents a base class of a C++ class.
///
/// Each CXXBaseSpecifier represents a single, direct base class (or
/// struct) of a C++ class (or struct). It specifies the type of that
/// base class, whether it is a virtual or non-virtual base, and what
/// level of access (public, protected, private) is used for the
/// derivation. For example:
///
/// \code
/// class A { };
/// class B { };
/// class C : public virtual A, protected B { };
/// \endcode
///
/// In this code, C will have two CXXBaseSpecifiers, one for "public
/// virtual A" and the other for "protected B".
class CXXBaseSpecifier {
/// The source code range that covers the full base
/// specifier, including the "virtual" (if present) and access
/// specifier (if present).
SourceRange Range;
/// The source location of the ellipsis, if this is a pack
/// expansion.
SourceLocation EllipsisLoc;
/// Whether this is a virtual base class or not.
unsigned Virtual : 1;
/// Whether this is the base of a class (true) or of a struct (false).
///
/// This determines the mapping from the access specifier as written in the
/// source code to the access specifier used for semantic analysis.
unsigned BaseOfClass : 1;
/// Access specifier as written in the source code (may be AS_none).
///
/// The actual type of data stored here is an AccessSpecifier, but we use
/// "unsigned" here to work around a VC++ bug.
unsigned Access : 2;
/// Whether the class contains a using declaration
/// to inherit the named class's constructors.
unsigned InheritConstructors : 1;
/// The type of the base class.
///
/// This will be a class or struct (or a typedef of such). The source code
/// range does not include the \c virtual or the access specifier.
TypeSourceInfo *BaseTypeInfo;
public:
CXXBaseSpecifier() = default;
CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A,
TypeSourceInfo *TInfo, SourceLocation EllipsisLoc)
: Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC),
Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) {}
/// Retrieves the source range that contains the entire base specifier.
SourceRange getSourceRange() const LLVM_READONLY { return Range; }
SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
/// Get the location at which the base class type was written.
SourceLocation getBaseTypeLoc() const LLVM_READONLY {
return BaseTypeInfo->getTypeLoc().getBeginLoc();
}
/// Determines whether the base class is a virtual base class (or not).
bool isVirtual() const { return Virtual; }
/// Determine whether this base class is a base of a class declared
/// with the 'class' keyword (vs. one declared with the 'struct' keyword).
bool isBaseOfClass() const { return BaseOfClass; }
/// Determine whether this base specifier is a pack expansion.
bool isPackExpansion() const { return EllipsisLoc.isValid(); }
/// Determine whether this base class's constructors get inherited.
bool getInheritConstructors() const { return InheritConstructors; }
/// Set that this base class's constructors should be inherited.
void setInheritConstructors(bool Inherit = true) {
InheritConstructors = Inherit;
}
/// For a pack expansion, determine the location of the ellipsis.
SourceLocation getEllipsisLoc() const {
return EllipsisLoc;
}
/// Returns the access specifier for this base specifier.
///
/// This is the actual base specifier as used for semantic analysis, so
/// the result can never be AS_none. To retrieve the access specifier as
/// written in the source code, use getAccessSpecifierAsWritten().
AccessSpecifier getAccessSpecifier() const {
if ((AccessSpecifier)Access == AS_none)
return BaseOfClass? AS_private : AS_public;
else
return (AccessSpecifier)Access;
}
/// Retrieves the access specifier as written in the source code
/// (which may mean that no access specifier was explicitly written).
///
/// Use getAccessSpecifier() to retrieve the access specifier for use in
/// semantic analysis.
AccessSpecifier getAccessSpecifierAsWritten() const {
return (AccessSpecifier)Access;
}
/// Retrieves the type of the base class.
///
/// This type will always be an unqualified class type.
QualType getType() const {
return BaseTypeInfo->getType().getUnqualifiedType();
}
/// Retrieves the type and source location of the base class.
TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; }
};
/// Represents a C++ struct/union/class.
class CXXRecordDecl : public RecordDecl {
friend class ASTDeclReader;
friend class ASTDeclWriter;
friend class ASTNodeImporter;
friend class ASTReader;
friend class ASTRecordWriter;
friend class ASTWriter;
friend class DeclContext;
friend class LambdaExpr;
friend void FunctionDecl::setPure(bool);
friend void TagDecl::startDefinition();
/// Values used in DefinitionData fields to represent special members.
enum SpecialMemberFlags {
SMF_DefaultConstructor = 0x1,
SMF_CopyConstructor = 0x2,
SMF_MoveConstructor = 0x4,
SMF_CopyAssignment = 0x8,
SMF_MoveAssignment = 0x10,
SMF_Destructor = 0x20,
SMF_All = 0x3f
};
struct DefinitionData {
#define FIELD(Name, Width, Merge) \
unsigned Name : Width;
#include "CXXRecordDeclDefinitionBits.def"
/// Whether this class describes a C++ lambda.
unsigned IsLambda : 1;
/// Whether we are currently parsing base specifiers.
unsigned IsParsingBaseSpecifiers : 1;
/// True when visible conversion functions are already computed
/// and are available.
unsigned ComputedVisibleConversions : 1;
unsigned HasODRHash : 1;
/// A hash of parts of the class to help in ODR checking.
unsigned ODRHash = 0;
/// The number of base class specifiers in Bases.
unsigned NumBases = 0;
/// The number of virtual base class specifiers in VBases.
unsigned NumVBases = 0;
/// Base classes of this class.
///
/// FIXME: This is wasted space for a union.
LazyCXXBaseSpecifiersPtr Bases;
/// direct and indirect virtual base classes of this class.
LazyCXXBaseSpecifiersPtr VBases;
/// The conversion functions of this C++ class (but not its
/// inherited conversion functions).
///
/// Each of the entries in this overload set is a CXXConversionDecl.
LazyASTUnresolvedSet Conversions;
/// The conversion functions of this C++ class and all those
/// inherited conversion functions that are visible in this class.
///
/// Each of the entries in this overload set is a CXXConversionDecl or a
/// FunctionTemplateDecl.
LazyASTUnresolvedSet VisibleConversions;
/// The declaration which defines this record.
CXXRecordDecl *Definition;
/// The first friend declaration in this class, or null if there
/// aren't any.
///
/// This is actually currently stored in reverse order.
LazyDeclPtr FirstFriend;
DefinitionData(CXXRecordDecl *D);
/// Retrieve the set of direct base classes.
CXXBaseSpecifier *getBases() const {
if (!Bases.isOffset())
return Bases.get(nullptr);
return getBasesSlowCase();
}
/// Retrieve the set of virtual base classes.
CXXBaseSpecifier *getVBases() const {
if (!VBases.isOffset())
return VBases.get(nullptr);
return getVBasesSlowCase();
}
ArrayRef<CXXBaseSpecifier> bases() const {
return llvm::makeArrayRef(getBases(), NumBases);
}
ArrayRef<CXXBaseSpecifier> vbases() const {
return llvm::makeArrayRef(getVBases(), NumVBases);
}
private:
CXXBaseSpecifier *getBasesSlowCase() const;
CXXBaseSpecifier *getVBasesSlowCase() const;
};
struct DefinitionData *DefinitionData;
/// Describes a C++ closure type (generated by a lambda expression).
struct LambdaDefinitionData : public DefinitionData {
using Capture = LambdaCapture;
/// Whether this lambda is known to be dependent, even if its
/// context isn't dependent.
///
/// A lambda with a non-dependent context can be dependent if it occurs
/// within the default argument of a function template, because the
/// lambda will have been created with the enclosing context as its
/// declaration context, rather than function. This is an unfortunate
/// artifact of having to parse the default arguments before.
unsigned Dependent : 1;
/// Whether this lambda is a generic lambda.
unsigned IsGenericLambda : 1;
/// The Default Capture.
unsigned CaptureDefault : 2;
/// The number of captures in this lambda is limited 2^NumCaptures.
unsigned NumCaptures : 15;
/// The number of explicit captures in this lambda.
unsigned NumExplicitCaptures : 13;
/// Has known `internal` linkage.
unsigned HasKnownInternalLinkage : 1;
/// The number used to indicate this lambda expression for name
/// mangling in the Itanium C++ ABI.
unsigned ManglingNumber : 31;
/// The declaration that provides context for this lambda, if the
/// actual DeclContext does not suffice. This is used for lambdas that
/// occur within default arguments of function parameters within the class
/// or within a data member initializer.
LazyDeclPtr ContextDecl;
/// The list of captures, both explicit and implicit, for this
/// lambda.
Capture *Captures = nullptr;
/// The type of the call method.
TypeSourceInfo *MethodTyInfo;
LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info, bool Dependent,
bool IsGeneric, LambdaCaptureDefault CaptureDefault)
: DefinitionData(D), Dependent(Dependent), IsGenericLambda(IsGeneric),
CaptureDefault(CaptureDefault), NumCaptures(0),
NumExplicitCaptures(0), HasKnownInternalLinkage(0), ManglingNumber(0),
MethodTyInfo(Info) {
IsLambda = true;
// C++1z [expr.prim.lambda]p4:
// This class type is not an aggregate type.
Aggregate = false;
PlainOldData = false;
}
};
struct DefinitionData *dataPtr() const {
// Complete the redecl chain (if necessary).
getMostRecentDecl();
return DefinitionData;
}
struct DefinitionData &data() const {
auto *DD = dataPtr();
assert(DD && "queried property of class with no definition");
return *DD;
}
struct LambdaDefinitionData &getLambdaData() const {
// No update required: a merged definition cannot change any lambda
// properties.
auto *DD = DefinitionData;
assert(DD && DD->IsLambda && "queried lambda property of non-lambda class");
return static_cast<LambdaDefinitionData&>(*DD);
}
/// The template or declaration that this declaration
/// describes or was instantiated from, respectively.
///
/// For non-templates, this value will be null. For record
/// declarations that describe a class template, this will be a
/// pointer to a ClassTemplateDecl. For member
/// classes of class template specializations, this will be the
/// MemberSpecializationInfo referring to the member class that was
/// instantiated or specialized.
llvm::PointerUnion<ClassTemplateDecl *, MemberSpecializationInfo *>
TemplateOrInstantiation;
/// Called from setBases and addedMember to notify the class that a
/// direct or virtual base class or a member of class type has been added.
void addedClassSubobject(CXXRecordDecl *Base);
/// Notify the class that member has been added.
///
/// This routine helps maintain information about the class based on which
/// members have been added. It will be invoked by DeclContext::addDecl()
/// whenever a member is added to this record.
void addedMember(Decl *D);
void markedVirtualFunctionPure();
/// Get the head of our list of friend declarations, possibly
/// deserializing the friends from an external AST source.
FriendDecl *getFirstFriend() const;
/// Determine whether this class has an empty base class subobject of type X
/// or of one of the types that might be at offset 0 within X (per the C++
/// "standard layout" rules).
bool hasSubobjectAtOffsetZeroOfEmptyBaseType(ASTContext &Ctx,
const CXXRecordDecl *X);
protected:
CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, CXXRecordDecl *PrevDecl);
public:
/// Iterator that traverses the base classes of a class.
using base_class_iterator = CXXBaseSpecifier *;
/// Iterator that traverses the base classes of a class.
using base_class_const_iterator = const CXXBaseSpecifier *;
CXXRecordDecl *getCanonicalDecl() override {
return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
}
const CXXRecordDecl *getCanonicalDecl() const {
return const_cast<CXXRecordDecl*>(this)->getCanonicalDecl();
}
CXXRecordDecl *getPreviousDecl() {
return cast_or_null<CXXRecordDecl>(
static_cast<RecordDecl *>(this)->getPreviousDecl());
}
const CXXRecordDecl *getPreviousDecl() const {
return const_cast<CXXRecordDecl*>(this)->getPreviousDecl();
}
CXXRecordDecl *getMostRecentDecl() {
return cast<CXXRecordDecl>(
static_cast<RecordDecl *>(this)->getMostRecentDecl());
}
const CXXRecordDecl *getMostRecentDecl() const {
return const_cast<CXXRecordDecl*>(this)->getMostRecentDecl();
}
CXXRecordDecl *getMostRecentNonInjectedDecl() {
CXXRecordDecl *Recent =
static_cast<CXXRecordDecl *>(this)->getMostRecentDecl();
while (Recent->isInjectedClassName()) {
// FIXME: Does injected class name need to be in the redeclarations chain?
assert(Recent->getPreviousDecl());
Recent = Recent->getPreviousDecl();
}
return Recent;
}
const CXXRecordDecl *getMostRecentNonInjectedDecl() const {
return const_cast<CXXRecordDecl*>(this)->getMostRecentNonInjectedDecl();
}
CXXRecordDecl *getDefinition() const {
// We only need an update if we don't already know which
// declaration is the definition.
auto *DD = DefinitionData ? DefinitionData : dataPtr();
return DD ? DD->Definition : nullptr;
}
bool hasDefinition() const { return DefinitionData || dataPtr(); }
static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id,
CXXRecordDecl *PrevDecl = nullptr,
bool DelayTypeCreation = false);
static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC,
TypeSourceInfo *Info, SourceLocation Loc,
bool DependentLambda, bool IsGeneric,
LambdaCaptureDefault CaptureDefault);
static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
bool isDynamicClass() const {
return data().Polymorphic || data().NumVBases != 0;
}
/// @returns true if class is dynamic or might be dynamic because the
/// definition is incomplete of dependent.
bool mayBeDynamicClass() const {
return !hasDefinition() || isDynamicClass() || hasAnyDependentBases();
}
/// @returns true if class is non dynamic or might be non dynamic because the
/// definition is incomplete of dependent.
bool mayBeNonDynamicClass() const {
return !hasDefinition() || !isDynamicClass() || hasAnyDependentBases();
}
void setIsParsingBaseSpecifiers() { data().IsParsingBaseSpecifiers = true; }
bool isParsingBaseSpecifiers() const {
return data().IsParsingBaseSpecifiers;
}
unsigned getODRHash() const;
/// Sets the base classes of this struct or class.
void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
/// Retrieves the number of base classes of this class.
unsigned getNumBases() const { return data().NumBases; }
using base_class_range = llvm::iterator_range<base_class_iterator>;
using base_class_const_range =
llvm::iterator_range<base_class_const_iterator>;
base_class_range bases() {
return base_class_range(bases_begin(), bases_end());
}
base_class_const_range bases() const {
return base_class_const_range(bases_begin(), bases_end());
}
base_class_iterator bases_begin() { return data().getBases(); }
base_class_const_iterator bases_begin() const { return data().getBases(); }
base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
base_class_const_iterator bases_end() const {
return bases_begin() + data().NumBases;
}
/// Retrieves the number of virtual base classes of this class.
unsigned getNumVBases() const { return data().NumVBases; }
base_class_range vbases() {
return base_class_range(vbases_begin(), vbases_end());
}
base_class_const_range vbases() const {
return base_class_const_range(vbases_begin(), vbases_end());
}
base_class_iterator vbases_begin() { return data().getVBases(); }
base_class_const_iterator vbases_begin() const { return data().getVBases(); }
base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
base_class_const_iterator vbases_end() const {
return vbases_begin() + data().NumVBases;
}
/// Determine whether this class has any dependent base classes which
/// are not the current instantiation.
bool hasAnyDependentBases() const;
/// Iterator access to method members. The method iterator visits
/// all method members of the class, including non-instance methods,
/// special methods, etc.
using method_iterator = specific_decl_iterator<CXXMethodDecl>;
using method_range =
llvm::iterator_range<specific_decl_iterator<CXXMethodDecl>>;
method_range methods() const {
return method_range(method_begin(), method_end());
}
/// Method begin iterator. Iterates in the order the methods
/// were declared.
method_iterator method_begin() const {
return method_iterator(decls_begin());
}
/// Method past-the-end iterator.
method_iterator method_end() const {
return method_iterator(decls_end());
}
/// Iterator access to constructor members.
