1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
|
// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "benchmark_register.h"
#ifndef BENCHMARK_OS_WINDOWS
#if !defined(BENCHMARK_OS_FUCHSIA) && !defined(BENCHMARK_OS_QURT)
#include <sys/resource.h>
#endif
#include <sys/time.h>
#include <unistd.h>
#endif
#include <algorithm>
#include <atomic>
#include <cinttypes>
#include <condition_variable>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <iostream>
#include <memory>
#include <numeric>
#include <sstream>
#include <thread>
#include "benchmark/benchmark.h"
#include "benchmark_api_internal.h"
#include "check.h"
#include "commandlineflags.h"
#include "complexity.h"
#include "internal_macros.h"
#include "log.h"
#include "mutex.h"
#include "re.h"
#include "statistics.h"
#include "string_util.h"
#include "timers.h"
namespace benchmark {
namespace {
// For non-dense Range, intermediate values are powers of kRangeMultiplier.
static constexpr int kRangeMultiplier = 8;
// The size of a benchmark family determines is the number of inputs to repeat
// the benchmark on. If this is "large" then warn the user during configuration.
static constexpr size_t kMaxFamilySize = 100;
static constexpr char kDisabledPrefix[] = "DISABLED_";
} // end namespace
namespace internal {
//=============================================================================//
// BenchmarkFamilies
//=============================================================================//
// Class for managing registered benchmarks. Note that each registered
// benchmark identifies a family of related benchmarks to run.
class BenchmarkFamilies {
public:
static BenchmarkFamilies* GetInstance();
// Registers a benchmark family and returns the index assigned to it.
size_t AddBenchmark(std::unique_ptr<Benchmark> family);
// Clear all registered benchmark families.
void ClearBenchmarks();
// Extract the list of benchmark instances that match the specified
// regular expression.
bool FindBenchmarks(std::string re,
std::vector<BenchmarkInstance>* benchmarks,
std::ostream* Err);
private:
BenchmarkFamilies() {}
std::vector<std::unique_ptr<Benchmark>> families_;
Mutex mutex_;
};
BenchmarkFamilies* BenchmarkFamilies::GetInstance() {
static BenchmarkFamilies instance;
return &instance;
}
size_t BenchmarkFamilies::AddBenchmark(std::unique_ptr<Benchmark> family) {
MutexLock l(mutex_);
size_t index = families_.size();
families_.push_back(std::move(family));
return index;
}
void BenchmarkFamilies::ClearBenchmarks() {
MutexLock l(mutex_);
families_.clear();
families_.shrink_to_fit();
}
bool BenchmarkFamilies::FindBenchmarks(
std::string spec, std::vector<BenchmarkInstance>* benchmarks,
std::ostream* ErrStream) {
BM_CHECK(ErrStream);
auto& Err = *ErrStream;
// Make regular expression out of command-line flag
std::string error_msg;
Regex re;
bool is_negative_filter = false;
if (spec[0] == '-') {
spec.replace(0, 1, "");
is_negative_filter = true;
}
if (!re.Init(spec, &error_msg)) {
Err << "Could not compile benchmark re: " << error_msg << std::endl;
return false;
}
// Special list of thread counts to use when none are specified
const std::vector<int> one_thread = {1};
int next_family_index = 0;
MutexLock l(mutex_);
for (std::unique_ptr<Benchmark>& family : families_) {
int family_index = next_family_index;
int per_family_instance_index = 0;
// Family was deleted or benchmark doesn't match
if (!family) continue;
if (family->ArgsCnt() == -1) {
family->Args({});
}
const std::vector<int>* thread_counts =
(family->thread_counts_.empty()
? &one_thread
: &static_cast<const std::vector<int>&>(family->thread_counts_));
const size_t family_size = family->args_.size() * thread_counts->size();
// The benchmark will be run at least 'family_size' different inputs.
// If 'family_size' is very large warn the user.
if (family_size > kMaxFamilySize) {
Err << "The number of inputs is very large. " << family->name_
<< " will be repeated at least " << family_size << " times.\n";
}
// reserve in the special case the regex ".", since we know the final
// family size. this doesn't take into account any disabled benchmarks
// so worst case we reserve more than we need.
if (spec == ".") benchmarks->reserve(benchmarks->size() + family_size);
for (auto const& args : family->args_) {
for (int num_threads : *thread_counts) {
BenchmarkInstance instance(family.get(), family_index,
per_family_instance_index, args,
num_threads);
const auto full_name = instance.name().str();
if (full_name.rfind(kDisabledPrefix, 0) != 0 &&
((re.Match(full_name) && !is_negative_filter) ||
(!re.Match(full_name) && is_negative_filter))) {
benchmarks->push_back(std::move(instance));
++per_family_instance_index;
// Only bump the next family index once we've estabilished that
// at least one instance of this family will be run.
