aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang14/include/clang/AST/AbstractBasicReader.h
blob: 5c601106d06198ae67f728a14a50c6e899f787a5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//==--- AbstractBasiceReader.h - Abstract basic value deserialization -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_AST_ABSTRACTBASICREADER_H
#define LLVM_CLANG_AST_ABSTRACTBASICREADER_H

#include "clang/AST/DeclTemplate.h"

namespace clang {
namespace serialization {

template <class T>
inline T makeNullableFromOptional(const Optional<T> &value) {
  return (value ? *value : T());
}

template <class T>
inline T *makePointerFromOptional(Optional<T *> value) {
  return value.getValueOr(nullptr);
}

// PropertyReader is a class concept that requires the following method:
//   BasicReader find(llvm::StringRef propertyName);
// where BasicReader is some class conforming to the BasicReader concept.
// An abstract AST-node reader is created with a PropertyReader and
// performs a sequence of calls like so:
//   propertyReader.find(propertyName).read##TypeName()
// to read the properties of the node it is deserializing.

// BasicReader is a class concept that requires methods like:
//   ValueType read##TypeName();
// where TypeName is the name of a PropertyType node from PropertiesBase.td
// and ValueType is the corresponding C++ type name.  The read method may
// require one or more buffer arguments.
//
// In addition to the concrete type names, BasicReader is expected to
// implement these methods:
//
//   template <class EnumType>
//   void writeEnum(T value);
//
//     Reads an enum value from the current property.  EnumType will always
//     be an enum type.  Only necessary if the BasicReader doesn't provide
//     type-specific readers for all the enum types.
//
//   template <class ValueType>
//   Optional<ValueType> writeOptional();
//
//     Reads an optional value from the current property.
//
//   template <class ValueType>
//   ArrayRef<ValueType> readArray(llvm::SmallVectorImpl<ValueType> &buffer);
//
//     Reads an array of values from the current property.
//
//   PropertyReader readObject();
//
//     Reads an object from the current property; the returned property
//     reader will be subjected to a sequence of property reads and then
//     discarded before any other properties are reader from the "outer"
//     property reader (which need not be the same type).  The sub-reader
//     will be used as if with the following code:
//
//       {
//         auto &&widget = W.find("widget").readObject();
//         auto kind = widget.find("kind").readWidgetKind();
//         auto declaration = widget.find("declaration").readDeclRef();
//         return Widget(kind, declaration);
//       }

// ReadDispatcher does type-based forwarding to one of the read methods
// on the BasicReader passed in:
//
// template <class ValueType>
// struct ReadDispatcher {
//   template <class BasicReader, class... BufferTypes>
//   static ValueType read(BasicReader &R, BufferTypes &&...);
// };

// BasicReaderBase provides convenience implementations of the read methods
// for EnumPropertyType and SubclassPropertyType types that just defer to
// the "underlying" implementations (for UInt32 and the base class,
// respectively).
//
// template <class Impl>
// class BasicReaderBase {
// protected:
//   BasicReaderBase(ASTContext &ctx);
//   Impl &asImpl();
// public:
//   ASTContext &getASTContext();
//   ...
// };

// The actual classes are auto-generated; see ClangASTPropertiesEmitter.cpp.
#include "clang/AST/AbstractBasicReader.inc"

/// DataStreamBasicReader provides convenience implementations for many
/// BasicReader methods based on the assumption that the
/// ultimate reader implementation is based on a variable-length stream
/// of unstructured data (like Clang's module files).  It is designed
/// to pair with DataStreamBasicWriter.
///
/// This class can also act as a PropertyReader, implementing find("...")
/// by simply forwarding to itself.
///
/// Unimplemented methods:
///   readBool
///   readUInt32
///   readUInt64
///   readIdentifier
///   readSelector
///   readSourceLocation
///   readQualType
///   readStmtRef
///   readDeclRef
template <class Impl>
class DataStreamBasicReader : public BasicReaderBase<Impl> {
protected:
  using BasicReaderBase<Impl>::asImpl;
  DataStreamBasicReader(ASTContext &ctx) : BasicReaderBase<Impl>(ctx) {}

public:
  using BasicReaderBase<Impl>::getASTContext;

  /// Implement property-find by ignoring it.  We rely on properties being
  /// serialized and deserialized in a reliable order instead.
  Impl &find(const char *propertyName) {
    return asImpl();
  }

  template <class T>
  T readEnum() {
    return T(asImpl().readUInt32());
  }

  // Implement object reading by forwarding to this, collapsing the
  // structure into a single data stream.
  Impl &readObject() { return asImpl(); }

  template <class T>
  llvm::ArrayRef<T> readArray(llvm::SmallVectorImpl<T> &buffer) {
    assert(buffer.empty());

    uint32_t size = asImpl().readUInt32();
    buffer.reserve(size);

    for (uint32_t i = 0; i != size; ++i) {
      buffer.push_back(ReadDispatcher<T>::read(asImpl()));
    }
    return buffer;
  }

  template <class T, class... Args>
  llvm::Optional<T> readOptional(Args &&...args) {
    return UnpackOptionalValue<T>::unpack(
             ReadDispatcher<T>::read(asImpl(), std::forward<Args>(args)...));
  }

  llvm::APSInt readAPSInt() {
    bool isUnsigned = asImpl().readBool();
    llvm::APInt value = asImpl().readAPInt();
    return llvm::APSInt(std::move(value), isUnsigned);
  }