using ctor_iterator = specific_decl_iterator<CXXConstructorDecl>;
using ctor_range =
llvm::iterator_range<specific_decl_iterator<CXXConstructorDecl>>;
ctor_range ctors() const { return ctor_range(ctor_begin(), ctor_end()); }
ctor_iterator ctor_begin() const {
return ctor_iterator(decls_begin());
}
ctor_iterator ctor_end() const {
return ctor_iterator(decls_end());
}
/// An iterator over friend declarations. All of these are defined
/// in DeclFriend.h.
class friend_iterator;
using friend_range = llvm::iterator_range<friend_iterator>;
friend_range friends() const;
friend_iterator friend_begin() const;
friend_iterator friend_end() const;
void pushFriendDecl(FriendDecl *FD);
/// Determines whether this record has any friends.
bool hasFriends() const {
return data().FirstFriend.isValid();
}
/// \c true if a defaulted copy constructor for this class would be
/// deleted.
bool defaultedCopyConstructorIsDeleted() const {
assert((!needsOverloadResolutionForCopyConstructor() ||
(data().DeclaredSpecialMembers & SMF_CopyConstructor)) &&
"this property has not yet been computed by Sema");
return data().DefaultedCopyConstructorIsDeleted;
}
/// \c true if a defaulted move constructor for this class would be
/// deleted.
bool defaultedMoveConstructorIsDeleted() const {
assert((!needsOverloadResolutionForMoveConstructor() ||
(data().DeclaredSpecialMembers & SMF_MoveConstructor)) &&
"this property has not yet been computed by Sema");
return data().DefaultedMoveConstructorIsDeleted;
}
/// \c true if a defaulted destructor for this class would be deleted.
bool defaultedDestructorIsDeleted() const {
assert((!needsOverloadResolutionForDestructor() ||
(data().DeclaredSpecialMembers & SMF_Destructor)) &&
"this property has not yet been computed by Sema");
return data().DefaultedDestructorIsDeleted;
}
/// \c true if we know for sure that this class has a single,
/// accessible, unambiguous copy constructor that is not deleted.
bool hasSimpleCopyConstructor() const {
return !hasUserDeclaredCopyConstructor() &&
!data().DefaultedCopyConstructorIsDeleted;
}
/// \c true if we know for sure that this class has a single,
/// accessible, unambiguous move constructor that is not deleted.
bool hasSimpleMoveConstructor() const {
return !hasUserDeclaredMoveConstructor() && hasMoveConstructor() &&
!data().DefaultedMoveConstructorIsDeleted;
}
/// \c true if we know for sure that this class has a single,
/// accessible, unambiguous copy assignment operator that is not deleted.
bool hasSimpleCopyAssignment() const {
return !hasUserDeclaredCopyAssignment() &&
!data().DefaultedCopyAssignmentIsDeleted;
}
/// \c true if we know for sure that this class has a single,
/// accessible, unambiguous move assignment operator that is not deleted.
bool hasSimpleMoveAssignment() const {
return !hasUserDeclaredMoveAssignment() && hasMoveAssignment() &&
!data().DefaultedMoveAssignmentIsDeleted;
}
/// \c true if we know for sure that this class has an accessible
/// destructor that is not deleted.
bool hasSimpleDestructor() const {
return !hasUserDeclaredDestructor() &&
!data().DefaultedDestructorIsDeleted;
}
/// Determine whether this class has any default constructors.
bool hasDefaultConstructor() const {
return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) ||
needsImplicitDefaultConstructor();
}
/// Determine if we need to declare a default constructor for
/// this class.
///
/// This value is used for lazy creation of default constructors.
bool needsImplicitDefaultConstructor() const {
return (!data().UserDeclaredConstructor &&
!(data().DeclaredSpecialMembers & SMF_DefaultConstructor) &&
(!isLambda() || lambdaIsDefaultConstructibleAndAssignable())) ||
// FIXME: Proposed fix to core wording issue: if a class inherits
// a default constructor and doesn't explicitly declare one, one
// is declared implicitly.
(data().HasInheritedDefaultConstructor &&
!(data().DeclaredSpecialMembers & SMF_DefaultConstructor));
}
/// Determine whether this class has any user-declared constructors.
///
/// When true, a default constructor will not be implicitly declared.
bool hasUserDeclaredConstructor() const {
return data().UserDeclaredConstructor;
}
/// Whether this class has a user-provided default constructor
/// per C++11.
bool hasUserProvidedDefaultConstructor() const {
return data().UserProvidedDefaultConstructor;
}
/// Determine whether this class has a user-declared copy constructor.
///
/// When false, a copy constructor will be implicitly declared.
bool hasUserDeclaredCopyConstructor() const {
return data().UserDeclaredSpecialMembers & SMF_CopyConstructor;
}
/// Determine whether this class needs an implicit copy
/// constructor to be lazily declared.
bool needsImplicitCopyConstructor() const {
return !(data().DeclaredSpecialMembers & SMF_CopyConstructor);
}
/// Determine whether we need to eagerly declare a defaulted copy
/// constructor for this class.
bool needsOverloadResolutionForCopyConstructor() const {
// C++17 [class.copy.ctor]p6:
// If the class definition declares a move constructor or move assignment
// operator, the implicitly declared copy constructor is defined as
// deleted.
// In MSVC mode, sometimes a declared move assignment does not delete an
// implicit copy constructor, so defer this choice to Sema.
if (data().UserDeclaredSpecialMembers &
(SMF_MoveConstructor | SMF_MoveAssignment))
return true;
return data().NeedOverloadResolutionForCopyConstructor;
}
/// Determine whether an implicit copy constructor for this type
/// would have a parameter with a const-qualified reference type.
bool implicitCopyConstructorHasConstParam() const {
return data().ImplicitCopyConstructorCanHaveConstParamForNonVBase &&
(isAbstract() ||
data().ImplicitCopyConstructorCanHaveConstParamForVBase);
}
/// Determine whether this class has a copy constructor with
/// a parameter type which is a reference to a const-qualified type.
bool hasCopyConstructorWithConstParam() const {
return data().HasDeclaredCopyConstructorWithConstParam ||
(needsImplicitCopyConstructor() &&
implicitCopyConstructorHasConstParam());
}
/// Whether this class has a user-declared move constructor or
/// assignment operator.
///
/// When false, a move constructor and assignment operator may be
/// implicitly declared.
bool hasUserDeclaredMoveOperation() const {
return data().UserDeclaredSpecialMembers &
(SMF_MoveConstructor | SMF_MoveAssignment);
}
/// Determine whether this class has had a move constructor
/// declared by the user.
bool hasUserDeclaredMoveConstructor() const {
return data().UserDeclaredSpecialMembers & SMF_MoveConstructor;
}
/// Determine whether this class has a move constructor.
bool hasMoveConstructor() const {
return (data().DeclaredSpecialMembers & SMF_MoveConstructor) ||
needsImplicitMoveConstructor();
}
/// Set that we attempted to declare an implicit copy
/// constructor, but overload resolution failed so we deleted it.
void setImplicitCopyConstructorIsDeleted() {
assert((data().DefaultedCopyConstructorIsDeleted ||
needsOverloadResolutionForCopyConstructor()) &&
"Copy constructor should not be deleted");
data().DefaultedCopyConstructorIsDeleted = true;
}
/// Set that we attempted to declare an implicit move
/// constructor, but overload resolution failed so we deleted it.
void setImplicitMoveConstructorIsDeleted() {
assert((data().DefaultedMoveConstructorIsDeleted ||
needsOverloadResolutionForMoveConstructor()) &&
"move constructor should not be deleted");
data().DefaultedMoveConstructorIsDeleted = true;
}
/// Set that we attempted to declare an implicit destructor,
/// but overload resolution failed so we deleted it.
void setImplicitDestructorIsDeleted() {
assert((data().DefaultedDestructorIsDeleted ||
needsOverloadResolutionForDestructor()) &&
"destructor should not be deleted");
data().DefaultedDestructorIsDeleted = true;
}
/// Determine whether this class should get an implicit move
/// constructor or if any existing special member function inhibits this.
bool needsImplicitMoveConstructor() const {
return !(data().DeclaredSpecialMembers & SMF_MoveConstructor) &&
!hasUserDeclaredCopyConstructor() &&
!hasUserDeclaredCopyAssignment() &&
!hasUserDeclaredMoveAssignment() &&
!hasUserDeclaredDestructor();
}
/// Determine whether we need to eagerly declare a defaulted move
/// constructor for this class.
bool needsOverloadResolutionForMoveConstructor() const {
return data().NeedOverloadResolutionForMoveConstructor;
}
/// Determine whether this class has a user-declared copy assignment
/// operator.
///
/// When false, a copy assignment operator will be implicitly declared.
bool hasUserDeclaredCopyAssignment() const {
return data().UserDeclaredSpecialMembers & SMF_CopyAssignment;
}
/// Set that we attempted to declare an implicit copy assignment
/// operator, but overload resolution failed so we deleted it.
void setImplicitCopyAssignmentIsDeleted() {
assert((data().DefaultedCopyAssignmentIsDeleted ||
needsOverloadResolutionForCopyAssignment()) &&
"copy assignment should not be deleted");
data().DefaultedCopyAssignmentIsDeleted = true;
}
/// Determine whether this class needs an implicit copy
/// assignment operator to be lazily declared.
bool needsImplicitCopyAssignment() const {
return !(data().DeclaredSpecialMembers & SMF_CopyAssignment);
}
/// Determine whether we need to eagerly declare a defaulted copy
/// assignment operator for this class.
bool needsOverloadResolutionForCopyAssignment() const {
// C++20 [class.copy.assign]p2:
// If the class definition declares a move constructor or move assignment
// operator, the implicitly declared copy assignment operator is defined
// as deleted.
// In MSVC mode, sometimes a declared move constructor does not delete an
// implicit copy assignment, so defer this choice to Sema.
if (data().UserDeclaredSpecialMembers &
(SMF_MoveConstructor | SMF_MoveAssignment))
return true;
return data().NeedOverloadResolutionForCopyAssignment;
}
/// Determine whether an implicit copy assignment operator for this
/// type would have a parameter with a const-qualified reference type.
bool implicitCopyAssignmentHasConstParam() const {
return data().ImplicitCopyAssignmentHasConstParam;
}
/// Determine whether this class has a copy assignment operator with
/// a parameter type which is a reference to a const-qualified type or is not
/// a reference.
bool hasCopyAssignmentWithConstParam() const {
return data().HasDeclaredCopyAssignmentWithConstParam ||
(needsImplicitCopyAssignment() &&
implicitCopyAssignmentHasConstParam());
}
/// Determine whether this class has had a move assignment
/// declared by the user.
bool hasUserDeclaredMoveAssignment() const {
return data().UserDeclaredSpecialMembers & SMF_MoveAssignment;
}
/// Determine whether this class has a move assignment operator.
bool hasMoveAssignment() const {
return (data().DeclaredSpecialMembers & SMF_MoveAssignment) ||
needsImplicitMoveAssignment();
}
/// Set that we attempted to declare an implicit move assignment
/// operator, but overload resolution failed so we deleted it.
void setImplicitMoveAssignmentIsDeleted() {
assert((data().DefaultedMoveAssignmentIsDeleted ||
needsOverloadResolutionForMoveAssignment()) &&
"move assignment should not be deleted");
data().DefaultedMoveAssignmentIsDeleted = true;
}
/// Determine whether this class should get an implicit move
/// assignment operator or if any existing special member function inhibits
/// this.
bool needsImplicitMoveAssignment() const {
return !(data().DeclaredSpecialMembers & SMF_MoveAssignment) &&
!hasUserDeclaredCopyConstructor() &&
!hasUserDeclaredCopyAssignment() &&
!hasUserDeclaredMoveConstructor() &&
!hasUserDeclaredDestructor() &&
(!isLambda() || lambdaIsDefaultConstructibleAndAssignable());
}
/// Determine whether we need to eagerly declare a move assignment
/// operator for this class.
bool needsOverloadResolutionForMoveAssignment() const {
return data().NeedOverloadResolutionForMoveAssignment;
}
/// Determine whether this class has a user-declared destructor.
///
/// When false, a destructor will be implicitly declared.
bool hasUserDeclaredDestructor() const {
return data().UserDeclaredSpecialMembers & SMF_Destructor;
}
/// Determine whether this class needs an implicit destructor to
/// be lazily declared.
bool needsImplicitDestructor() const {
return !(data().DeclaredSpecialMembers & SMF_Destructor);
}
/// Determine whether we need to eagerly declare a destructor for this
/// class.
bool needsOverloadResolutionForDestructor() const {
return data().NeedOverloadResolutionForDestructor;
}
/// Determine whether this class describes a lambda function object.
bool isLambda() const {
// An update record can't turn a non-lambda into a lambda.
auto *DD = DefinitionData;
return DD && DD->IsLambda;
}
/// Determine whether this class describes a generic
/// lambda function object (i.e. function call operator is
/// a template).
bool isGenericLambda() const;
/// Determine whether this lambda should have an implicit default constructor
/// and copy and move assignment operators.
bool lambdaIsDefaultConstructibleAndAssignable() const;
/// Retrieve the lambda call operator of the closure type
/// if this is a closure type.
CXXMethodDecl *getLambdaCallOperator() const;
/// Retrieve the dependent lambda call operator of the closure type
/// if this is a templated closure type.
FunctionTemplateDecl *getDependentLambdaCallOperator() const;
/// Retrieve the lambda static invoker, the address of which
/// is returned by the conversion operator, and the body of which
/// is forwarded to the lambda call operator. The version that does not
/// take a calling convention uses the 'default' calling convention for free
/// functions if the Lambda's calling convention was not modified via
/// attribute. Otherwise, it will return the calling convention specified for
/// the lambda.
CXXMethodDecl *getLambdaStaticInvoker() const;
CXXMethodDecl *getLambdaStaticInvoker(CallingConv CC) const;
/// Retrieve the generic lambda's template parameter list.
/// Returns null if the class does not represent a lambda or a generic
/// lambda.
TemplateParameterList *getGenericLambdaTemplateParameterList() const;
/// Retrieve the lambda template parameters that were specified explicitly.
ArrayRef<NamedDecl *> getLambdaExplicitTemplateParameters() const;
LambdaCaptureDefault getLambdaCaptureDefault() const {
assert(isLambda());
return static_cast<LambdaCaptureDefault>(getLambdaData().CaptureDefault);
}
/// Set the captures for this lambda closure type.
void setCaptures(ASTContext &Context, ArrayRef<LambdaCapture> Captures);
/// For a closure type, retrieve the mapping from captured
/// variables and \c this to the non-static data members that store the
/// values or references of the captures.
///
/// \param Captures Will be populated with the mapping from captured
/// variables to the corresponding fields.
///
/// \param ThisCapture Will be set to the field declaration for the
/// \c this capture.
///
/// \note No entries will be added for init-captures, as they do not capture
/// variables.
void getCaptureFields(llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
FieldDecl *&ThisCapture) const;
using capture_const_iterator = const LambdaCapture *;
using capture_const_range = llvm::iterator_range<capture_const_iterator>;
capture_const_range captures() const {
return capture_const_range(captures_begin(), captures_end());
}
capture_const_iterator captures_begin() const {
return isLambda() ? getLambdaData().Captures : nullptr;
}
capture_const_iterator captures_end() const {
return isLambda() ? captures_begin() + getLambdaData().NumCaptures
: nullptr;
}
unsigned capture_size() const { return getLambdaData().NumCaptures; }
using conversion_iterator = UnresolvedSetIterator;
conversion_iterator conversion_begin() const {
return data().Conversions.get(getASTContext()).begin();
}
conversion_iterator conversion_end() const {
return data().Conversions.get(getASTContext()).end();
}
/// Removes a conversion function from this class. The conversion
/// function must currently be a member of this class. Furthermore,
/// this class must currently be in the process of being defined.
void removeConversion(const NamedDecl *Old);
/// Get all conversion functions visible in current class,
/// including conversion function templates.
llvm::iterator_range<conversion_iterator>
getVisibleConversionFunctions() const;
/// Determine whether this class is an aggregate (C++ [dcl.init.aggr]),
/// which is a class with no user-declared constructors, no private
/// or protected non-static data members, no base classes, and no virtual
/// functions (C++ [dcl.init.aggr]p1).
bool isAggregate() const { return data().Aggregate; }
/// Whether this class has any in-class initializers
/// for non-static data members (including those in anonymous unions or
/// structs).
bool hasInClassInitializer() const { return data().HasInClassInitializer; }
/// Whether this class or any of its subobjects has any members of
/// reference type which would make value-initialization ill-formed.
