aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang14-rt/lib/sanitizer_common/sanitizer_allocator_secondary.h
blob: 48afb2a2983419e28c75a39f474780d4d2119266 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
//===-- sanitizer_allocator_secondary.h -------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Part of the Sanitizer Allocator.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_ALLOCATOR_H
#error This file must be included inside sanitizer_allocator.h
#endif

// Fixed array to store LargeMmapAllocator chunks list, limited to 32K total
// allocated chunks. To be used in memory constrained or not memory hungry cases
// (currently, 32 bits and internal allocator).
class LargeMmapAllocatorPtrArrayStatic {
 public:
  inline void *Init() { return &p_[0]; }
  inline void EnsureSpace(uptr n) { CHECK_LT(n, kMaxNumChunks); }
 private:
  static const int kMaxNumChunks = 1 << 15;
  uptr p_[kMaxNumChunks];
};

// Much less restricted LargeMmapAllocator chunks list (comparing to
// PtrArrayStatic). Backed by mmaped memory region and can hold up to 1M chunks.
// ReservedAddressRange was used instead of just MAP_NORESERVE to achieve the
// same functionality in Fuchsia case, which does not support MAP_NORESERVE.
class LargeMmapAllocatorPtrArrayDynamic {
 public:
  inline void *Init() {
    uptr p = address_range_.Init(kMaxNumChunks * sizeof(uptr),
                                 SecondaryAllocatorName);
    CHECK(p);
    return reinterpret_cast<void*>(p);
  }

  inline void EnsureSpace(uptr n) {
    CHECK_LT(n, kMaxNumChunks);
    DCHECK(n <= n_reserved_);
    if (UNLIKELY(n == n_reserved_)) {
      address_range_.MapOrDie(
          reinterpret_cast<uptr>(address_range_.base()) +
              n_reserved_ * sizeof(uptr),
          kChunksBlockCount * sizeof(uptr));
      n_reserved_ += kChunksBlockCount;
    }
  }

 private:
  static const int kMaxNumChunks = 1 << 20;
  static const int kChunksBlockCount = 1 << 14;
  ReservedAddressRange address_range_;
  uptr n_reserved_;
};

#if SANITIZER_WORDSIZE == 32
typedef LargeMmapAllocatorPtrArrayStatic DefaultLargeMmapAllocatorPtrArray;
#else
typedef LargeMmapAllocatorPtrArrayDynamic DefaultLargeMmapAllocatorPtrArray;
#endif

// This class can (de)allocate only large chunks of memory using mmap/unmap.
// The main purpose of this allocator is to cover large and rare allocation
// sizes not covered by more efficient allocators (e.g. SizeClassAllocator64).
template <class MapUnmapCallback = NoOpMapUnmapCallback,
          class PtrArrayT = DefaultLargeMmapAllocatorPtrArray,
          class AddressSpaceViewTy = LocalAddressSpaceView>
class LargeMmapAllocator {
 public:
  using AddressSpaceView = AddressSpaceViewTy;
  void InitLinkerInitialized() {
    page_size_ = GetPageSizeCached();
    chunks_ = reinterpret_cast<Header**>(ptr_array_.Init());
  }

  void Init() {
    internal_memset(this, 0, sizeof(*this));
    InitLinkerInitialized();
  }

