aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/benchmark/src/complexity.cc
blob: 825c57394a8ca3142d1190f4ee7f58daad75ae91 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
// Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Source project : https://github.com/ismaelJimenez/cpp.leastsq
// Adapted to be used with google benchmark

#include "complexity.h"

#include <algorithm>
#include <cmath>

#include "benchmark/benchmark.h"
#include "check.h"

namespace benchmark {

// Internal function to calculate the different scalability forms
BigOFunc* FittingCurve(BigO complexity) {
  static const double kLog2E = 1.44269504088896340736;
  switch (complexity) {
    case oN:
      return [](IterationCount n) -> double { return static_cast<double>(n); };
    case oNSquared:
      return [](IterationCount n) -> double { return std::pow(n, 2); };
    case oNCubed:
      return [](IterationCount n) -> double { return std::pow(n, 3); };
    case oLogN:
      /* Note: can't use log2 because Android's GNU STL lacks it */
      return
          [](IterationCount n) { return kLog2E * log(static_cast<double>(n)); };
    case oNLogN:
      /* Note: can't use log2 because Android's GNU STL lacks it */
      return [](IterationCount n) {
        return kLog2E * n * log(static_cast<double>(n));
      };
    case o1:
    default:
      return [](IterationCount) { return 1.0; };
  }
}

// Function to return an string for the calculated complexity
std::string GetBigOString(BigO complexity) {
  switch (complexity) {
    case oN:
      return "N";
    case oNSquared:
      return "N^2";
    case oNCubed:
      return "N^3";
    case oLogN:
      return "lgN";
    case oNLogN:
      return "NlgN";
    case o1:
      return "(1)";
    default:
      return "f(N)";
  }
}

// Find the coefficient for the high-order term in the running time, by
// minimizing the sum of squares of relative error, for the fitting curve
// given by the lambda expression.
//   - n             : Vector containing the size of the benchmark tests.
//   - time          : Vector containing the times for the benchmark tests.
//   - fitting_curve : lambda expression (e.g. [](int64_t n) {return n; };).

// For a deeper explanation on the algorithm logic, please refer to
// https://en.wikipedia.org/wiki/Least_squares#Least_squares,_regression_analysis_and_statistics

LeastSq MinimalLeastSq(const std::vector<int64_t>& n,
                       const std::vector<double>& time,
                       BigOFunc* fitting_curve) {
  double sigma_gn_squared = 0.0;
  double sigma_time = 0.0;
  double sigma_time_gn = 0.0;

  // Calculate least square fitting parameter
  for (size_t i = 0; i < n.size(); ++i) {
    double gn_i = fitting_curve(n[i]);
    sigma_gn_squared += gn_i * gn_i;
    sigma_time += time[i];
    sigma_time_gn += time[i] * gn_i;
  }

  LeastSq result;
  result.complexity = oLambda;

  // Calculate complexity.
  result.coef = sigma_time_gn / sigma_gn_squared;

  // Calculate RMS
  double rms = 0.0;
  for (size_t i = 0; i < n.size(); ++i) {
    double fit = result.coef * fitting_curve(n[i]);
    rms += pow((time[i] - fit), 2);
  }

  // Normalized RMS by the mean of the observed values
  double mean = sigma_time / n.size();
  result.rms = sqrt(rms / n.size()) / mean;

  return result;
}

// Find the coefficient for the high-order term in the running time, by
// minimizing the sum of squares of relative error.
//   - n          : Vector containing the size of the benchmark tests.
//   - time       : Vector containing the times for the benchmark tests.
//   - complexity : If different than oAuto, the fitting curve will stick to
//                  this one. If it is oAuto, it will be calculated the best
//                  fitting curve.
LeastSq MinimalLeastSq(const std::vector<int64_t>& n,
                       const std::vector<double>& time, const BigO complexity) {
  BM_CHECK_EQ(n.size(), time.size());
  BM_CHECK_GE(n.size(), 2);  // Do not compute fitting curve is less than two
                             // benchmark runs are given
  BM_CHECK_NE(complexity, oNone);

  LeastSq best_fit;

  if (complexity == oAuto) {
    std::vector<BigO> fit_curves = {oLogN, oN, oNLogN, oNSquared, oNCubed};