///
/// Per C++03 [dcl.init]p5:
/// - if T is a non-union class type without a user-declared constructor,
/// then every non-static data member and base-class component of T is
/// value-initialized [...] A program that calls for [...]
/// value-initialization of an entity of reference type is ill-formed.
bool hasUninitializedReferenceMember() const {
return !isUnion() && !hasUserDeclaredConstructor() &&
data().HasUninitializedReferenceMember;
}
/// Whether this class is a POD-type (C++ [class]p4)
///
/// For purposes of this function a class is POD if it is an aggregate
/// that has no non-static non-POD data members, no reference data
/// members, no user-defined copy assignment operator and no
/// user-defined destructor.
///
/// Note that this is the C++ TR1 definition of POD.
bool isPOD() const { return data().PlainOldData; }
/// True if this class is C-like, without C++-specific features, e.g.
/// it contains only public fields, no bases, tag kind is not 'class', etc.
bool isCLike() const;
/// Determine whether this is an empty class in the sense of
/// (C++11 [meta.unary.prop]).
///
/// The CXXRecordDecl is a class type, but not a union type,
/// with no non-static data members other than bit-fields of length 0,
/// no virtual member functions, no virtual base classes,
/// and no base class B for which is_empty<B>::value is false.
///
/// \note This does NOT include a check for union-ness.
bool isEmpty() const { return data().Empty; }
void setInitMethod(bool Val) { data().HasInitMethod = Val; }
bool hasInitMethod() const { return data().HasInitMethod; }
bool hasPrivateFields() const {
return data().HasPrivateFields;
}
bool hasProtectedFields() const {
return data().HasProtectedFields;
}
/// Determine whether this class has direct non-static data members.
bool hasDirectFields() const {
auto &D = data();
return D.HasPublicFields || D.HasProtectedFields || D.HasPrivateFields;
}
/// Whether this class is polymorphic (C++ [class.virtual]),
/// which means that the class contains or inherits a virtual function.
bool isPolymorphic() const { return data().Polymorphic; }
/// Determine whether this class has a pure virtual function.
///
/// The class is is abstract per (C++ [class.abstract]p2) if it declares
/// a pure virtual function or inherits a pure virtual function that is
/// not overridden.
bool isAbstract() const { return data().Abstract; }
/// Determine whether this class is standard-layout per
/// C++ [class]p7.
bool isStandardLayout() const { return data().IsStandardLayout; }
/// Determine whether this class was standard-layout per
/// C++11 [class]p7, specifically using the C++11 rules without any DRs.
bool isCXX11StandardLayout() const { return data().IsCXX11StandardLayout; }
/// Determine whether this class, or any of its class subobjects,
/// contains a mutable field.
bool hasMutableFields() const { return data().HasMutableFields; }
/// Determine whether this class has any variant members.
bool hasVariantMembers() const { return data().HasVariantMembers; }
/// Determine whether this class has a trivial default constructor
/// (C++11 [class.ctor]p5).
bool hasTrivialDefaultConstructor() const {
return hasDefaultConstructor() &&
(data().HasTrivialSpecialMembers & SMF_DefaultConstructor);
}
/// Determine whether this class has a non-trivial default constructor
/// (C++11 [class.ctor]p5).
bool hasNonTrivialDefaultConstructor() const {
return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) ||
(needsImplicitDefaultConstructor() &&
!(data().HasTrivialSpecialMembers & SMF_DefaultConstructor));
}
/// Determine whether this class has at least one constexpr constructor
/// other than the copy or move constructors.
bool hasConstexprNonCopyMoveConstructor() const {
return data().HasConstexprNonCopyMoveConstructor ||
(needsImplicitDefaultConstructor() &&
defaultedDefaultConstructorIsConstexpr());
}
/// Determine whether a defaulted default constructor for this class
/// would be constexpr.
bool defaultedDefaultConstructorIsConstexpr() const {
return data().DefaultedDefaultConstructorIsConstexpr &&
(!isUnion() || hasInClassInitializer() || !hasVariantMembers() ||
getLangOpts().CPlusPlus20);
}
/// Determine whether this class has a constexpr default constructor.
bool hasConstexprDefaultConstructor() const {
return data().HasConstexprDefaultConstructor ||
(needsImplicitDefaultConstructor() &&
defaultedDefaultConstructorIsConstexpr());
}
/// Determine whether this class has a trivial copy constructor
/// (C++ [class.copy]p6, C++11 [class.copy]p12)
bool hasTrivialCopyConstructor() const {
return data().HasTrivialSpecialMembers & SMF_CopyConstructor;
}
bool hasTrivialCopyConstructorForCall() const {
return data().HasTrivialSpecialMembersForCall & SMF_CopyConstructor;
}
/// Determine whether this class has a non-trivial copy constructor
/// (C++ [class.copy]p6, C++11 [class.copy]p12)
bool hasNonTrivialCopyConstructor() const {
return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor ||
!hasTrivialCopyConstructor();
}
bool hasNonTrivialCopyConstructorForCall() const {
return (data().DeclaredNonTrivialSpecialMembersForCall &
SMF_CopyConstructor) ||
!hasTrivialCopyConstructorForCall();
}
/// Determine whether this class has a trivial move constructor
/// (C++11 [class.copy]p12)
bool hasTrivialMoveConstructor() const {
return hasMoveConstructor() &&
(data().HasTrivialSpecialMembers & SMF_MoveConstructor);
}
bool hasTrivialMoveConstructorForCall() const {
return hasMoveConstructor() &&
(data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor);
}
/// Determine whether this class has a non-trivial move constructor
/// (C++11 [class.copy]p12)
bool hasNonTrivialMoveConstructor() const {
return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) ||
(needsImplicitMoveConstructor() &&
!(data().HasTrivialSpecialMembers & SMF_MoveConstructor));
}
bool hasNonTrivialMoveConstructorForCall() const {
return (data().DeclaredNonTrivialSpecialMembersForCall &
SMF_MoveConstructor) ||
(needsImplicitMoveConstructor() &&
!(data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor));
}
/// Determine whether this class has a trivial copy assignment operator
/// (C++ [class.copy]p11, C++11 [class.copy]p25)
bool hasTrivialCopyAssignment() const {
return data().HasTrivialSpecialMembers & SMF_CopyAssignment;
}
/// Determine whether this class has a non-trivial copy assignment
/// operator (C++ [class.copy]p11, C++11 [class.copy]p25)
bool hasNonTrivialCopyAssignment() const {
return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment ||
!hasTrivialCopyAssignment();
}
/// Determine whether this class has a trivial move assignment operator
/// (C++11 [class.copy]p25)
bool hasTrivialMoveAssignment() const {
return hasMoveAssignment() &&
(data().HasTrivialSpecialMembers & SMF_MoveAssignment);
}
/// Determine whether this class has a non-trivial move assignment
/// operator (C++11 [class.copy]p25)
bool hasNonTrivialMoveAssignment() const {
return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) ||
(needsImplicitMoveAssignment() &&
!(data().HasTrivialSpecialMembers & SMF_MoveAssignment));
}
/// Determine whether a defaulted default constructor for this class
/// would be constexpr.
bool defaultedDestructorIsConstexpr() const {
return data().DefaultedDestructorIsConstexpr &&
getLangOpts().CPlusPlus20;
}
/// Determine whether this class has a constexpr destructor.
bool hasConstexprDestructor() const;
/// Determine whether this class has a trivial destructor
/// (C++ [class.dtor]p3)
bool hasTrivialDestructor() const {
return data().HasTrivialSpecialMembers & SMF_Destructor;
}
bool hasTrivialDestructorForCall() const {
return data().HasTrivialSpecialMembersForCall & SMF_Destructor;
}
/// Determine whether this class has a non-trivial destructor
/// (C++ [class.dtor]p3)
bool hasNonTrivialDestructor() const {
return !(data().HasTrivialSpecialMembers & SMF_Destructor);
}
bool hasNonTrivialDestructorForCall() const {
return !(data().HasTrivialSpecialMembersForCall & SMF_Destructor);
}
void setHasTrivialSpecialMemberForCall() {
data().HasTrivialSpecialMembersForCall =
(SMF_CopyConstructor | SMF_MoveConstructor | SMF_Destructor);
}
/// Determine whether declaring a const variable with this type is ok
/// per core issue 253.
bool allowConstDefaultInit() const {
return !data().HasUninitializedFields ||
!(data().HasDefaultedDefaultConstructor ||
needsImplicitDefaultConstructor());
}
/// Determine whether this class has a destructor which has no
/// semantic effect.
///
/// Any such destructor will be trivial, public, defaulted and not deleted,
/// and will call only irrelevant destructors.
bool hasIrrelevantDestructor() const {
return data().HasIrrelevantDestructor;
}
/// Determine whether this class has a non-literal or/ volatile type
/// non-static data member or base class.
bool hasNonLiteralTypeFieldsOrBases() const {
return data().HasNonLiteralTypeFieldsOrBases;
}
/// Determine whether this class has a using-declaration that names
/// a user-declared base class constructor.
bool hasInheritedConstructor() const {
return data().HasInheritedConstructor;
}
/// Determine whether this class has a using-declaration that names
/// a base class assignment operator.
bool hasInheritedAssignment() const {
return data().HasInheritedAssignment;
}
/// Determine whether this class is considered trivially copyable per
/// (C++11 [class]p6).
bool isTriviallyCopyable() const;
/// Determine whether this class is considered trivial.
///
/// C++11 [class]p6:
/// "A trivial class is a class that has a trivial default constructor and
/// is trivially copyable."
bool isTrivial() const {
return isTriviallyCopyable() && hasTrivialDefaultConstructor();
}
/// Determine whether this class is a literal type.
///
/// C++11 [basic.types]p10:
/// A class type that has all the following properties:
/// - it has a trivial destructor
/// - every constructor call and full-expression in the
/// brace-or-equal-intializers for non-static data members (if any) is
/// a constant expression.
/// - it is an aggregate type or has at least one constexpr constructor
/// or constructor template that is not a copy or move constructor, and
/// - all of its non-static data members and base classes are of literal
/// types
///
/// We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by
/// treating types with trivial default constructors as literal types.
///
/// Only in C++17 and beyond, are lambdas literal types.
bool isLiteral() const {
const LangOptions &LangOpts = getLangOpts();
return (LangOpts.CPlusPlus20 ? hasConstexprDestructor()
: hasTrivialDestructor()) &&
(!isLambda() || LangOpts.CPlusPlus17) &&
!hasNonLiteralTypeFieldsOrBases() &&
(isAggregate() || isLambda() ||
hasConstexprNonCopyMoveConstructor() ||
hasTrivialDefaultConstructor());
}
/// Determine whether this is a structural type.
bool isStructural() const {
return isLiteral() && data().StructuralIfLiteral;
}
/// If this record is an instantiation of a member class,
/// retrieves the member class from which it was instantiated.
///
/// This routine will return non-null for (non-templated) member
/// classes of class templates. For example, given:
///
/// \code
/// template<typename T>
/// struct X {
/// struct A { };
/// };
/// \endcode
///
/// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
/// whose parent is the class template specialization X<int>. For
/// this declaration, getInstantiatedFromMemberClass() will return
/// the CXXRecordDecl X<T>::A. When a complete definition of
/// X<int>::A is required, it will be instantiated from the
/// declaration returned by getInstantiatedFromMemberClass().
CXXRecordDecl *getInstantiatedFromMemberClass() const;
/// If this class is an instantiation of a member class of a
/// class template specialization, retrieves the member specialization
/// information.
MemberSpecializationInfo *getMemberSpecializationInfo() const;
/// Specify that this record is an instantiation of the
/// member class \p RD.
void setInstantiationOfMemberClass(CXXRecordDecl *RD,
TemplateSpecializationKind TSK);
/// Retrieves the class template that is described by this
/// class declaration.
///
/// Every class template is represented as a ClassTemplateDecl and a
/// CXXRecordDecl. The former contains template properties (such as
/// the template parameter lists) while the latter contains the
/// actual description of the template's
/// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
/// CXXRecordDecl that from a ClassTemplateDecl, while
/// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
/// a CXXRecordDecl.
ClassTemplateDecl *getDescribedClassTemplate() const;
void setDescribedClassTemplate(ClassTemplateDecl *Template);
/// Determine whether this particular class is a specialization or
/// instantiation of a class template or member class of a class template,
/// and how it was instantiated or specialized.
TemplateSpecializationKind getTemplateSpecializationKind() const;
/// Set the kind of specialization or template instantiation this is.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
/// Retrieve the record declaration from which this record could be
/// instantiated. Returns null if this class is not a template instantiation.
const CXXRecordDecl *getTemplateInstantiationPattern() const;
CXXRecordDecl *getTemplateInstantiationPattern() {
return const_cast<CXXRecordDecl *>(const_cast<const CXXRecordDecl *>(this)
->getTemplateInstantiationPattern());
}
/// Returns the destructor decl for this class.
CXXDestructorDecl *getDestructor() const;
/// Returns true if the class destructor, or any implicitly invoked
/// destructors are marked noreturn.
bool isAnyDestructorNoReturn() const { return data().IsAnyDestructorNoReturn; }
/// If the class is a local class [class.local], returns
/// the enclosing function declaration.
const FunctionDecl *isLocalClass() const {
if (const auto *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
return RD->isLocalClass();
return dyn_cast<FunctionDecl>(getDeclContext());
}
FunctionDecl *isLocalClass() {
return const_cast<FunctionDecl*>(
const_cast<const CXXRecordDecl*>(this)->isLocalClass());
}
/// Determine whether this dependent class is a current instantiation,
/// when viewed from within the given context.
bool isCurrentInstantiation(const DeclContext *CurContext) const;
/// Determine whether this class is derived from the class \p Base.
///
/// This routine only determines whether this class is derived from \p Base,
/// but does not account for factors that may make a Derived -> Base class
/// ill-formed, such as private/protected inheritance or multiple, ambiguous
/// base class subobjects.
///
/// \param Base the base class we are searching for.
///
/// \returns true if this class is derived from Base, false otherwise.
bool isDerivedFrom(const CXXRecordDecl *Base) const;
/// Determine whether this class is derived from the type \p Base.
///
/// This routine only determines whether this class is derived from \p Base,
/// but does not account for factors that may make a Derived -> Base class
/// ill-formed, such as private/protected inheritance or multiple, ambiguous
/// base class subobjects.
///
/// \param Base the base class we are searching for.
///
/// \param Paths will contain the paths taken from the current class to the
/// given \p Base class.
///
/// \returns true if this class is derived from \p Base, false otherwise.
///
/// \todo add a separate parameter to configure IsDerivedFrom, rather than
/// tangling input and output in \p Paths
bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const;
/// Determine whether this class is virtually derived from
/// the class \p Base.
///
/// This routine only determines whether this class is virtually
/// derived from \p Base, but does not account for factors that may
/// make a Derived -> Base class ill-formed, such as
/// private/protected inheritance or multiple, ambiguous base class
/// subobjects.
///
/// \param Base the base class we are searching for.
///
/// \returns true if this class is virtually derived from Base,
/// false otherwise.
bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const;
/// Determine whether this class is provably not derived from
/// the type \p Base.
bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
/// Function type used by forallBases() as a callback.
///
/// \param BaseDefinition the definition of the base class
///
/// \returns true if this base matched the search criteria
using ForallBasesCallback =
llvm::function_ref<bool(const CXXRecordDecl *BaseDefinition)>;
/// Determines if the given callback holds for all the direct
/// or indirect base classes of this type.
///
/// The class itself does not count as a base class. This routine
/// returns false if the class has non-computable base classes.