  llvm::APInt readAPInt() {
    unsigned bitWidth = asImpl().readUInt32();
    unsigned numWords = llvm::APInt::getNumWords(bitWidth);
    llvm::SmallVector<uint64_t, 4> data;
    for (uint32_t i = 0; i != numWords; ++i)
      data.push_back(asImpl().readUInt64());
    return llvm::APInt(bitWidth, numWords, &data[0]);
  }

  llvm::FixedPointSemantics readFixedPointSemantics() {
    unsigned width = asImpl().readUInt32();
    unsigned scale = asImpl().readUInt32();
    unsigned tmp = asImpl().readUInt32();
    bool isSigned = tmp & 0x1;
    bool isSaturated = tmp & 0x2;
    bool hasUnsignedPadding = tmp & 0x4;
    return llvm::FixedPointSemantics(width, scale, isSigned, isSaturated,
                                     hasUnsignedPadding);
  }

  APValue::LValuePathSerializationHelper readLValuePathSerializationHelper(
      SmallVectorImpl<APValue::LValuePathEntry> &path) {
    auto elemTy = asImpl().readQualType();
    unsigned pathLength = asImpl().readUInt32();
    for (unsigned i = 0; i < pathLength; ++i) {
      if (elemTy->template getAs<RecordType>()) {
        unsigned int_ = asImpl().readUInt32();
        Decl *decl = asImpl().template readDeclAs<Decl>();
        if (auto *recordDecl = dyn_cast<CXXRecordDecl>(decl))
          elemTy = getASTContext().getRecordType(recordDecl);
        else
          elemTy = cast<ValueDecl>(decl)->getType();
        path.push_back(
            APValue::LValuePathEntry(APValue::BaseOrMemberType(decl, int_)));
      } else {
        elemTy = getASTContext().getAsArrayType(elemTy)->getElementType();
        path.push_back(
            APValue::LValuePathEntry::ArrayIndex(asImpl().readUInt32()));
      }
    }
    return APValue::LValuePathSerializationHelper(path, elemTy);
  }

  Qualifiers readQualifiers() {
    static_assert(sizeof(Qualifiers().getAsOpaqueValue()) <= sizeof(uint32_t),
                  "update this if the value size changes");
    uint32_t value = asImpl().readUInt32();
    return Qualifiers::fromOpaqueValue(value);
  }

  FunctionProtoType::ExceptionSpecInfo
  readExceptionSpecInfo(llvm::SmallVectorImpl<QualType> &buffer) {
    FunctionProtoType::ExceptionSpecInfo esi;
    esi.Type = ExceptionSpecificationType(asImpl().readUInt32());
    if (esi.Type == EST_Dynamic) {
      esi.Exceptions = asImpl().template readArray<QualType>(buffer);
    } else if (isComputedNoexcept(esi.Type)) {
      esi.NoexceptExpr = asImpl().readExprRef();
    } else if (esi.Type == EST_Uninstantiated) {
      esi.SourceDecl = asImpl().readFunctionDeclRef();
      esi.SourceTemplate = asImpl().readFunctionDeclRef();
    } else if (esi.Type == EST_Unevaluated) {
      esi.SourceDecl = asImpl().readFunctionDeclRef();
    }
    return esi;
  }

  FunctionProtoType::ExtParameterInfo readExtParameterInfo() {
    static_assert(sizeof(FunctionProtoType::ExtParameterInfo().getOpaqueValue())
                    <= sizeof(uint32_t),
                  "opaque value doesn't fit into uint32_t");
    uint32_t value = asImpl().readUInt32();
    return FunctionProtoType::ExtParameterInfo::getFromOpaqueValue(value);
  }

  NestedNameSpecifier *readNestedNameSpecifier() {
    auto &ctx = getASTContext();

    // We build this up iteratively.
    NestedNameSpecifier *cur = nullptr;

    uint32_t depth = asImpl().readUInt32();
    for (uint32_t i = 0; i != depth; ++i) {
      auto kind = asImpl().readNestedNameSpecifierKind();
      switch (kind) {
      case NestedNameSpecifier::Identifier:
        cur = NestedNameSpecifier::Create(ctx, cur,
                                          asImpl().readIdentifier());
        continue;

      case NestedNameSpecifier::Namespace:
        cur = NestedNameSpecifier::Create(ctx, cur,
                                          asImpl().readNamespaceDeclRef());
        continue;

      case NestedNameSpecifier::NamespaceAlias:
        cur = NestedNameSpecifier::Create(ctx, cur,
                                     asImpl().readNamespaceAliasDeclRef());
        continue;

      case NestedNameSpecifier::TypeSpec:
      case NestedNameSpecifier::TypeSpecWithTemplate:
        cur = NestedNameSpecifier::Create(ctx, cur,
                          kind == NestedNameSpecifier::TypeSpecWithTemplate,
                          asImpl().readQualType().getTypePtr());
        continue;

      case NestedNameSpecifier::Global:
        cur = NestedNameSpecifier::GlobalSpecifier(ctx);
        continue;

      case NestedNameSpecifier::Super:
        cur = NestedNameSpecifier::SuperSpecifier(ctx,
                                            asImpl().readCXXRecordDeclRef());
        continue;
      }
      llvm_unreachable("bad nested name specifier kind");
    }

    return cur;
  }
};

} // end namespace serialization
} // end namespace clang

#endif

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif