1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//==--- AbstractBasicWriter.h - Abstract basic value serialization --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_ABSTRACTBASICWRITER_H
#define LLVM_CLANG_AST_ABSTRACTBASICWRITER_H
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclTemplate.h"
namespace clang {
namespace serialization {
template <class T>
inline llvm::Optional<T> makeOptionalFromNullable(const T &value) {
return (value.isNull()
? llvm::Optional<T>()
: llvm::Optional<T>(value));
}
template <class T>
inline llvm::Optional<T*> makeOptionalFromPointer(T *value) {
return (value ? llvm::Optional<T*>(value) : llvm::Optional<T*>());
}
// PropertyWriter is a class concept that requires the following method:
// BasicWriter find(llvm::StringRef propertyName);
// where BasicWriter is some class conforming to the BasicWriter concept.
// An abstract AST-node writer is created with a PropertyWriter and
// performs a sequence of calls like so:
// propertyWriter.find(propertyName).write##TypeName(value)
// to write the properties of the node it is serializing.
// BasicWriter is a class concept that requires methods like:
// void write##TypeName(ValueType value);
// where TypeName is the name of a PropertyType node from PropertiesBase.td
// and ValueType is the corresponding C++ type name.
//
// In addition to the concrete property types, BasicWriter is expected
// to implement these methods:
//
// template <class EnumType>
// void writeEnum(T value);
//
// Writes an enum value as the current property. EnumType will always
// be an enum type. Only necessary if the BasicWriter doesn't provide
// type-specific writers for all the enum types.
//
// template <class ValueType>
// void writeOptional(Optional<ValueType> value);
//
// Writes an optional value as the current property.
//
// template <class ValueType>
// void writeArray(ArrayRef<ValueType> value);
//
// Writes an array of values as the current property.
//
// PropertyWriter writeObject();
//
// Writes an object as the current property; the returned property
// writer will be subjected to a sequence of property writes and then
// discarded before any other properties are written to the "outer"
// property writer (which need not be the same type). The sub-writer
// will be used as if with the following code:
//
// {
// auto &&widget = W.find("widget").writeObject();
// widget.find("kind").writeWidgetKind(...);
// widget.find("declaration").writeDeclRef(...);
// }
// WriteDispatcher is a template which does type-based forwarding to one
// of the write methods of the BasicWriter passed in:
//
// template <class ValueType>
// struct WriteDispatcher {
// template <class BasicWriter>
// static void write(BasicWriter &W, ValueType value);
// };
// BasicWriterBase provides convenience implementations of the write
// methods for EnumPropertyType and SubclassPropertyType types that just
// defer to the "underlying" implementations (for UInt32 and the base class,
// respectively).
//
// template <class Impl>
// class BasicWriterBase {
// protected:
// Impl &asImpl();
// public:
// ...
// };
// The actual classes are auto-generated; see ClangASTPropertiesEmitter.cpp.
#include "clang/AST/AbstractBasicWriter.inc"
/// DataStreamBasicWriter provides convenience implementations for many
/// BasicWriter methods based on the assumption that the
/// ultimate writer implementation is based on a variable-length stream
/// of unstructured data (like Clang's module files). It is designed
/// to pair with DataStreamBasicReader.
///
/// This class can also act as a PropertyWriter, implementing find("...")
/// by simply forwarding to itself.
///
/// Unimplemented methods:
/// writeBool
/// writeUInt32
/// writeUInt64
/// writeIdentifier
/// writeSelector
/// writeSourceLocation
/// writeQualType
/// writeStmtRef
/// writeDeclRef
template <class Impl>
class DataStreamBasicWriter : public BasicWriterBase<Impl> {
protected:
using BasicWriterBase<Impl>::asImpl;
DataStreamBasicWriter(ASTContext &ctx) : BasicWriterBase<Impl>(ctx) {}
public:
/// Implement property-find by ignoring it. We rely on properties being
/// serialized and deserialized in a reliable order instead.
Impl &find(const char *propertyName) {
return asImpl();
}
// Implement object writing by forwarding to this, collapsing the
// structure into a single data stream.