///
/// \param BaseMatches Callback invoked for each (direct or indirect) base
/// class of this type until a call returns false.
bool forallBases(ForallBasesCallback BaseMatches) const;
/// Function type used by lookupInBases() to determine whether a
/// specific base class subobject matches the lookup criteria.
///
/// \param Specifier the base-class specifier that describes the inheritance
/// from the base class we are trying to match.
///
/// \param Path the current path, from the most-derived class down to the
/// base named by the \p Specifier.
///
/// \returns true if this base matched the search criteria, false otherwise.
using BaseMatchesCallback =
llvm::function_ref<bool(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path)>;
/// Look for entities within the base classes of this C++ class,
/// transitively searching all base class subobjects.
///
/// This routine uses the callback function \p BaseMatches to find base
/// classes meeting some search criteria, walking all base class subobjects
/// and populating the given \p Paths structure with the paths through the
/// inheritance hierarchy that resulted in a match. On a successful search,
/// the \p Paths structure can be queried to retrieve the matching paths and
/// to determine if there were any ambiguities.
///
/// \param BaseMatches callback function used to determine whether a given
/// base matches the user-defined search criteria.
///
/// \param Paths used to record the paths from this class to its base class
/// subobjects that match the search criteria.
///
/// \param LookupInDependent can be set to true to extend the search to
/// dependent base classes.
///
/// \returns true if there exists any path from this class to a base class
/// subobject that matches the search criteria.
bool lookupInBases(BaseMatchesCallback BaseMatches, CXXBasePaths &Paths,
bool LookupInDependent = false) const;
/// Base-class lookup callback that determines whether the given
/// base class specifier refers to a specific class declaration.
///
/// This callback can be used with \c lookupInBases() to determine whether
/// a given derived class has is a base class subobject of a particular type.
/// The base record pointer should refer to the canonical CXXRecordDecl of the
/// base class that we are searching for.
static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, const CXXRecordDecl *BaseRecord);
/// Base-class lookup callback that determines whether the
/// given base class specifier refers to a specific class
/// declaration and describes virtual derivation.
///
/// This callback can be used with \c lookupInBases() to determine
/// whether a given derived class has is a virtual base class
/// subobject of a particular type. The base record pointer should
/// refer to the canonical CXXRecordDecl of the base class that we
/// are searching for.
static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path,
const CXXRecordDecl *BaseRecord);
/// Retrieve the final overriders for each virtual member
/// function in the class hierarchy where this class is the
/// most-derived class in the class hierarchy.
void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const;
/// Get the indirect primary bases for this class.
void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const;
/// Determine whether this class has a member with the given name, possibly
/// in a non-dependent base class.
///
/// No check for ambiguity is performed, so this should never be used when
/// implementing language semantics, but it may be appropriate for warnings,
/// static analysis, or similar.
bool hasMemberName(DeclarationName N) const;
/// Performs an imprecise lookup of a dependent name in this class.
///
/// This function does not follow strict semantic rules and should be used
/// only when lookup rules can be relaxed, e.g. indexing.
std::vector<const NamedDecl *>
lookupDependentName(DeclarationName Name,
llvm::function_ref<bool(const NamedDecl *ND)> Filter);
/// Renders and displays an inheritance diagram
/// for this C++ class and all of its base classes (transitively) using
/// GraphViz.
void viewInheritance(ASTContext& Context) const;
/// Calculates the access of a decl that is reached
/// along a path.
static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
AccessSpecifier DeclAccess) {
assert(DeclAccess != AS_none);
if (DeclAccess == AS_private) return AS_none;
return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
}
/// Indicates that the declaration of a defaulted or deleted special
/// member function is now complete.
void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD);
void setTrivialForCallFlags(CXXMethodDecl *MD);
/// Indicates that the definition of this class is now complete.
void completeDefinition() override;
/// Indicates that the definition of this class is now complete,
/// and provides a final overrider map to help determine
///
/// \param FinalOverriders The final overrider map for this class, which can
/// be provided as an optimization for abstract-class checking. If NULL,
/// final overriders will be computed if they are needed to complete the
/// definition.
void completeDefinition(CXXFinalOverriderMap *FinalOverriders);
/// Determine whether this class may end up being abstract, even though
/// it is not yet known to be abstract.
///
/// \returns true if this class is not known to be abstract but has any
/// base classes that are abstract. In this case, \c completeDefinition()
/// will need to compute final overriders to determine whether the class is
/// actually abstract.
bool mayBeAbstract() const;
/// Determine whether it's impossible for a class to be derived from this
/// class. This is best-effort, and may conservatively return false.
bool isEffectivelyFinal() const;
/// If this is the closure type of a lambda expression, retrieve the
/// number to be used for name mangling in the Itanium C++ ABI.
///
/// Zero indicates that this closure type has internal linkage, so the
/// mangling number does not matter, while a non-zero value indicates which
/// lambda expression this is in this particular context.
unsigned getLambdaManglingNumber() const {
assert(isLambda() && "Not a lambda closure type!");
return getLambdaData().ManglingNumber;
}
/// The lambda is known to has internal linkage no matter whether it has name
/// mangling number.
bool hasKnownLambdaInternalLinkage() const {
assert(isLambda() && "Not a lambda closure type!");
return getLambdaData().HasKnownInternalLinkage;
}
/// Retrieve the declaration that provides additional context for a
/// lambda, when the normal declaration context is not specific enough.
///
/// Certain contexts (default arguments of in-class function parameters and
/// the initializers of data members) have separate name mangling rules for
/// lambdas within the Itanium C++ ABI. For these cases, this routine provides
/// the declaration in which the lambda occurs, e.g., the function parameter
/// or the non-static data member. Otherwise, it returns NULL to imply that
/// the declaration context suffices.
Decl *getLambdaContextDecl() const;
/// Set the mangling number and context declaration for a lambda
/// class.
void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl,
bool HasKnownInternalLinkage = false) {
assert(isLambda() && "Not a lambda closure type!");
getLambdaData().ManglingNumber = ManglingNumber;
getLambdaData().ContextDecl = ContextDecl;
getLambdaData().HasKnownInternalLinkage = HasKnownInternalLinkage;
}
/// Set the device side mangling number.
void setDeviceLambdaManglingNumber(unsigned Num) const;
/// Retrieve the device side mangling number.
unsigned getDeviceLambdaManglingNumber() const;
/// Returns the inheritance model used for this record.
MSInheritanceModel getMSInheritanceModel() const;
/// Calculate what the inheritance model would be for this class.
MSInheritanceModel calculateInheritanceModel() const;
/// In the Microsoft C++ ABI, use zero for the field offset of a null data
/// member pointer if we can guarantee that zero is not a valid field offset,
/// or if the member pointer has multiple fields. Polymorphic classes have a
/// vfptr at offset zero, so we can use zero for null. If there are multiple
/// fields, we can use zero even if it is a valid field offset because
/// null-ness testing will check the other fields.
bool nullFieldOffsetIsZero() const;
/// Controls when vtordisps will be emitted if this record is used as a
/// virtual base.
MSVtorDispMode getMSVtorDispMode() const;
/// Determine whether this lambda expression was known to be dependent
/// at the time it was created, even if its context does not appear to be
/// dependent.
///
/// This flag is a workaround for an issue with parsing, where default
/// arguments are parsed before their enclosing function declarations have
/// been created. This means that any lambda expressions within those
/// default arguments will have as their DeclContext the context enclosing
/// the function declaration, which may be non-dependent even when the
/// function declaration itself is dependent. This flag indicates when we
/// know that the lambda is dependent despite that.
bool isDependentLambda() const {
return isLambda() && getLambdaData().Dependent;
}
TypeSourceInfo *getLambdaTypeInfo() const {
return getLambdaData().MethodTyInfo;
}
// Determine whether this type is an Interface Like type for
// __interface inheritance purposes.
bool isInterfaceLike() const;
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstCXXRecord && K <= lastCXXRecord;
}
void markAbstract() { data().Abstract = true; }
};
/// Store information needed for an explicit specifier.
/// Used by CXXDeductionGuideDecl, CXXConstructorDecl and CXXConversionDecl.
class ExplicitSpecifier {
llvm::PointerIntPair<Expr *, 2, ExplicitSpecKind> ExplicitSpec{
nullptr, ExplicitSpecKind::ResolvedFalse};
public:
ExplicitSpecifier() = default;
ExplicitSpecifier(Expr *Expression, ExplicitSpecKind Kind)
: ExplicitSpec(Expression, Kind) {}
ExplicitSpecKind getKind() const { return ExplicitSpec.getInt(); }
const Expr *getExpr() const { return ExplicitSpec.getPointer(); }
Expr *getExpr() { return ExplicitSpec.getPointer(); }
/// Determine if the declaration had an explicit specifier of any kind.
bool isSpecified() const {
return ExplicitSpec.getInt() != ExplicitSpecKind::ResolvedFalse ||
ExplicitSpec.getPointer();
}
/// Check for equivalence of explicit specifiers.
/// \return true if the explicit specifier are equivalent, false otherwise.
bool isEquivalent(const ExplicitSpecifier Other) const;
/// Determine whether this specifier is known to correspond to an explicit
/// declaration. Returns false if the specifier is absent or has an
/// expression that is value-dependent or evaluates to false.
bool isExplicit() const {
return ExplicitSpec.getInt() == ExplicitSpecKind::ResolvedTrue;
}
/// Determine if the explicit specifier is invalid.
/// This state occurs after a substitution failures.
bool isInvalid() const {
return ExplicitSpec.getInt() == ExplicitSpecKind::Unresolved &&
!ExplicitSpec.getPointer();
}
void setKind(ExplicitSpecKind Kind) { ExplicitSpec.setInt(Kind); }
void setExpr(Expr *E) { ExplicitSpec.setPointer(E); }
// Retrieve the explicit specifier in the given declaration, if any.
static ExplicitSpecifier getFromDecl(FunctionDecl *Function);
static const ExplicitSpecifier getFromDecl(const FunctionDecl *Function) {
return getFromDecl(const_cast<FunctionDecl *>(Function));
}
static ExplicitSpecifier Invalid() {
return ExplicitSpecifier(nullptr, ExplicitSpecKind::Unresolved);
}
};
/// Represents a C++ deduction guide declaration.
///
/// \code
/// template<typename T> struct A { A(); A(T); };
/// A() -> A<int>;
/// \endcode
///
/// In this example, there will be an explicit deduction guide from the
/// second line, and implicit deduction guide templates synthesized from
/// the constructors of \c A.
class CXXDeductionGuideDecl : public FunctionDecl {
void anchor() override;
private:
CXXDeductionGuideDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
ExplicitSpecifier ES,
const DeclarationNameInfo &NameInfo, QualType T,
TypeSourceInfo *TInfo, SourceLocation EndLocation,
CXXConstructorDecl *Ctor)
: FunctionDecl(CXXDeductionGuide, C, DC, StartLoc, NameInfo, T, TInfo,
SC_None, false, false, ConstexprSpecKind::Unspecified),
Ctor(Ctor), ExplicitSpec(ES) {
if (EndLocation.isValid())
setRangeEnd(EndLocation);
setIsCopyDeductionCandidate(false);
}
CXXConstructorDecl *Ctor;
ExplicitSpecifier ExplicitSpec;
void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; }
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
static CXXDeductionGuideDecl *
Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T,
TypeSourceInfo *TInfo, SourceLocation EndLocation,
CXXConstructorDecl *Ctor = nullptr);
static CXXDeductionGuideDecl *CreateDeserialized(ASTContext &C, unsigned ID);
ExplicitSpecifier getExplicitSpecifier() { return ExplicitSpec; }
const ExplicitSpecifier getExplicitSpecifier() const { return ExplicitSpec; }
/// Return true if the declartion is already resolved to be explicit.
bool isExplicit() const { return ExplicitSpec.isExplicit(); }
/// Get the template for which this guide performs deduction.
TemplateDecl *getDeducedTemplate() const {
return getDeclName().getCXXDeductionGuideTemplate();
}
/// Get the constructor from which this deduction guide was generated, if
/// this is an implicit deduction guide.
CXXConstructorDecl *getCorrespondingConstructor() const {
return Ctor;
}
void setIsCopyDeductionCandidate(bool isCDC = true) {
FunctionDeclBits.IsCopyDeductionCandidate = isCDC;
}
bool isCopyDeductionCandidate() const {
return FunctionDeclBits.IsCopyDeductionCandidate;
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == CXXDeductionGuide; }
};
/// \brief Represents the body of a requires-expression.
///
/// This decl exists merely to serve as the DeclContext for the local
/// parameters of the requires expression as well as other declarations inside
/// it.
///
/// \code
/// template<typename T> requires requires (T t) { {t++} -> regular; }
/// \endcode
///
/// In this example, a RequiresExpr object will be generated for the expression,
/// and a RequiresExprBodyDecl will be created to hold the parameter t and the
/// template argument list imposed by the compound requirement.
class RequiresExprBodyDecl : public Decl, public DeclContext {
RequiresExprBodyDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc)
: Decl(RequiresExprBody, DC, StartLoc), DeclContext(RequiresExprBody) {}
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
static RequiresExprBodyDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc);
static RequiresExprBodyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == RequiresExprBody; }
};
/// Represents a static or instance method of a struct/union/class.
///
/// In the terminology of the C++ Standard, these are the (static and
/// non-static) member functions, whether virtual or not.
class CXXMethodDecl : public FunctionDecl {
void anchor() override;
protected:
CXXMethodDecl(Kind DK, ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc, const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo, StorageClass SC,
bool UsesFPIntrin, bool isInline,
ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
Expr *TrailingRequiresClause = nullptr)
: FunctionDecl(DK, C, RD, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
isInline, ConstexprKind, TrailingRequiresClause) {
if (EndLocation.isValid())
setRangeEnd(EndLocation);
}
public:
static CXXMethodDecl *
Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
StorageClass SC, bool UsesFPIntrin, bool isInline,
ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
Expr *TrailingRequiresClause = nullptr);
static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
bool isStatic() const;
bool isInstance() const { return !isStatic(); }
/// Returns true if the given operator is implicitly static in a record
/// context.
static bool isStaticOverloadedOperator(OverloadedOperatorKind OOK) {
// [class.free]p1:
// Any allocation function for a class T is a static member
// (even if not explicitly declared static).
// [class.free]p6 Any deallocation function for a class X is a static member
// (even if not explicitly declared static).
return OOK == OO_New || OOK == OO_Array_New || OOK == OO_Delete ||
OOK == OO_Array_Delete;
}
bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); }
bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); }
bool isVirtual() const {
CXXMethodDecl *CD = const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
// Member function is virtual if it is marked explicitly so, or if it is
// declared in __interface -- then it is automatically pure virtual.
if (CD->isVirtualAsWritten() || CD->isPure())
return true;
return CD->size_overridden_methods() != 0;
}
/// If it's possible to devirtualize a call to this method, return the called
/// function. Otherwise, return null.
/// \param Base The object on which this virtual function is called.
/// \param IsAppleKext True if we are compiling for Apple kext.
CXXMethodDecl *getDevirtualizedMethod(const Expr *Base, bool IsAppleKext);
const CXXMethodDecl *getDevirtualizedMethod(const Expr *Base,
bool IsAppleKext) const {
return const_cast<CXXMethodDecl *>(this)->getDevirtualizedMethod(
Base, IsAppleKext);
}
/// Determine whether this is a usual deallocation function (C++
/// [basic.stc.dynamic.deallocation]p2), which is an overloaded delete or
/// delete[] operator with a particular signature. Populates \p PreventedBy
/// with the declarations of the functions of the same kind if they were the
/// reason for this function returning false. This is used by
/// Sema::isUsualDeallocationFunction to reconsider the answer based on the
/// context.
bool isUsualDeallocationFunction(
SmallVectorImpl<const FunctionDecl *> &PreventedBy) const;
/// Determine whether this is a copy-assignment operator, regardless
/// of whether it was declared implicitly or explicitly.
bool isCopyAssignmentOperator() const;
/// Determine whether this is a move assignment operator.
bool isMoveAssignmentOperator() const;
CXXMethodDecl *getCanonicalDecl() override {
return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
}
const CXXMethodDecl *getCanonicalDecl() const {
return const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
}
CXXMethodDecl *getMostRecentDecl() {
return cast<CXXMethodDecl>(
static_cast<FunctionDecl *>(this)->getMostRecentDecl());
}
const CXXMethodDecl *getMostRecentDecl() const {
return const_cast<CXXMethodDecl*>(this)->getMostRecentDecl();
}
void addOverriddenMethod(const CXXMethodDecl *MD);
using method_iterator = const CXXMethodDecl *const *;
method_iterator begin_overridden_methods() const;
method_iterator end_overridden_methods() const;
unsigned size_overridden_methods() const;
using overridden_method_range = llvm::iterator_range<
llvm::TinyPtrVector<const CXXMethodDecl *>::const_iterator>;
overridden_method_range overridden_methods() const;
/// Return the parent of this method declaration, which
/// is the class in which this method is defined.
const CXXRecordDecl *getParent() const {
return cast<CXXRecordDecl>(FunctionDecl::getParent());
}
/// Return the parent of this method declaration, which
/// is the class in which this method is defined.