  void *Allocate(AllocatorStats *stat, uptr size, uptr alignment) {
    CHECK(IsPowerOfTwo(alignment));
    uptr map_size = RoundUpMapSize(size);
    if (alignment > page_size_)
      map_size += alignment;
    // Overflow.
    if (map_size < size) {
      Report("WARNING: %s: LargeMmapAllocator allocation overflow: "
             "0x%zx bytes with 0x%zx alignment requested\n",
             SanitizerToolName, map_size, alignment);
      return nullptr;
    }
    uptr map_beg = reinterpret_cast<uptr>(
        MmapOrDieOnFatalError(map_size, SecondaryAllocatorName));
    if (!map_beg)
      return nullptr;
    CHECK(IsAligned(map_beg, page_size_));
    MapUnmapCallback().OnMap(map_beg, map_size);
    uptr map_end = map_beg + map_size;
    uptr res = map_beg + page_size_;
    if (res & (alignment - 1))  // Align.
      res += alignment - (res & (alignment - 1));
    CHECK(IsAligned(res, alignment));
    CHECK(IsAligned(res, page_size_));
    CHECK_GE(res + size, map_beg);
    CHECK_LE(res + size, map_end);
    Header *h = GetHeader(res);
    h->size = size;
    h->map_beg = map_beg;
    h->map_size = map_size;
    uptr size_log = MostSignificantSetBitIndex(map_size);
    CHECK_LT(size_log, ARRAY_SIZE(stats.by_size_log));
    {
      SpinMutexLock l(&mutex_);
      ptr_array_.EnsureSpace(n_chunks_);
      uptr idx = n_chunks_++;
      h->chunk_idx = idx;
      chunks_[idx] = h;
      chunks_sorted_ = false;
      stats.n_allocs++;
      stats.currently_allocated += map_size;
      stats.max_allocated = Max(stats.max_allocated, stats.currently_allocated);
      stats.by_size_log[size_log]++;
      stat->Add(AllocatorStatAllocated, map_size);
      stat->Add(AllocatorStatMapped, map_size);
    }
    return reinterpret_cast<void*>(res);
  }

  void Deallocate(AllocatorStats *stat, void *p) {
    Header *h = GetHeader(p);
    {
      SpinMutexLock l(&mutex_);
      uptr idx = h->chunk_idx;
      CHECK_EQ(chunks_[idx], h);
      CHECK_LT(idx, n_chunks_);
      chunks_[idx] = chunks_[--n_chunks_];
      chunks_[idx]->chunk_idx = idx;
      chunks_sorted_ = false;
      stats.n_frees++;
      stats.currently_allocated -= h->map_size;
      stat->Sub(AllocatorStatAllocated, h->map_size);
      stat->Sub(AllocatorStatMapped, h->map_size);
    }
    MapUnmapCallback().OnUnmap(h->map_beg, h->map_size);
    UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size);
  }

  uptr TotalMemoryUsed() {
    SpinMutexLock l(&mutex_);
    uptr res = 0;
    for (uptr i = 0; i < n_chunks_; i++) {
      Header *h = chunks_[i];
      CHECK_EQ(h->chunk_idx, i);
      res += RoundUpMapSize(h->size);
    }
    return res;
  }

  bool PointerIsMine(const void *p) const {
    return GetBlockBegin(p) != nullptr;
  }

  uptr GetActuallyAllocatedSize(void *p) {
    return RoundUpTo(GetHeader(p)->size, page_size_);
  }

  // At least page_size_/2 metadata bytes is available.
  void *GetMetaData(const void *p) {
    // Too slow: CHECK_EQ(p, GetBlockBegin(p));
    if (!IsAligned(reinterpret_cast<uptr>(p), page_size_)) {
      Printf("%s: bad pointer %p\n", SanitizerToolName, p);
      CHECK(IsAligned(reinterpret_cast<uptr>(p), page_size_));
    }
    return GetHeader(p) + 1;
  }

  void *GetBlockBegin(const void *ptr) const {
    uptr p = reinterpret_cast<uptr>(ptr);
    SpinMutexLock l(&mutex_);
    uptr nearest_chunk = 0;
    Header *const *chunks = AddressSpaceView::Load(chunks_, n_chunks_);
    // Cache-friendly linear search.
    for (uptr i = 0; i < n_chunks_; i++) {
      uptr ch = reinterpret_cast<uptr>(chunks[i]);
      if (p < ch) continue;  // p is at left to this chunk, skip it.
      if (p - ch < p - nearest_chunk)
        nearest_chunk = ch;
    }
    if (!nearest_chunk)
      return nullptr;
    const Header *h =
        AddressSpaceView::Load(reinterpret_cast<Header *>(nearest_chunk));
    Header *h_ptr = reinterpret_cast<Header *>(nearest_chunk);
    CHECK_GE(nearest_chunk, h->map_beg);
    CHECK_LT(nearest_chunk, h->map_beg + h->map_size);
    CHECK_LE(nearest_chunk, p);
    if (h->map_beg + h->map_size <= p)
      return nullptr;
    return GetUser(h_ptr);
  }

  void EnsureSortedChunks() {
    if (chunks_sorted_) return;
    Header **chunks = AddressSpaceView::LoadWritable(chunks_, n_chunks_);
    Sort(reinterpret_cast<uptr *>(chunks), n_chunks_);
    for (uptr i = 0; i < n_chunks_; i++)
      AddressSpaceView::LoadWritable(chunks[i])->chunk_idx = i;
    chunks_sorted_ = true;
  }

  // This function does the same as GetBlockBegin, but is much faster.
  // Must be called with the allocator locked.
  void *GetBlockBeginFastLocked(void *ptr) {
    mutex_.CheckLocked();
    uptr p = reinterpret_cast<uptr>(ptr);
    uptr n = n_chunks_;
    if (!n) return nullptr;
    EnsureSortedChunks();
    Header *const *chunks = AddressSpaceView::Load(chunks_, n_chunks_);
    auto min_mmap_ = reinterpret_cast<uptr>(chunks[0]);
    auto max_mmap_ = reinterpret_cast<uptr>(chunks[n - 1]) +
                     AddressSpaceView::Load(chunks[n - 1])->map_size;
    if (p < min_mmap_ || p >= max_mmap_)
      return nullptr;
    uptr beg = 0, end = n - 1;
    // This loop is a log(n) lower_bound. It does not check for the exact match
    // to avoid expensive cache-thrashing loads.
    while (end - beg >= 2) {
      uptr mid = (beg + end) / 2;  // Invariant: mid >= beg + 1
      if (p < reinterpret_cast<uptr>(chunks[mid]))
        end = mid - 1;  // We are not interested in chunks[mid].
      else
        beg = mid;  // chunks[mid] may still be what we want.
    }

    if (beg < end) {
      CHECK_EQ(beg + 1, end);
      // There are 2 chunks left, choose one.
      if (p >= reinterpret_cast<uptr>(chunks[end]))
        beg = end;
    }

    const Header *h = AddressSpaceView::Load(chunks[beg]);
    Header *h_ptr = chunks[beg];
    if (h->map_beg + h->map_size <= p || p < h->map_beg)
      return nullptr;
    return GetUser(h_ptr);
  }

  void PrintStats() {
    Printf("Stats: LargeMmapAllocator: allocated %zd times, "
           "remains %zd (%zd K) max %zd M; by size logs: ",
           stats.n_allocs, stats.n_allocs - stats.n_frees,
           stats.currently_allocated >> 10, stats.max_allocated >> 20);
    for (uptr i = 0; i < ARRAY_SIZE(stats.by_size_log); i++) {
      uptr c = stats.by_size_log[i];
      if (!c) continue;
      Printf("%zd:%zd; ", i, c);
    }
    Printf("\n");
  }

  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
  // introspection API.
  void ForceLock() SANITIZER_ACQUIRE(mutex_) { mutex_.Lock(); }

  void ForceUnlock() SANITIZER_RELEASE(mutex_) { mutex_.Unlock(); }

  // Iterate over all existing chunks.
  // The allocator must be locked when calling this function.
  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
    EnsureSortedChunks();  // Avoid doing the sort while iterating.
    const Header *const *chunks = AddressSpaceView::Load(chunks_, n_chunks_);
    for (uptr i = 0; i < n_chunks_; i++) {
      const Header *t = chunks[i];
      callback(reinterpret_cast<uptr>(GetUser(t)), arg);
      // Consistency check: verify that the array did not change.
      CHECK_EQ(chunks[i], t);
      CHECK_EQ(AddressSpaceView::Load(chunks[i])->chunk_idx, i);
    }
  }

 private:
  struct Header {
    uptr map_beg;
    uptr map_size;
    uptr size;
    uptr chunk_idx;
  };

  Header *GetHeader(uptr p) {
    CHECK(IsAligned(p, page_size_));
    return reinterpret_cast<Header*>(p - page_size_);
  }
  Header *GetHeader(const void *p) {
    return GetHeader(reinterpret_cast<uptr>(p));
  }

  void *GetUser(const Header *h) const {
    CHECK(IsAligned((uptr)h, page_size_));
    return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_);
  }

  uptr RoundUpMapSize(uptr size) {
    return RoundUpTo(size, page_size_) + page_size_;
  }

  uptr page_size_;
  Header **chunks_;
  PtrArrayT ptr_array_;
  uptr n_chunks_;
  bool chunks_sorted_;
  struct Stats {
    uptr n_allocs, n_frees, currently_allocated, max_allocated, by_size_log[64];
  } stats;
  mutable StaticSpinMutex mutex_;
};