Impl &writeObject() { return asImpl(); }
template <class T>
void writeEnum(T value) {
asImpl().writeUInt32(uint32_t(value));
}
template <class T>
void writeArray(llvm::ArrayRef<T> array) {
asImpl().writeUInt32(array.size());
for (const T &elt : array) {
WriteDispatcher<T>::write(asImpl(), elt);
}
}
template <class T>
void writeOptional(llvm::Optional<T> value) {
WriteDispatcher<T>::write(asImpl(), PackOptionalValue<T>::pack(value));
}
void writeAPSInt(const llvm::APSInt &value) {
asImpl().writeBool(value.isUnsigned());
asImpl().writeAPInt(value);
}
void writeAPInt(const llvm::APInt &value) {
asImpl().writeUInt32(value.getBitWidth());
const uint64_t *words = value.getRawData();
for (size_t i = 0, e = value.getNumWords(); i != e; ++i)
asImpl().writeUInt64(words[i]);
}
void writeFixedPointSemantics(const llvm::FixedPointSemantics &sema) {
asImpl().writeUInt32(sema.getWidth());
asImpl().writeUInt32(sema.getScale());
asImpl().writeUInt32(sema.isSigned() | sema.isSaturated() << 1 |
sema.hasUnsignedPadding() << 2);
}
void writeLValuePathSerializationHelper(
APValue::LValuePathSerializationHelper lvaluePath) {
ArrayRef<APValue::LValuePathEntry> path = lvaluePath.Path;
QualType elemTy = lvaluePath.getType();
asImpl().writeQualType(elemTy);
asImpl().writeUInt32(path.size());
auto &ctx = ((BasicWriterBase<Impl> *)this)->getASTContext();
for (auto elem : path) {
if (elemTy->getAs<RecordType>()) {
asImpl().writeUInt32(elem.getAsBaseOrMember().getInt());
const Decl *baseOrMember = elem.getAsBaseOrMember().getPointer();
if (const auto *recordDecl = dyn_cast<CXXRecordDecl>(baseOrMember)) {
asImpl().writeDeclRef(recordDecl);
elemTy = ctx.getRecordType(recordDecl);
} else {
const auto *valueDecl = cast<ValueDecl>(baseOrMember);
asImpl().writeDeclRef(valueDecl);
elemTy = valueDecl->getType();
}
} else {
asImpl().writeUInt32(elem.getAsArrayIndex());
elemTy = ctx.getAsArrayType(elemTy)->getElementType();
}
}
}
void writeQualifiers(Qualifiers value) {
static_assert(sizeof(value.getAsOpaqueValue()) <= sizeof(uint32_t),
"update this if the value size changes");
asImpl().writeUInt32(value.getAsOpaqueValue());
}
void writeExceptionSpecInfo(
const FunctionProtoType::ExceptionSpecInfo &esi) {
asImpl().writeUInt32(uint32_t(esi.Type));
if (esi.Type == EST_Dynamic) {
asImpl().writeArray(esi.Exceptions);
} else if (isComputedNoexcept(esi.Type)) {
asImpl().writeExprRef(esi.NoexceptExpr);
} else if (esi.Type == EST_Uninstantiated) {
asImpl().writeDeclRef(esi.SourceDecl);
asImpl().writeDeclRef(esi.SourceTemplate);
} else if (esi.Type == EST_Unevaluated) {
asImpl().writeDeclRef(esi.SourceDecl);
}
}
void writeExtParameterInfo(FunctionProtoType::ExtParameterInfo epi) {
static_assert(sizeof(epi.getOpaqueValue()) <= sizeof(uint32_t),
"opaque value doesn't fit into uint32_t");
asImpl().writeUInt32(epi.getOpaqueValue());
}
void writeNestedNameSpecifier(NestedNameSpecifier *NNS) {
// Nested name specifiers usually aren't too long. I think that 8 would
// typically accommodate the vast majority.
SmallVector<NestedNameSpecifier *, 8> nestedNames;
// Push each of the NNS's onto a stack for serialization in reverse order.
while (NNS) {
nestedNames.push_back(NNS);
NNS = NNS->getPrefix();
}
asImpl().writeUInt32(nestedNames.size());
while (!nestedNames.empty()) {
NNS = nestedNames.pop_back_val();
NestedNameSpecifier::SpecifierKind kind = NNS->getKind();
asImpl().writeNestedNameSpecifierKind(kind);
switch (kind) {
case NestedNameSpecifier::Identifier:
asImpl().writeIdentifier(NNS->getAsIdentifier());
continue;
case NestedNameSpecifier::Namespace:
asImpl().writeNamespaceDeclRef(NNS->getAsNamespace());
continue;
case NestedNameSpecifier::NamespaceAlias:
asImpl().writeNamespaceAliasDeclRef(NNS->getAsNamespaceAlias());
continue;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
asImpl().writeQualType(QualType(NNS->getAsType(), 0));
continue;
case NestedNameSpecifier::Global:
// Don't need to write an associated value.
continue;
case NestedNameSpecifier::Super:
asImpl().writeDeclRef(NNS->getAsRecordDecl());
continue;
}
llvm_unreachable("bad nested name specifier kind");
}
}
};
} // end namespace serialization
} // end namespace clang
#endif
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|