CXXRecordDecl *getParent() {
return const_cast<CXXRecordDecl *>(
cast<CXXRecordDecl>(FunctionDecl::getParent()));
}
/// Return the type of the \c this pointer.
///
/// Should only be called for instance (i.e., non-static) methods. Note
/// that for the call operator of a lambda closure type, this returns the
/// desugared 'this' type (a pointer to the closure type), not the captured
/// 'this' type.
QualType getThisType() const;
/// Return the type of the object pointed by \c this.
///
/// See getThisType() for usage restriction.
QualType getThisObjectType() const;
static QualType getThisType(const FunctionProtoType *FPT,
const CXXRecordDecl *Decl);
static QualType getThisObjectType(const FunctionProtoType *FPT,
const CXXRecordDecl *Decl);
Qualifiers getMethodQualifiers() const {
return getType()->castAs<FunctionProtoType>()->getMethodQuals();
}
/// Retrieve the ref-qualifier associated with this method.
///
/// In the following example, \c f() has an lvalue ref-qualifier, \c g()
/// has an rvalue ref-qualifier, and \c h() has no ref-qualifier.
/// @code
/// struct X {
/// void f() &;
/// void g() &&;
/// void h();
/// };
/// @endcode
RefQualifierKind getRefQualifier() const {
return getType()->castAs<FunctionProtoType>()->getRefQualifier();
}
bool hasInlineBody() const;
/// Determine whether this is a lambda closure type's static member
/// function that is used for the result of the lambda's conversion to
/// function pointer (for a lambda with no captures).
///
/// The function itself, if used, will have a placeholder body that will be
/// supplied by IR generation to either forward to the function call operator
/// or clone the function call operator.
bool isLambdaStaticInvoker() const;
/// Find the method in \p RD that corresponds to this one.
///
/// Find if \p RD or one of the classes it inherits from override this method.
/// If so, return it. \p RD is assumed to be a subclass of the class defining
/// this method (or be the class itself), unless \p MayBeBase is set to true.
CXXMethodDecl *
getCorrespondingMethodInClass(const CXXRecordDecl *RD,
bool MayBeBase = false);
const CXXMethodDecl *
getCorrespondingMethodInClass(const CXXRecordDecl *RD,
bool MayBeBase = false) const {
return const_cast<CXXMethodDecl *>(this)
->getCorrespondingMethodInClass(RD, MayBeBase);
}
/// Find if \p RD declares a function that overrides this function, and if so,
/// return it. Does not search base classes.
CXXMethodDecl *getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
bool MayBeBase = false);
const CXXMethodDecl *
getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
bool MayBeBase = false) const {
return const_cast<CXXMethodDecl *>(this)
->getCorrespondingMethodDeclaredInClass(RD, MayBeBase);
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K >= firstCXXMethod && K <= lastCXXMethod;
}
};
/// Represents a C++ base or member initializer.
///
/// This is part of a constructor initializer that
/// initializes one non-static member variable or one base class. For
/// example, in the following, both 'A(a)' and 'f(3.14159)' are member
/// initializers:
///
/// \code
/// class A { };
/// class B : public A {
/// float f;
/// public:
/// B(A& a) : A(a), f(3.14159) { }
/// };
/// \endcode
class CXXCtorInitializer final {
/// Either the base class name/delegating constructor type (stored as
/// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field
/// (IndirectFieldDecl*) being initialized.
llvm::PointerUnion<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *>
Initializee;
/// The argument used to initialize the base or member, which may
/// end up constructing an object (when multiple arguments are involved).
Stmt *Init;
/// The source location for the field name or, for a base initializer
/// pack expansion, the location of the ellipsis.
///
/// In the case of a delegating
/// constructor, it will still include the type's source location as the
/// Initializee points to the CXXConstructorDecl (to allow loop detection).
SourceLocation MemberOrEllipsisLocation;
/// Location of the left paren of the ctor-initializer.
SourceLocation LParenLoc;
/// Location of the right paren of the ctor-initializer.
SourceLocation RParenLoc;
/// If the initializee is a type, whether that type makes this
/// a delegating initialization.
unsigned IsDelegating : 1;
/// If the initializer is a base initializer, this keeps track
/// of whether the base is virtual or not.
unsigned IsVirtual : 1;
/// Whether or not the initializer is explicitly written
/// in the sources.
unsigned IsWritten : 1;
/// If IsWritten is true, then this number keeps track of the textual order
/// of this initializer in the original sources, counting from 0.
unsigned SourceOrder : 13;
public:
/// Creates a new base-class initializer.
explicit
CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual,
SourceLocation L, Expr *Init, SourceLocation R,
SourceLocation EllipsisLoc);
/// Creates a new member initializer.
explicit
CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
SourceLocation MemberLoc, SourceLocation L, Expr *Init,
SourceLocation R);
/// Creates a new anonymous field initializer.
explicit
CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member,
SourceLocation MemberLoc, SourceLocation L, Expr *Init,
SourceLocation R);
/// Creates a new delegating initializer.
explicit
CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo,
SourceLocation L, Expr *Init, SourceLocation R);
/// \return Unique reproducible object identifier.
int64_t getID(const ASTContext &Context) const;
/// Determine whether this initializer is initializing a base class.
bool isBaseInitializer() const {
return Initializee.is<TypeSourceInfo*>() && !IsDelegating;
}
/// Determine whether this initializer is initializing a non-static
/// data member.
bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); }
bool isAnyMemberInitializer() const {
return isMemberInitializer() || isIndirectMemberInitializer();
}
bool isIndirectMemberInitializer() const {
return Initializee.is<IndirectFieldDecl*>();
}
/// Determine whether this initializer is an implicit initializer
/// generated for a field with an initializer defined on the member
/// declaration.
///
/// In-class member initializers (also known as "non-static data member
/// initializations", NSDMIs) were introduced in C++11.
bool isInClassMemberInitializer() const {
return Init->getStmtClass() == Stmt::CXXDefaultInitExprClass;
}
/// Determine whether this initializer is creating a delegating
/// constructor.
bool isDelegatingInitializer() const {
return Initializee.is<TypeSourceInfo*>() && IsDelegating;
}
/// Determine whether this initializer is a pack expansion.
bool isPackExpansion() const {
return isBaseInitializer() && MemberOrEllipsisLocation.isValid();
}
// For a pack expansion, returns the location of the ellipsis.
SourceLocation getEllipsisLoc() const {
if (!isPackExpansion())
return {};
return MemberOrEllipsisLocation;
}
/// If this is a base class initializer, returns the type of the
/// base class with location information. Otherwise, returns an NULL
/// type location.
TypeLoc getBaseClassLoc() const;
/// If this is a base class initializer, returns the type of the base class.
/// Otherwise, returns null.
const Type *getBaseClass() const;
/// Returns whether the base is virtual or not.
bool isBaseVirtual() const {
assert(isBaseInitializer() && "Must call this on base initializer!");
return IsVirtual;
}
/// Returns the declarator information for a base class or delegating
/// initializer.
TypeSourceInfo *getTypeSourceInfo() const {
return Initializee.dyn_cast<TypeSourceInfo *>();
}
/// If this is a member initializer, returns the declaration of the
/// non-static data member being initialized. Otherwise, returns null.
FieldDecl *getMember() const {
if (isMemberInitializer())
return Initializee.get<FieldDecl*>();
return nullptr;
}
FieldDecl *getAnyMember() const {
if (isMemberInitializer())
return Initializee.get<FieldDecl*>();
if (isIndirectMemberInitializer())
return Initializee.get<IndirectFieldDecl*>()->getAnonField();
return nullptr;
}
IndirectFieldDecl *getIndirectMember() const {
if (isIndirectMemberInitializer())
return Initializee.get<IndirectFieldDecl*>();
return nullptr;
}
SourceLocation getMemberLocation() const {
return MemberOrEllipsisLocation;
}
/// Determine the source location of the initializer.
SourceLocation getSourceLocation() const;
/// Determine the source range covering the entire initializer.
SourceRange getSourceRange() const LLVM_READONLY;
/// Determine whether this initializer is explicitly written
/// in the source code.
bool isWritten() const { return IsWritten; }
/// Return the source position of the initializer, counting from 0.
/// If the initializer was implicit, -1 is returned.
int getSourceOrder() const {
return IsWritten ? static_cast<int>(SourceOrder) : -1;
}
/// Set the source order of this initializer.
///
/// This can only be called once for each initializer; it cannot be called
/// on an initializer having a positive number of (implicit) array indices.
///
/// This assumes that the initializer was written in the source code, and
/// ensures that isWritten() returns true.
void setSourceOrder(int Pos) {
assert(!IsWritten &&
"setSourceOrder() used on implicit initializer");
assert(SourceOrder == 0 &&
"calling twice setSourceOrder() on the same initializer");
assert(Pos >= 0 &&
"setSourceOrder() used to make an initializer implicit");
IsWritten = true;
SourceOrder = static_cast<unsigned>(Pos);
}
SourceLocation getLParenLoc() const { return LParenLoc; }
SourceLocation getRParenLoc() const { return RParenLoc; }
/// Get the initializer.
Expr *getInit() const { return static_cast<Expr *>(Init); }
};
/// Description of a constructor that was inherited from a base class.
class InheritedConstructor {
ConstructorUsingShadowDecl *Shadow = nullptr;
CXXConstructorDecl *BaseCtor = nullptr;
public:
InheritedConstructor() = default;
InheritedConstructor(ConstructorUsingShadowDecl *Shadow,
CXXConstructorDecl *BaseCtor)
: Shadow(Shadow), BaseCtor(BaseCtor) {}
explicit operator bool() const { return Shadow; }
ConstructorUsingShadowDecl *getShadowDecl() const { return Shadow; }
CXXConstructorDecl *getConstructor() const { return BaseCtor; }
};
/// Represents a C++ constructor within a class.
///
/// For example:
///
/// \code
/// class X {
/// public:
/// explicit X(int); // represented by a CXXConstructorDecl.
/// };
/// \endcode
class CXXConstructorDecl final
: public CXXMethodDecl,
private llvm::TrailingObjects<CXXConstructorDecl, InheritedConstructor,
ExplicitSpecifier> {
// This class stores some data in DeclContext::CXXConstructorDeclBits
// to save some space. Use the provided accessors to access it.
/// \name Support for base and member initializers.
/// \{
/// The arguments used to initialize the base or member.
LazyCXXCtorInitializersPtr CtorInitializers;
CXXConstructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T,
TypeSourceInfo *TInfo, ExplicitSpecifier ES,
bool UsesFPIntrin, bool isInline,
bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
InheritedConstructor Inherited,
Expr *TrailingRequiresClause);
void anchor() override;
size_t numTrailingObjects(OverloadToken<InheritedConstructor>) const {
return CXXConstructorDeclBits.IsInheritingConstructor;
}
size_t numTrailingObjects(OverloadToken<ExplicitSpecifier>) const {
return CXXConstructorDeclBits.HasTrailingExplicitSpecifier;
}
ExplicitSpecifier getExplicitSpecifierInternal() const {
if (CXXConstructorDeclBits.HasTrailingExplicitSpecifier)
return *getTrailingObjects<ExplicitSpecifier>();
return ExplicitSpecifier(
nullptr, CXXConstructorDeclBits.IsSimpleExplicit
? ExplicitSpecKind::ResolvedTrue
: ExplicitSpecKind::ResolvedFalse);
}
enum TrailingAllocKind {
TAKInheritsConstructor = 1,
TAKHasTailExplicit = 1 << 1,
};
uint64_t getTrailingAllocKind() const {
return numTrailingObjects(OverloadToken<InheritedConstructor>()) |
(numTrailingObjects(OverloadToken<ExplicitSpecifier>()) << 1);
}
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
friend TrailingObjects;
static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID,
uint64_t AllocKind);
static CXXConstructorDecl *
Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
InheritedConstructor Inherited = InheritedConstructor(),
Expr *TrailingRequiresClause = nullptr);
void setExplicitSpecifier(ExplicitSpecifier ES) {
assert((!ES.getExpr() ||
CXXConstructorDeclBits.HasTrailingExplicitSpecifier) &&
"cannot set this explicit specifier. no trail-allocated space for "
"explicit");
if (ES.getExpr())
*getCanonicalDecl()->getTrailingObjects<ExplicitSpecifier>() = ES;
else
CXXConstructorDeclBits.IsSimpleExplicit = ES.isExplicit();
}
ExplicitSpecifier getExplicitSpecifier() {
return getCanonicalDecl()->getExplicitSpecifierInternal();
}
const ExplicitSpecifier getExplicitSpecifier() const {
return getCanonicalDecl()->getExplicitSpecifierInternal();
}
/// Return true if the declartion is already resolved to be explicit.
bool isExplicit() const { return getExplicitSpecifier().isExplicit(); }
/// Iterates through the member/base initializer list.
using init_iterator = CXXCtorInitializer **;
/// Iterates through the member/base initializer list.
using init_const_iterator = CXXCtorInitializer *const *;
using init_range = llvm::iterator_range<init_iterator>;
using init_const_range = llvm::iterator_range<init_const_iterator>;
init_range inits() { return init_range(init_begin(), init_end()); }
init_const_range inits() const {
return init_const_range(init_begin(), init_end());
}
/// Retrieve an iterator to the first initializer.
init_iterator init_begin() {
const auto *ConstThis = this;
return const_cast<init_iterator>(ConstThis->init_begin());
}
/// Retrieve an iterator to the first initializer.
init_const_iterator init_begin() const;
/// Retrieve an iterator past the last initializer.
init_iterator init_end() {
return init_begin() + getNumCtorInitializers();
}
/// Retrieve an iterator past the last initializer.
init_const_iterator init_end() const {
return init_begin() + getNumCtorInitializers();
}
using init_reverse_iterator = std::reverse_iterator<init_iterator>;
using init_const_reverse_iterator =
std::reverse_iterator<init_const_iterator>;
init_reverse_iterator init_rbegin() {
return init_reverse_iterator(init_end());
}
init_const_reverse_iterator init_rbegin() const {
return init_const_reverse_iterator(init_end());
}
init_reverse_iterator init_rend() {
return init_reverse_iterator(init_begin());
}
init_const_reverse_iterator init_rend() const {
return init_const_reverse_iterator(init_begin());
}
/// Determine the number of arguments used to initialize the member
/// or base.
unsigned getNumCtorInitializers() const {
return CXXConstructorDeclBits.NumCtorInitializers;
}
void setNumCtorInitializers(unsigned numCtorInitializers) {
CXXConstructorDeclBits.NumCtorInitializers = numCtorInitializers;
// This assert added because NumCtorInitializers is stored
// in CXXConstructorDeclBits as a bitfield and its width has
// been shrunk from 32 bits to fit into CXXConstructorDeclBitfields.
assert(CXXConstructorDeclBits.NumCtorInitializers ==
numCtorInitializers && "NumCtorInitializers overflow!");
}
void setCtorInitializers(CXXCtorInitializer **Initializers) {
CtorInitializers = Initializers;
}
/// Determine whether this constructor is a delegating constructor.
bool isDelegatingConstructor() const {
return (getNumCtorInitializers() == 1) &&
init_begin()[0]->isDelegatingInitializer();
}
/// When this constructor delegates to another, retrieve the target.