    // Take o1 as default best fitting curve
    best_fit = MinimalLeastSq(n, time, FittingCurve(o1));
    best_fit.complexity = o1;

    // Compute all possible fitting curves and stick to the best one
    for (const auto& fit : fit_curves) {
      LeastSq current_fit = MinimalLeastSq(n, time, FittingCurve(fit));
      if (current_fit.rms < best_fit.rms) {
        best_fit = current_fit;
        best_fit.complexity = fit;
      }
    }
  } else {
    best_fit = MinimalLeastSq(n, time, FittingCurve(complexity));
    best_fit.complexity = complexity;
  }

  return best_fit;
}

std::vector<BenchmarkReporter::Run> ComputeBigO(
    const std::vector<BenchmarkReporter::Run>& reports) {
  typedef BenchmarkReporter::Run Run;
  std::vector<Run> results;

  if (reports.size() < 2) return results;

  // Accumulators.
  std::vector<int64_t> n;
  std::vector<double> real_time;
  std::vector<double> cpu_time;

  // Populate the accumulators.
  for (const Run& run : reports) {
    BM_CHECK_GT(run.complexity_n, 0)
        << "Did you forget to call SetComplexityN?";
    n.push_back(run.complexity_n);
    real_time.push_back(run.real_accumulated_time / run.iterations);
    cpu_time.push_back(run.cpu_accumulated_time / run.iterations);
  }

  LeastSq result_cpu;
  LeastSq result_real;

  if (reports[0].complexity == oLambda) {
    result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity_lambda);
    result_real = MinimalLeastSq(n, real_time, reports[0].complexity_lambda);
  } else {
    result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity);
    result_real = MinimalLeastSq(n, real_time, result_cpu.complexity);
  }

  // Drop the 'args' when reporting complexity.
  auto run_name = reports[0].run_name;
  run_name.args.clear();

  // Get the data from the accumulator to BenchmarkReporter::Run's.
  Run big_o;
  big_o.run_name = run_name;
  big_o.family_index = reports[0].family_index;
  big_o.per_family_instance_index = reports[0].per_family_instance_index;
  big_o.run_type = BenchmarkReporter::Run::RT_Aggregate;
  big_o.repetitions = reports[0].repetitions;
  big_o.repetition_index = Run::no_repetition_index;
  big_o.threads = reports[0].threads;
  big_o.aggregate_name = "BigO";
  big_o.aggregate_unit = StatisticUnit::kTime;
  big_o.report_label = reports[0].report_label;
  big_o.iterations = 0;
  big_o.real_accumulated_time = result_real.coef;
  big_o.cpu_accumulated_time = result_cpu.coef;
  big_o.report_big_o = true;
  big_o.complexity = result_cpu.complexity;

  // All the time results are reported after being multiplied by the
  // time unit multiplier. But since RMS is a relative quantity it
  // should not be multiplied at all. So, here, we _divide_ it by the
  // multiplier so that when it is multiplied later the result is the
  // correct one.
  double multiplier = GetTimeUnitMultiplier(reports[0].time_unit);

  // Only add label to mean/stddev if it is same for all runs
  Run rms;
  rms.run_name = run_name;
  rms.family_index = reports[0].family_index;
  rms.per_family_instance_index = reports[0].per_family_instance_index;
  rms.run_type = BenchmarkReporter::Run::RT_Aggregate;
  rms.aggregate_name = "RMS";
  rms.aggregate_unit = StatisticUnit::kPercentage;
  rms.report_label = big_o.report_label;
  rms.iterations = 0;
  rms.repetition_index = Run::no_repetition_index;
  rms.repetitions = reports[0].repetitions;
  rms.threads = reports[0].threads;
  rms.real_accumulated_time = result_real.rms / multiplier;
  rms.cpu_accumulated_time = result_cpu.rms / multiplier;
  rms.report_rms = true;
  rms.complexity = result_cpu.complexity;
  // don't forget to keep the time unit, or we won't be able to
  // recover the correct value.
  rms.time_unit = reports[0].time_unit;

  results.push_back(big_o);
  results.push_back(rms);
  return results;
}

}  // end namespace benchmark