CXXConstructorDecl *getTargetConstructor() const;
/// Whether this constructor is a default
/// constructor (C++ [class.ctor]p5), which can be used to
/// default-initialize a class of this type.
bool isDefaultConstructor() const;
/// Whether this constructor is a copy constructor (C++ [class.copy]p2,
/// which can be used to copy the class.
///
/// \p TypeQuals will be set to the qualifiers on the
/// argument type. For example, \p TypeQuals would be set to \c
/// Qualifiers::Const for the following copy constructor:
///
/// \code
/// class X {
/// public:
/// X(const X&);
/// };
/// \endcode
bool isCopyConstructor(unsigned &TypeQuals) const;
/// Whether this constructor is a copy
/// constructor (C++ [class.copy]p2, which can be used to copy the
/// class.
bool isCopyConstructor() const {
unsigned TypeQuals = 0;
return isCopyConstructor(TypeQuals);
}
/// Determine whether this constructor is a move constructor
/// (C++11 [class.copy]p3), which can be used to move values of the class.
///
/// \param TypeQuals If this constructor is a move constructor, will be set
/// to the type qualifiers on the referent of the first parameter's type.
bool isMoveConstructor(unsigned &TypeQuals) const;
/// Determine whether this constructor is a move constructor
/// (C++11 [class.copy]p3), which can be used to move values of the class.
bool isMoveConstructor() const {
unsigned TypeQuals = 0;
return isMoveConstructor(TypeQuals);
}
/// Determine whether this is a copy or move constructor.
///
/// \param TypeQuals Will be set to the type qualifiers on the reference
/// parameter, if in fact this is a copy or move constructor.
bool isCopyOrMoveConstructor(unsigned &TypeQuals) const;
/// Determine whether this a copy or move constructor.
bool isCopyOrMoveConstructor() const {
unsigned Quals;
return isCopyOrMoveConstructor(Quals);
}
/// Whether this constructor is a
/// converting constructor (C++ [class.conv.ctor]), which can be
/// used for user-defined conversions.
bool isConvertingConstructor(bool AllowExplicit) const;
/// Determine whether this is a member template specialization that
/// would copy the object to itself. Such constructors are never used to copy
/// an object.
bool isSpecializationCopyingObject() const;
/// Determine whether this is an implicit constructor synthesized to
/// model a call to a constructor inherited from a base class.
bool isInheritingConstructor() const {
return CXXConstructorDeclBits.IsInheritingConstructor;
}
/// State that this is an implicit constructor synthesized to
/// model a call to a constructor inherited from a base class.
void setInheritingConstructor(bool isIC = true) {
CXXConstructorDeclBits.IsInheritingConstructor = isIC;
}
/// Get the constructor that this inheriting constructor is based on.
InheritedConstructor getInheritedConstructor() const {
return isInheritingConstructor() ?
*getTrailingObjects<InheritedConstructor>() : InheritedConstructor();
}
CXXConstructorDecl *getCanonicalDecl() override {
return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
}
const CXXConstructorDecl *getCanonicalDecl() const {
return const_cast<CXXConstructorDecl*>(this)->getCanonicalDecl();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == CXXConstructor; }
};
/// Represents a C++ destructor within a class.
///
/// For example:
///
/// \code
/// class X {
/// public:
/// ~X(); // represented by a CXXDestructorDecl.
/// };
/// \endcode
class CXXDestructorDecl : public CXXMethodDecl {
friend class ASTDeclReader;
friend class ASTDeclWriter;
// FIXME: Don't allocate storage for these except in the first declaration
// of a virtual destructor.
FunctionDecl *OperatorDelete = nullptr;
Expr *OperatorDeleteThisArg = nullptr;
CXXDestructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T,
TypeSourceInfo *TInfo, bool UsesFPIntrin, bool isInline,
bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
Expr *TrailingRequiresClause = nullptr)
: CXXMethodDecl(CXXDestructor, C, RD, StartLoc, NameInfo, T, TInfo,
SC_None, UsesFPIntrin, isInline, ConstexprKind,
SourceLocation(), TrailingRequiresClause) {
setImplicit(isImplicitlyDeclared);
}
void anchor() override;
public:
static CXXDestructorDecl *
Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared,
ConstexprSpecKind ConstexprKind,
Expr *TrailingRequiresClause = nullptr);
static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID);
void setOperatorDelete(FunctionDecl *OD, Expr *ThisArg);
const FunctionDecl *getOperatorDelete() const {
return getCanonicalDecl()->OperatorDelete;
}
Expr *getOperatorDeleteThisArg() const {
return getCanonicalDecl()->OperatorDeleteThisArg;
}
CXXDestructorDecl *getCanonicalDecl() override {
return cast<CXXDestructorDecl>(FunctionDecl::getCanonicalDecl());
}
const CXXDestructorDecl *getCanonicalDecl() const {
return const_cast<CXXDestructorDecl*>(this)->getCanonicalDecl();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == CXXDestructor; }
};
/// Represents a C++ conversion function within a class.
///
/// For example:
///
/// \code
/// class X {
/// public:
/// operator bool();
/// };
/// \endcode
class CXXConversionDecl : public CXXMethodDecl {
CXXConversionDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T,
TypeSourceInfo *TInfo, bool UsesFPIntrin, bool isInline,
ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind,
SourceLocation EndLocation,
Expr *TrailingRequiresClause = nullptr)
: CXXMethodDecl(CXXConversion, C, RD, StartLoc, NameInfo, T, TInfo,
SC_None, UsesFPIntrin, isInline, ConstexprKind,
EndLocation, TrailingRequiresClause),
ExplicitSpec(ES) {}
void anchor() override;
ExplicitSpecifier ExplicitSpec;
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
static CXXConversionDecl *
Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES,
ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
Expr *TrailingRequiresClause = nullptr);
static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
ExplicitSpecifier getExplicitSpecifier() {
return getCanonicalDecl()->ExplicitSpec;
}
const ExplicitSpecifier getExplicitSpecifier() const {
return getCanonicalDecl()->ExplicitSpec;
}
/// Return true if the declartion is already resolved to be explicit.
bool isExplicit() const { return getExplicitSpecifier().isExplicit(); }
void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; }
/// Returns the type that this conversion function is converting to.
QualType getConversionType() const {
return getType()->castAs<FunctionType>()->getReturnType();
}
/// Determine whether this conversion function is a conversion from
/// a lambda closure type to a block pointer.
bool isLambdaToBlockPointerConversion() const;
CXXConversionDecl *getCanonicalDecl() override {
return cast<CXXConversionDecl>(FunctionDecl::getCanonicalDecl());
}
const CXXConversionDecl *getCanonicalDecl() const {
return const_cast<CXXConversionDecl*>(this)->getCanonicalDecl();
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == CXXConversion; }
};
/// Represents a linkage specification.
///
/// For example:
/// \code
/// extern "C" void foo();
/// \endcode
class LinkageSpecDecl : public Decl, public DeclContext {
virtual void anchor();
// This class stores some data in DeclContext::LinkageSpecDeclBits to save
// some space. Use the provided accessors to access it.
public:
/// Represents the language in a linkage specification.
///
/// The values are part of the serialization ABI for
/// ASTs and cannot be changed without altering that ABI.
enum LanguageIDs { lang_c = 1, lang_cxx = 2 };
private:
/// The source location for the extern keyword.
SourceLocation ExternLoc;
/// The source location for the right brace (if valid).
SourceLocation RBraceLoc;
LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
SourceLocation LangLoc, LanguageIDs lang, bool HasBraces);
public:
static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation ExternLoc,
SourceLocation LangLoc, LanguageIDs Lang,
bool HasBraces);
static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// Return the language specified by this linkage specification.
LanguageIDs getLanguage() const {
return static_cast<LanguageIDs>(LinkageSpecDeclBits.Language);
}
/// Set the language specified by this linkage specification.
void setLanguage(LanguageIDs L) { LinkageSpecDeclBits.Language = L; }
/// Determines whether this linkage specification had braces in
/// its syntactic form.
bool hasBraces() const {
assert(!RBraceLoc.isValid() || LinkageSpecDeclBits.HasBraces);
return LinkageSpecDeclBits.HasBraces;
}
SourceLocation getExternLoc() const { return ExternLoc; }
SourceLocation getRBraceLoc() const { return RBraceLoc; }
void setExternLoc(SourceLocation L) { ExternLoc = L; }
void setRBraceLoc(SourceLocation L) {
RBraceLoc = L;
LinkageSpecDeclBits.HasBraces = RBraceLoc.isValid();
}
SourceLocation getEndLoc() const LLVM_READONLY {
if (hasBraces())
return getRBraceLoc();
// No braces: get the end location of the (only) declaration in context
// (if present).
return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
}
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(ExternLoc, getEndLoc());
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == LinkageSpec; }
static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
}
static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
}
};
/// Represents C++ using-directive.
///
/// For example:
/// \code
/// using namespace std;
/// \endcode
///
/// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide
/// artificial names for all using-directives in order to store
/// them in DeclContext effectively.
class UsingDirectiveDecl : public NamedDecl {
/// The location of the \c using keyword.
SourceLocation UsingLoc;
/// The location of the \c namespace keyword.
SourceLocation NamespaceLoc;
/// The nested-name-specifier that precedes the namespace.
NestedNameSpecifierLoc QualifierLoc;
/// The namespace nominated by this using-directive.
NamedDecl *NominatedNamespace;
/// Enclosing context containing both using-directive and nominated
/// namespace.
DeclContext *CommonAncestor;
UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc,
SourceLocation NamespcLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc,
NamedDecl *Nominated,
DeclContext *CommonAncestor)
: NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc),
NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc),
NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) {}
/// Returns special DeclarationName used by using-directives.
///
/// This is only used by DeclContext for storing UsingDirectiveDecls in
/// its lookup structure.
static DeclarationName getName() {
return DeclarationName::getUsingDirectiveName();
}
void anchor() override;
public:
friend class ASTDeclReader;
// Friend for getUsingDirectiveName.
friend class DeclContext;
/// Retrieve the nested-name-specifier that qualifies the
/// name of the namespace, with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// Retrieve the nested-name-specifier that qualifies the
/// name of the namespace.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
const NamedDecl *getNominatedNamespaceAsWritten() const {
return NominatedNamespace;
}
/// Returns the namespace nominated by this using-directive.
NamespaceDecl *getNominatedNamespace();
const NamespaceDecl *getNominatedNamespace() const {
return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
}
/// Returns the common ancestor context of this using-directive and
/// its nominated namespace.
DeclContext *getCommonAncestor() { return CommonAncestor; }
const DeclContext *getCommonAncestor() const { return CommonAncestor; }
/// Return the location of the \c using keyword.
SourceLocation getUsingLoc() const { return UsingLoc; }
// FIXME: Could omit 'Key' in name.
/// Returns the location of the \c namespace keyword.
SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
/// Returns the location of this using declaration's identifier.
SourceLocation getIdentLocation() const { return getLocation(); }
static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingLoc,
SourceLocation NamespaceLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc,
NamedDecl *Nominated,
DeclContext *CommonAncestor);
static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(UsingLoc, getLocation());
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == UsingDirective; }
};
/// Represents a C++ namespace alias.
///
/// For example:
///
/// \code
/// namespace Foo = Bar;
/// \endcode
class NamespaceAliasDecl : public NamedDecl,
public Redeclarable<NamespaceAliasDecl> {
friend class ASTDeclReader;
/// The location of the \c namespace keyword.
SourceLocation NamespaceLoc;
/// The location of the namespace's identifier.
///
/// This is accessed by TargetNameLoc.
SourceLocation IdentLoc;
/// The nested-name-specifier that precedes the namespace.
NestedNameSpecifierLoc QualifierLoc;
/// The Decl that this alias points to, either a NamespaceDecl or
/// a NamespaceAliasDecl.
NamedDecl *Namespace;
NamespaceAliasDecl(ASTContext &C, DeclContext *DC,
SourceLocation NamespaceLoc, SourceLocation AliasLoc,
IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc, NamedDecl *Namespace)
: NamedDecl(NamespaceAlias, DC, AliasLoc, Alias), redeclarable_base(C),
NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc),
QualifierLoc(QualifierLoc), Namespace(Namespace) {}
void anchor() override;
using redeclarable_base = Redeclarable<NamespaceAliasDecl>;
NamespaceAliasDecl *getNextRedeclarationImpl() override;
NamespaceAliasDecl *getPreviousDeclImpl() override;
NamespaceAliasDecl *getMostRecentDeclImpl() override;
public:
static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation NamespaceLoc,
SourceLocation AliasLoc,
IdentifierInfo *Alias,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc,
NamedDecl *Namespace);
static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
using redecl_range = redeclarable_base::redecl_range;
using redecl_iterator = redeclarable_base::redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
NamespaceAliasDecl *getCanonicalDecl() override {
return getFirstDecl();
}
const NamespaceAliasDecl *getCanonicalDecl() const {
return getFirstDecl();
}
/// Retrieve the nested-name-specifier that qualifies the
/// name of the namespace, with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// Retrieve the nested-name-specifier that qualifies the
/// name of the namespace.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
/// Retrieve the namespace declaration aliased by this directive.
NamespaceDecl *getNamespace() {
if (auto *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
return AD->getNamespace();
return cast<NamespaceDecl>(Namespace);
}
const NamespaceDecl *getNamespace() const {
return const_cast<NamespaceAliasDecl *>(this)->getNamespace();
}
/// Returns the location of the alias name, i.e. 'foo' in
/// "namespace foo = ns::bar;".
SourceLocation getAliasLoc() const { return getLocation(); }
/// Returns the location of the \c namespace keyword.
SourceLocation getNamespaceLoc() const { return NamespaceLoc; }
/// Returns the location of the identifier in the named namespace.
SourceLocation getTargetNameLoc() const { return IdentLoc; }
/// Retrieve the namespace that this alias refers to, which
/// may either be a NamespaceDecl or a NamespaceAliasDecl.
NamedDecl *getAliasedNamespace() const { return Namespace; }
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(NamespaceLoc, IdentLoc);
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == NamespaceAlias; }
};
/// Implicit declaration of a temporary that was materialized by
/// a MaterializeTemporaryExpr and lifetime-extended by a declaration
class LifetimeExtendedTemporaryDecl final
: public Decl,
public Mergeable<LifetimeExtendedTemporaryDecl> {
friend class MaterializeTemporaryExpr;
friend class ASTDeclReader;
Stmt *ExprWithTemporary = nullptr;
/// The declaration which lifetime-extended this reference, if any.
/// Either a VarDecl, or (for a ctor-initializer) a FieldDecl.
ValueDecl *ExtendingDecl = nullptr;
unsigned ManglingNumber;
mutable APValue *Value = nullptr;
virtual void anchor();
LifetimeExtendedTemporaryDecl(Expr *Temp, ValueDecl *EDecl, unsigned Mangling)
: Decl(Decl::LifetimeExtendedTemporary, EDecl->getDeclContext(),
EDecl->getLocation()),
ExprWithTemporary(Temp), ExtendingDecl(EDecl),
ManglingNumber(Mangling) {}
LifetimeExtendedTemporaryDecl(EmptyShell)
: Decl(Decl::LifetimeExtendedTemporary, EmptyShell{}) {}
public:
static LifetimeExtendedTemporaryDecl *Create(Expr *Temp, ValueDecl *EDec,
unsigned Mangling) {
return new (EDec->getASTContext(), EDec->getDeclContext())
LifetimeExtendedTemporaryDecl(Temp, EDec, Mangling);
}
static LifetimeExtendedTemporaryDecl *CreateDeserialized(ASTContext &C,
unsigned ID) {
return new (C, ID) LifetimeExtendedTemporaryDecl(EmptyShell{});
}
ValueDecl *getExtendingDecl() { return ExtendingDecl; }
const ValueDecl *getExtendingDecl() const { return ExtendingDecl; }
/// Retrieve the storage duration for the materialized temporary.
StorageDuration getStorageDuration() const;
/// Retrieve the expression to which the temporary materialization conversion
/// was applied. This isn't necessarily the initializer of the temporary due
/// to the C++98 delayed materialization rules, but
/// skipRValueSubobjectAdjustments can be used to find said initializer within
/// the subexpression.
Expr *getTemporaryExpr() { return cast<Expr>(ExprWithTemporary); }
const Expr *getTemporaryExpr() const { return cast<Expr>(ExprWithTemporary); }
unsigned getManglingNumber() const { return ManglingNumber; }
/// Get the storage for the constant value of a materialized temporary
/// of static storage duration.
APValue *getOrCreateValue(bool MayCreate) const;
APValue *getValue() const { return Value; }
// Iterators
Stmt::child_range childrenExpr() {
return Stmt::child_range(&ExprWithTemporary, &ExprWithTemporary + 1);
}
Stmt::const_child_range childrenExpr() const {
return Stmt::const_child_range(&ExprWithTemporary, &ExprWithTemporary + 1);
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K == Decl::LifetimeExtendedTemporary;
}
};
/// Represents a shadow declaration implicitly introduced into a scope by a
/// (resolved) using-declaration or using-enum-declaration to achieve
/// the desired lookup semantics.
///
/// For example:
/// \code
/// namespace A {
/// void foo();
/// void foo(int);
/// struct foo {};
/// enum bar { bar1, bar2 };
/// }
/// namespace B {
/// // add a UsingDecl and three UsingShadowDecls (named foo) to B.
/// using A::foo;
/// // adds UsingEnumDecl and two UsingShadowDecls (named bar1 and bar2) to B.
/// using enum A::bar;
/// }
/// \endcode
class UsingShadowDecl : public NamedDecl, public Redeclarable<UsingShadowDecl> {
friend class BaseUsingDecl;
/// The referenced declaration.
NamedDecl *Underlying = nullptr;
/// The using declaration which introduced this decl or the next using
/// shadow declaration contained in the aforementioned using declaration.
NamedDecl *UsingOrNextShadow = nullptr;
void anchor() override;
using redeclarable_base = Redeclarable<UsingShadowDecl>;
UsingShadowDecl *getNextRedeclarationImpl() override {
return getNextRedeclaration();
}
UsingShadowDecl *getPreviousDeclImpl() override {
return getPreviousDecl();
}
UsingShadowDecl *getMostRecentDeclImpl() override {
return getMostRecentDecl();
}
protected:
UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, SourceLocation Loc,
DeclarationName Name, BaseUsingDecl *Introducer,
NamedDecl *Target);
UsingShadowDecl(Kind K, ASTContext &C, EmptyShell);
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation Loc, DeclarationName Name,
BaseUsingDecl *Introducer, NamedDecl *Target) {
return new (C, DC)
UsingShadowDecl(UsingShadow, C, DC, Loc, Name, Introducer, Target);
}
static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID);
using redecl_range = redeclarable_base::redecl_range;
using redecl_iterator = redeclarable_base::redecl_iterator;
using redeclarable_base::redecls_begin;
using redeclarable_base::redecls_end;
using redeclarable_base::redecls;
using redeclarable_base::getPreviousDecl;
using redeclarable_base::getMostRecentDecl;
using redeclarable_base::isFirstDecl;
UsingShadowDecl *getCanonicalDecl() override {
return getFirstDecl();
}
const UsingShadowDecl *getCanonicalDecl() const {
return getFirstDecl();
}
/// Gets the underlying declaration which has been brought into the
/// local scope.
NamedDecl *getTargetDecl() const { return Underlying; }
/// Sets the underlying declaration which has been brought into the
/// local scope.
void setTargetDecl(NamedDecl *ND) {
assert(ND && "Target decl is null!");
Underlying = ND;
// A UsingShadowDecl is never a friend or local extern declaration, even
// if it is a shadow declaration for one.
IdentifierNamespace =
ND->getIdentifierNamespace() &
~(IDNS_OrdinaryFriend | IDNS_TagFriend | IDNS_LocalExtern);
}
/// Gets the (written or instantiated) using declaration that introduced this
/// declaration.
BaseUsingDecl *getIntroducer() const;
/// The next using shadow declaration contained in the shadow decl
/// chain of the using declaration which introduced this decl.
UsingShadowDecl *getNextUsingShadowDecl() const {
return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow);
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) {
return K == Decl::UsingShadow || K == Decl::ConstructorUsingShadow;
}
};
/// Represents a C++ declaration that introduces decls from somewhere else. It
/// provides a set of the shadow decls so introduced.
class BaseUsingDecl : public NamedDecl {
/// The first shadow declaration of the shadow decl chain associated
/// with this using declaration.
///
/// The bool member of the pair is a bool flag a derived type may use
/// (UsingDecl makes use of it).
llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow;
protected:
BaseUsingDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
: NamedDecl(DK, DC, L, N), FirstUsingShadow(nullptr, false) {}
private:
void anchor() override;
protected:
/// A bool flag for use by a derived type
bool getShadowFlag() const { return FirstUsingShadow.getInt(); }
/// A bool flag a derived type may set
void setShadowFlag(bool V) { FirstUsingShadow.setInt(V); }
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
/// Iterates through the using shadow declarations associated with
/// this using declaration.
class shadow_iterator {
/// The current using shadow declaration.
UsingShadowDecl *Current = nullptr;
public:
using value_type = UsingShadowDecl *;
using reference = UsingShadowDecl *;
using pointer = UsingShadowDecl *;
using iterator_category = std::forward_iterator_tag;
using difference_type = std::ptrdiff_t;
shadow_iterator() = default;
explicit shadow_iterator(UsingShadowDecl *C) : Current(C) {}
reference operator*() const { return Current; }
pointer operator->() const { return Current; }
shadow_iterator &operator++() {
Current = Current->getNextUsingShadowDecl();
return *this;
}
shadow_iterator operator++(int) {
shadow_iterator tmp(*this);
++(*this);
return tmp;
}
friend bool operator==(shadow_iterator x, shadow_iterator y) {
return x.Current == y.Current;
}
friend bool operator!=(shadow_iterator x, shadow_iterator y) {
return x.Current != y.Current;
}
};
using shadow_range = llvm::iterator_range<shadow_iterator>;
shadow_range shadows() const {
return shadow_range(shadow_begin(), shadow_end());
}
shadow_iterator shadow_begin() const {
return shadow_iterator(FirstUsingShadow.getPointer());
}
shadow_iterator shadow_end() const { return shadow_iterator(); }
/// Return the number of shadowed declarations associated with this
/// using declaration.
unsigned shadow_size() const {
return std::distance(shadow_begin(), shadow_end());
}
void addShadowDecl(UsingShadowDecl *S);
void removeShadowDecl(UsingShadowDecl *S);
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Using || K == UsingEnum; }
};
/// Represents a C++ using-declaration.
///
/// For example:
/// \code
/// using someNameSpace::someIdentifier;
/// \endcode
class UsingDecl : public BaseUsingDecl, public Mergeable<UsingDecl> {
/// The source location of the 'using' keyword itself.
SourceLocation UsingLocation;
/// The nested-name-specifier that precedes the name.
NestedNameSpecifierLoc QualifierLoc;
/// Provides source/type location info for the declaration name
/// embedded in the ValueDecl base class.
DeclarationNameLoc DNLoc;
UsingDecl(DeclContext *DC, SourceLocation UL,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword)
: BaseUsingDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
UsingLocation(UL), QualifierLoc(QualifierLoc),
DNLoc(NameInfo.getInfo()) {
setShadowFlag(HasTypenameKeyword);
}
void anchor() override;
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
/// Return the source location of the 'using' keyword.
SourceLocation getUsingLoc() const { return UsingLocation; }
/// Set the source location of the 'using' keyword.
void setUsingLoc(SourceLocation L) { UsingLocation = L; }
/// Retrieve the nested-name-specifier that qualifies the name,
/// with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// Retrieve the nested-name-specifier that qualifies the name.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
DeclarationNameInfo getNameInfo() const {
return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
}
/// Return true if it is a C++03 access declaration (no 'using').
bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
/// Return true if the using declaration has 'typename'.
bool hasTypename() const { return getShadowFlag(); }
/// Sets whether the using declaration has 'typename'.
void setTypename(bool TN) { setShadowFlag(TN); }
static UsingDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingL,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo,
bool HasTypenameKeyword);
static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY;
/// Retrieves the canonical declaration of this declaration.
UsingDecl *getCanonicalDecl() override {
return cast<UsingDecl>(getFirstDecl());
}
const UsingDecl *getCanonicalDecl() const {
return cast<UsingDecl>(getFirstDecl());
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Using; }
};
/// Represents a shadow constructor declaration introduced into a
/// class by a C++11 using-declaration that names a constructor.
///
/// For example:
/// \code
/// struct Base { Base(int); };
/// struct Derived {
/// using Base::Base; // creates a UsingDecl and a ConstructorUsingShadowDecl
/// };
/// \endcode
class ConstructorUsingShadowDecl final : public UsingShadowDecl {
/// If this constructor using declaration inherted the constructor
/// from an indirect base class, this is the ConstructorUsingShadowDecl
/// in the named direct base class from which the declaration was inherited.
ConstructorUsingShadowDecl *NominatedBaseClassShadowDecl = nullptr;
/// If this constructor using declaration inherted the constructor
/// from an indirect base class, this is the ConstructorUsingShadowDecl
/// that will be used to construct the unique direct or virtual base class
/// that receives the constructor arguments.
ConstructorUsingShadowDecl *ConstructedBaseClassShadowDecl = nullptr;
/// \c true if the constructor ultimately named by this using shadow
/// declaration is within a virtual base class subobject of the class that
/// contains this declaration.
unsigned IsVirtual : 1;
ConstructorUsingShadowDecl(ASTContext &C, DeclContext *DC, SourceLocation Loc,
UsingDecl *Using, NamedDecl *Target,
bool TargetInVirtualBase)
: UsingShadowDecl(ConstructorUsingShadow, C, DC, Loc,
Using->getDeclName(), Using,
Target->getUnderlyingDecl()),
NominatedBaseClassShadowDecl(
dyn_cast<ConstructorUsingShadowDecl>(Target)),
ConstructedBaseClassShadowDecl(NominatedBaseClassShadowDecl),
IsVirtual(TargetInVirtualBase) {
// If we found a constructor that chains to a constructor for a virtual
// base, we should directly call that virtual base constructor instead.
// FIXME: This logic belongs in Sema.
if (NominatedBaseClassShadowDecl &&
NominatedBaseClassShadowDecl->constructsVirtualBase()) {
ConstructedBaseClassShadowDecl =
NominatedBaseClassShadowDecl->ConstructedBaseClassShadowDecl;
IsVirtual = true;
}
}
ConstructorUsingShadowDecl(ASTContext &C, EmptyShell Empty)
: UsingShadowDecl(ConstructorUsingShadow, C, Empty), IsVirtual(false) {}
void anchor() override;
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
static ConstructorUsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation Loc,
UsingDecl *Using, NamedDecl *Target,
bool IsVirtual);
static ConstructorUsingShadowDecl *CreateDeserialized(ASTContext &C,
unsigned ID);
/// Override the UsingShadowDecl's getIntroducer, returning the UsingDecl that
/// introduced this.
UsingDecl *getIntroducer() const {
return cast<UsingDecl>(UsingShadowDecl::getIntroducer());
}
/// Returns the parent of this using shadow declaration, which
/// is the class in which this is declared.
//@{
const CXXRecordDecl *getParent() const {
return cast<CXXRecordDecl>(getDeclContext());
}
CXXRecordDecl *getParent() {
return cast<CXXRecordDecl>(getDeclContext());
}
//@}
/// Get the inheriting constructor declaration for the direct base
/// class from which this using shadow declaration was inherited, if there is
/// one. This can be different for each redeclaration of the same shadow decl.
ConstructorUsingShadowDecl *getNominatedBaseClassShadowDecl() const {
return NominatedBaseClassShadowDecl;
}
/// Get the inheriting constructor declaration for the base class
/// for which we don't have an explicit initializer, if there is one.
ConstructorUsingShadowDecl *getConstructedBaseClassShadowDecl() const {
return ConstructedBaseClassShadowDecl;
}
/// Get the base class that was named in the using declaration. This
/// can be different for each redeclaration of this same shadow decl.
CXXRecordDecl *getNominatedBaseClass() const;
/// Get the base class whose constructor or constructor shadow
/// declaration is passed the constructor arguments.
CXXRecordDecl *getConstructedBaseClass() const {
return cast<CXXRecordDecl>((ConstructedBaseClassShadowDecl
? ConstructedBaseClassShadowDecl
: getTargetDecl())
->getDeclContext());
}
/// Returns \c true if the constructed base class is a virtual base
/// class subobject of this declaration's class.
bool constructsVirtualBase() const {
return IsVirtual;
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ConstructorUsingShadow; }
};
/// Represents a C++ using-enum-declaration.
///
/// For example:
/// \code
/// using enum SomeEnumTag ;
/// \endcode
class UsingEnumDecl : public BaseUsingDecl, public Mergeable<UsingEnumDecl> {
/// The source location of the 'using' keyword itself.
SourceLocation UsingLocation;
/// Location of the 'enum' keyword.
SourceLocation EnumLocation;
/// The enum
EnumDecl *Enum;
UsingEnumDecl(DeclContext *DC, DeclarationName DN, SourceLocation UL,
SourceLocation EL, SourceLocation NL, EnumDecl *ED)
: BaseUsingDecl(UsingEnum, DC, NL, DN), UsingLocation(UL),
EnumLocation(EL), Enum(ED) {}
void anchor() override;
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
/// The source location of the 'using' keyword.
SourceLocation getUsingLoc() const { return UsingLocation; }
void setUsingLoc(SourceLocation L) { UsingLocation = L; }
/// The source location of the 'enum' keyword.
SourceLocation getEnumLoc() const { return EnumLocation; }
void setEnumLoc(SourceLocation L) { EnumLocation = L; }
public:
EnumDecl *getEnumDecl() const { return Enum; }
static UsingEnumDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingL, SourceLocation EnumL,
SourceLocation NameL, EnumDecl *ED);
static UsingEnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY;
/// Retrieves the canonical declaration of this declaration.
UsingEnumDecl *getCanonicalDecl() override {
return cast<UsingEnumDecl>(getFirstDecl());
}
const UsingEnumDecl *getCanonicalDecl() const {
return cast<UsingEnumDecl>(getFirstDecl());
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == UsingEnum; }
};
/// Represents a pack of using declarations that a single
/// using-declarator pack-expanded into.
///
/// \code
/// template<typename ...T> struct X : T... {
/// using T::operator()...;
/// using T::operator T...;
/// };
/// \endcode
///
/// In the second case above, the UsingPackDecl will have the name
/// 'operator T' (which contains an unexpanded pack), but the individual
/// UsingDecls and UsingShadowDecls will have more reasonable names.
class UsingPackDecl final
: public NamedDecl, public Mergeable<UsingPackDecl>,
private llvm::TrailingObjects<UsingPackDecl, NamedDecl *> {
/// The UnresolvedUsingValueDecl or UnresolvedUsingTypenameDecl from
/// which this waas instantiated.
NamedDecl *InstantiatedFrom;
/// The number of using-declarations created by this pack expansion.
unsigned NumExpansions;
UsingPackDecl(DeclContext *DC, NamedDecl *InstantiatedFrom,
ArrayRef<NamedDecl *> UsingDecls)
: NamedDecl(UsingPack, DC,
InstantiatedFrom ? InstantiatedFrom->getLocation()
: SourceLocation(),
InstantiatedFrom ? InstantiatedFrom->getDeclName()
: DeclarationName()),
InstantiatedFrom(InstantiatedFrom), NumExpansions(UsingDecls.size()) {
std::uninitialized_copy(UsingDecls.begin(), UsingDecls.end(),
getTrailingObjects<NamedDecl *>());
}
void anchor() override;
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
friend TrailingObjects;
/// Get the using declaration from which this was instantiated. This will
/// always be an UnresolvedUsingValueDecl or an UnresolvedUsingTypenameDecl
/// that is a pack expansion.
NamedDecl *getInstantiatedFromUsingDecl() const { return InstantiatedFrom; }
/// Get the set of using declarations that this pack expanded into. Note that
/// some of these may still be unresolved.
ArrayRef<NamedDecl *> expansions() const {
return llvm::makeArrayRef(getTrailingObjects<NamedDecl *>(), NumExpansions);
}
static UsingPackDecl *Create(ASTContext &C, DeclContext *DC,
NamedDecl *InstantiatedFrom,
ArrayRef<NamedDecl *> UsingDecls);
static UsingPackDecl *CreateDeserialized(ASTContext &C, unsigned ID,
unsigned NumExpansions);
SourceRange getSourceRange() const override LLVM_READONLY {
return InstantiatedFrom->getSourceRange();
}
UsingPackDecl *getCanonicalDecl() override { return getFirstDecl(); }
const UsingPackDecl *getCanonicalDecl() const { return getFirstDecl(); }
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == UsingPack; }
};
/// Represents a dependent using declaration which was not marked with
/// \c typename.
///
/// Unlike non-dependent using declarations, these *only* bring through
/// non-types; otherwise they would break two-phase lookup.
///
/// \code
/// template \<class T> class A : public Base<T> {
/// using Base<T>::foo;
/// };
/// \endcode
class UnresolvedUsingValueDecl : public ValueDecl,
public Mergeable<UnresolvedUsingValueDecl> {
/// The source location of the 'using' keyword
SourceLocation UsingLocation;
/// If this is a pack expansion, the location of the '...'.
SourceLocation EllipsisLoc;
/// The nested-name-specifier that precedes the name.
NestedNameSpecifierLoc QualifierLoc;
/// Provides source/type location info for the declaration name
/// embedded in the ValueDecl base class.
DeclarationNameLoc DNLoc;
UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
SourceLocation UsingLoc,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo,
SourceLocation EllipsisLoc)
: ValueDecl(UnresolvedUsingValue, DC,
NameInfo.getLoc(), NameInfo.getName(), Ty),
UsingLocation(UsingLoc), EllipsisLoc(EllipsisLoc),
QualifierLoc(QualifierLoc), DNLoc(NameInfo.getInfo()) {}
void anchor() override;
public:
friend class ASTDeclReader;
friend class ASTDeclWriter;
/// Returns the source location of the 'using' keyword.
SourceLocation getUsingLoc() const { return UsingLocation; }
/// Set the source location of the 'using' keyword.
void setUsingLoc(SourceLocation L) { UsingLocation = L; }
/// Return true if it is a C++03 access declaration (no 'using').
bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
/// Retrieve the nested-name-specifier that qualifies the name,
/// with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// Retrieve the nested-name-specifier that qualifies the name.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
DeclarationNameInfo getNameInfo() const {
return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
}
/// Determine whether this is a pack expansion.
bool isPackExpansion() const {
return EllipsisLoc.isValid();
}
/// Get the location of the ellipsis if this is a pack expansion.
SourceLocation getEllipsisLoc() const {
return EllipsisLoc;
}
static UnresolvedUsingValueDecl *
Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo, SourceLocation EllipsisLoc);
static UnresolvedUsingValueDecl *
CreateDeserialized(ASTContext &C, unsigned ID);
SourceRange getSourceRange() const override LLVM_READONLY;
/// Retrieves the canonical declaration of this declaration.
UnresolvedUsingValueDecl *getCanonicalDecl() override {
return getFirstDecl();
}
const UnresolvedUsingValueDecl *getCanonicalDecl() const {
return getFirstDecl();
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == UnresolvedUsingValue; }
};
/// Represents a dependent using declaration which was marked with
/// \c typename.
///
/// \code
/// template \<class T> class A : public Base<T> {
/// using typename Base<T>::foo;
/// };
/// \endcode
///
/// The type associated with an unresolved using typename decl is
/// currently always a typename type.
class UnresolvedUsingTypenameDecl
: public TypeDecl,
public Mergeable<UnresolvedUsingTypenameDecl> {
friend class ASTDeclReader;
/// The source location of the 'typename' keyword
SourceLocation TypenameLocation;
/// If this is a pack expansion, the location of the '...'.
SourceLocation EllipsisLoc;
/// The nested-name-specifier that precedes the name.
NestedNameSpecifierLoc QualifierLoc;
UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
SourceLocation TypenameLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TargetNameLoc,
IdentifierInfo *TargetName,
SourceLocation EllipsisLoc)
: TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName,
UsingLoc),
TypenameLocation(TypenameLoc), EllipsisLoc(EllipsisLoc),
QualifierLoc(QualifierLoc) {}
void anchor() override;
public:
/// Returns the source location of the 'using' keyword.
SourceLocation getUsingLoc() const { return getBeginLoc(); }
/// Returns the source location of the 'typename' keyword.
SourceLocation getTypenameLoc() const { return TypenameLocation; }
/// Retrieve the nested-name-specifier that qualifies the name,
/// with source-location information.
NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
/// Retrieve the nested-name-specifier that qualifies the name.
NestedNameSpecifier *getQualifier() const {
return QualifierLoc.getNestedNameSpecifier();
}
DeclarationNameInfo getNameInfo() const {
return DeclarationNameInfo(getDeclName(), getLocation());
}
/// Determine whether this is a pack expansion.
bool isPackExpansion() const {
return EllipsisLoc.isValid();
}
/// Get the location of the ellipsis if this is a pack expansion.
SourceLocation getEllipsisLoc() const {
return EllipsisLoc;
}
static UnresolvedUsingTypenameDecl *
Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc,
SourceLocation TargetNameLoc, DeclarationName TargetName,
SourceLocation EllipsisLoc);
static UnresolvedUsingTypenameDecl *
CreateDeserialized(ASTContext &C, unsigned ID);
/// Retrieves the canonical declaration of this declaration.
UnresolvedUsingTypenameDecl *getCanonicalDecl() override {
return getFirstDecl();
}
const UnresolvedUsingTypenameDecl *getCanonicalDecl() const {
return getFirstDecl();
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; }
};
/// This node is generated when a using-declaration that was annotated with
/// __attribute__((using_if_exists)) failed to resolve to a known declaration.
/// In that case, Sema builds a UsingShadowDecl whose target is an instance of
/// this declaration, adding it to the current scope. Referring to this
/// declaration in any way is an error.
class UnresolvedUsingIfExistsDecl final : public NamedDecl {
UnresolvedUsingIfExistsDecl(DeclContext *DC, SourceLocation Loc,
DeclarationName Name);
void anchor() override;
public:
static UnresolvedUsingIfExistsDecl *Create(ASTContext &Ctx, DeclContext *DC,
SourceLocation Loc,
DeclarationName Name);
static UnresolvedUsingIfExistsDecl *CreateDeserialized(ASTContext &Ctx,
unsigned ID);
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Decl::UnresolvedUsingIfExists; }
};
/// Represents a C++11 static_assert declaration.
class StaticAssertDecl : public Decl {
llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed;
StringLiteral *Message;
SourceLocation RParenLoc;
StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc,
Expr *AssertExpr, StringLiteral *Message,
SourceLocation RParenLoc, bool Failed)
: Decl(StaticAssert, DC, StaticAssertLoc),
AssertExprAndFailed(AssertExpr, Failed), Message(Message),
RParenLoc(RParenLoc) {}
virtual void anchor();
public:
friend class ASTDeclReader;
static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StaticAssertLoc,
Expr *AssertExpr, StringLiteral *Message,
SourceLocation RParenLoc, bool Failed);
static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID);
Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); }
const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); }
StringLiteral *getMessage() { return Message; }
const StringLiteral *getMessage() const { return Message; }
bool isFailed() const { return AssertExprAndFailed.getInt(); }
SourceLocation getRParenLoc() const { return RParenLoc; }
SourceRange getSourceRange() const override LLVM_READONLY {
return SourceRange(getLocation(), getRParenLoc());
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == StaticAssert; }
};
/// A binding in a decomposition declaration. For instance, given:
///
/// int n[3];
/// auto &[a, b, c] = n;
///
/// a, b, and c are BindingDecls, whose bindings are the expressions
/// x[0], x[1], and x[2] respectively, where x is the implicit
/// DecompositionDecl of type 'int (&)[3]'.
class BindingDecl : public ValueDecl {
/// The declaration that this binding binds to part of.
ValueDecl *Decomp;
/// The binding represented by this declaration. References to this
/// declaration are effectively equivalent to this expression (except
/// that it is only evaluated once at the point of declaration of the
/// binding).
Expr *Binding = nullptr;
BindingDecl(DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id)
: ValueDecl(Decl::Binding, DC, IdLoc, Id, QualType()) {}
void anchor() override;
public:
friend class ASTDeclReader;
static BindingDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation IdLoc, IdentifierInfo *Id);
static BindingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
/// Get the expression to which this declaration is bound. This may be null
/// in two different cases: while parsing the initializer for the
/// decomposition declaration, and when the initializer is type-dependent.
Expr *getBinding() const { return Binding; }
/// Get the decomposition declaration that this binding represents a
/// decomposition of.
ValueDecl *getDecomposedDecl() const { return Decomp; }
/// Get the variable (if any) that holds the value of evaluating the binding.
/// Only present for user-defined bindings for tuple-like types.
VarDecl *getHoldingVar() const;
/// Set the binding for this BindingDecl, along with its declared type (which
/// should be a possibly-cv-qualified form of the type of the binding, or a
/// reference to such a type).
void setBinding(QualType DeclaredType, Expr *Binding) {
setType(DeclaredType);
this->Binding = Binding;
}
/// Set the decomposed variable for this BindingDecl.
void setDecomposedDecl(ValueDecl *Decomposed) { Decomp = Decomposed; }
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Decl::Binding; }
};
/// A decomposition declaration. For instance, given:
///
/// int n[3];
/// auto &[a, b, c] = n;
///
/// the second line declares a DecompositionDecl of type 'int (&)[3]', and
/// three BindingDecls (named a, b, and c). An instance of this class is always
/// unnamed, but behaves in almost all other respects like a VarDecl.
class DecompositionDecl final
: public VarDecl,
private llvm::TrailingObjects<DecompositionDecl, BindingDecl *> {
/// The number of BindingDecl*s following this object.
unsigned NumBindings;
DecompositionDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
SourceLocation LSquareLoc, QualType T,
TypeSourceInfo *TInfo, StorageClass SC,
ArrayRef<BindingDecl *> Bindings)
: VarDecl(Decomposition, C, DC, StartLoc, LSquareLoc, nullptr, T, TInfo,
SC),
NumBindings(Bindings.size()) {
std::uninitialized_copy(Bindings.begin(), Bindings.end(),
getTrailingObjects<BindingDecl *>());
for (auto *B : Bindings)
B->setDecomposedDecl(this);
}
void anchor() override;
public:
friend class ASTDeclReader;
friend TrailingObjects;
static DecompositionDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc,
SourceLocation LSquareLoc,
QualType T, TypeSourceInfo *TInfo,
StorageClass S,
ArrayRef<BindingDecl *> Bindings);
static DecompositionDecl *CreateDeserialized(ASTContext &C, unsigned ID,
unsigned NumBindings);
ArrayRef<BindingDecl *> bindings() const {
return llvm::makeArrayRef(getTrailingObjects<BindingDecl *>(), NumBindings);
}
void printName(raw_ostream &os) const override;
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Decomposition; }
};
/// An instance of this class represents the declaration of a property
/// member. This is a Microsoft extension to C++, first introduced in
/// Visual Studio .NET 2003 as a parallel to similar features in C#
/// and Managed C++.
///
/// A property must always be a non-static class member.
///
/// A property member superficially resembles a non-static data
/// member, except preceded by a property attribute:
/// __declspec(property(get=GetX, put=PutX)) int x;
/// Either (but not both) of the 'get' and 'put' names may be omitted.
///
/// A reference to a property is always an lvalue. If the lvalue
/// undergoes lvalue-to-rvalue conversion, then a getter name is
/// required, and that member is called with no arguments.
/// If the lvalue is assigned into, then a setter name is required,
/// and that member is called with one argument, the value assigned.
/// Both operations are potentially overloaded. Compound assignments
/// are permitted, as are the increment and decrement operators.
///
/// The getter and putter methods are permitted to be overloaded,
/// although their return and parameter types are subject to certain
/// restrictions according to the type of the property.
///
/// A property declared using an incomplete array type may
/// additionally be subscripted, adding extra parameters to the getter
/// and putter methods.
class MSPropertyDecl : public DeclaratorDecl {
IdentifierInfo *GetterId, *SetterId;
MSPropertyDecl(DeclContext *DC, SourceLocation L, DeclarationName N,
QualType T, TypeSourceInfo *TInfo, SourceLocation StartL,
IdentifierInfo *Getter, IdentifierInfo *Setter)
: DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL),
GetterId(Getter), SetterId(Setter) {}
void anchor() override;
public:
friend class ASTDeclReader;
static MSPropertyDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, DeclarationName N, QualType T,
TypeSourceInfo *TInfo, SourceLocation StartL,
IdentifierInfo *Getter, IdentifierInfo *Setter);
static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
static bool classof(const Decl *D) { return D->getKind() == MSProperty; }
bool hasGetter() const { return GetterId != nullptr; }
IdentifierInfo* getGetterId() const { return GetterId; }
bool hasSetter() const { return SetterId != nullptr; }
IdentifierInfo* getSetterId() const { return SetterId; }
};
/// Parts of a decomposed MSGuidDecl. Factored out to avoid unnecessary
/// dependencies on DeclCXX.h.
struct MSGuidDeclParts {
/// {01234567-...
uint32_t Part1;
/// ...-89ab-...
uint16_t Part2;
/// ...-cdef-...
uint16_t Part3;
/// ...-0123-456789abcdef}
uint8_t Part4And5[8];
uint64_t getPart4And5AsUint64() const {
uint64_t Val;
memcpy(&Val, &Part4And5, sizeof(Part4And5));
return Val;
}
};
/// A global _GUID constant. These are implicitly created by UuidAttrs.
///
/// struct _declspec(uuid("01234567-89ab-cdef-0123-456789abcdef")) X{};
///
/// X is a CXXRecordDecl that contains a UuidAttr that references the (unique)
/// MSGuidDecl for the specified UUID.
class MSGuidDecl : public ValueDecl,
public Mergeable<MSGuidDecl>,
public llvm::FoldingSetNode {
public:
using Parts = MSGuidDeclParts;
private:
/// The decomposed form of the UUID.
Parts PartVal;
/// The resolved value of the UUID as an APValue. Computed on demand and
/// cached.
mutable APValue APVal;
void anchor() override;
MSGuidDecl(DeclContext *DC, QualType T, Parts P);
static MSGuidDecl *Create(const ASTContext &C, QualType T, Parts P);
static MSGuidDecl *CreateDeserialized(ASTContext &C, unsigned ID);
// Only ASTContext::getMSGuidDecl and deserialization create these.
friend class ASTContext;
friend class ASTReader;
friend class ASTDeclReader;
public:
/// Print this UUID in a human-readable format.
void printName(llvm::raw_ostream &OS) const override;
/// Get the decomposed parts of this declaration.
Parts getParts() const { return PartVal; }
/// Get the value of this MSGuidDecl as an APValue. This may fail and return
/// an absent APValue if the type of the declaration is not of the expected
/// shape.
APValue &getAsAPValue() const;
static void Profile(llvm::FoldingSetNodeID &ID, Parts P) {
ID.AddInteger(P.Part1);
ID.AddInteger(P.Part2);
ID.AddInteger(P.Part3);
ID.AddInteger(P.getPart4And5AsUint64());
}
void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, PartVal); }
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == Decl::MSGuid; }
};
/// Insertion operator for diagnostics. This allows sending an AccessSpecifier
/// into a diagnostic with <<.
const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
AccessSpecifier AS);
} // namespace clang
#endif // LLVM_CLANG_AST_DECLCXX_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|