if (next_family_index == family_index) ++next_family_index;
}
}
}
}
return true;
}
Benchmark* RegisterBenchmarkInternal(Benchmark* bench) {
std::unique_ptr<Benchmark> bench_ptr(bench);
BenchmarkFamilies* families = BenchmarkFamilies::GetInstance();
families->AddBenchmark(std::move(bench_ptr));
return bench;
}
// FIXME: This function is a hack so that benchmark.cc can access
// `BenchmarkFamilies`
bool FindBenchmarksInternal(const std::string& re,
std::vector<BenchmarkInstance>* benchmarks,
std::ostream* Err) {
return BenchmarkFamilies::GetInstance()->FindBenchmarks(re, benchmarks, Err);
}
//=============================================================================//
// Benchmark
//=============================================================================//
Benchmark::Benchmark(const char* name)
: name_(name),
aggregation_report_mode_(ARM_Unspecified),
time_unit_(GetDefaultTimeUnit()),
use_default_time_unit_(true),
range_multiplier_(kRangeMultiplier),
min_time_(0),
min_warmup_time_(0),
iterations_(0),
repetitions_(0),
measure_process_cpu_time_(false),
use_real_time_(false),
use_manual_time_(false),
complexity_(oNone),
complexity_lambda_(nullptr),
setup_(nullptr),
teardown_(nullptr) {
ComputeStatistics("mean", StatisticsMean);
ComputeStatistics("median", StatisticsMedian);
ComputeStatistics("stddev", StatisticsStdDev);
ComputeStatistics("cv", StatisticsCV, kPercentage);
}
Benchmark::~Benchmark() {}
Benchmark* Benchmark::Name(const std::string& name) {
SetName(name.c_str());
return this;
}
Benchmark* Benchmark::Arg(int64_t x) {
BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == 1);
args_.push_back({x});
return this;
}
Benchmark* Benchmark::Unit(TimeUnit unit) {
time_unit_ = unit;
use_default_time_unit_ = false;
return this;
}
Benchmark* Benchmark::Range(int64_t start, int64_t limit) {
BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == 1);
std::vector<int64_t> arglist;
AddRange(&arglist, start, limit, range_multiplier_);
for (int64_t i : arglist) {
args_.push_back({i});
}
return this;
}
Benchmark* Benchmark::Ranges(
const std::vector<std::pair<int64_t, int64_t>>& ranges) {
BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == static_cast<int>(ranges.size()));
std::vector<std::vector<int64_t>> arglists(ranges.size());
for (std::size_t i = 0; i < ranges.size(); i++) {
AddRange(&arglists[i], ranges[i].first, ranges[i].second,
range_multiplier_);
}
ArgsProduct(arglists);
return this;
}
Benchmark* Benchmark::ArgsProduct(
const std::vector<std::vector<int64_t>>& arglists) {
BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == static_cast<int>(arglists.size()));
std::vector<std::size_t> indices(arglists.size());
const std::size_t total = std::accumulate(
std::begin(arglists), std::end(arglists), std::size_t{1},
[](const std::size_t res, const std::vector<int64_t>& arglist) {
return res * arglist.size();
});
std::vector<int64_t> args;
args.reserve(arglists.size());
for (std::size_t i = 0; i < total; i++) {
for (std::size_t arg = 0; arg < arglists.size(); arg++) {
args.push_back(arglists[arg][indices[arg]]);
}
args_.push_back(args);
args.clear();
std::size_t arg = 0;
do {
indices[arg] = (indices[arg] + 1) % arglists[arg].size();
} while (indices[arg++] == 0 && arg < arglists.size());
}
return this;
}
Benchmark* Benchmark::ArgName(const std::string& name) {
BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == 1);
arg_names_ = {name};
return this;
}
Benchmark* Benchmark::ArgNames(const std::vector<std::string>& names) {
BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == static_cast<int>(names.size()));
arg_names_ = names;
return this;
}
Benchmark* Benchmark::DenseRange(int64_t start, int64_t limit, int step) {
BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == 1);
BM_CHECK_LE(start, limit);
for (int64_t arg = start; arg <= limit; arg += step) {
args_.push_back({arg});
}
return this;
}
Benchmark* Benchmark::Args(const std::vector<int64_t>& args) {
BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == static_cast<int>(args.size()));
args_.push_back(args);
return this;
}
Benchmark* Benchmark::Apply(void (*custom_arguments)(Benchmark* benchmark)) {
custom_arguments(this);
return this;
}
Benchmark* Benchmark::Setup(void (*setup)(const benchmark::State&)) {
BM_CHECK(setup != nullptr);
setup_ = setup;
return this;
}
Benchmark* Benchmark::Teardown(void (*teardown)(const benchmark::State&)) {
BM_CHECK(teardown != nullptr);
teardown_ = teardown;
return this;
}
Benchmark* Benchmark::RangeMultiplier(int multiplier) {
BM_CHECK(multiplier > 1);
range_multiplier_ = multiplier;
return this;
}
Benchmark* Benchmark::MinTime(double t) {
BM_CHECK(t > 0.0);
BM_CHECK(iterations_ == 0);
min_time_ = t;
return this;
}
Benchmark* Benchmark::MinWarmUpTime(double t) {
BM_CHECK(t >= 0.0);
BM_CHECK(iterations_ == 0);
min_warmup_time_ = t;
return this;
}
Benchmark* Benchmark::Iterations(IterationCount n) {
BM_CHECK(n > 0);
BM_CHECK(IsZero(min_time_));
BM_CHECK(IsZero(min_warmup_time_));
iterations_ = n;
return this;
}
Benchmark* Benchmark::Repetitions(int n) {
BM_CHECK(n > 0);
repetitions_ = n;
return this;
}
Benchmark* Benchmark::ReportAggregatesOnly(bool value) {
aggregation_report_mode_ = value ? ARM_ReportAggregatesOnly : ARM_Default;
return this;
}
Benchmark* Benchmark::DisplayAggregatesOnly(bool value) {
// If we were called, the report mode is no longer 'unspecified', in any case.
aggregation_report_mode_ = static_cast<AggregationReportMode>(
aggregation_report_mode_ | ARM_Default);
if (value) {
aggregation_report_mode_ = static_cast<AggregationReportMode>(
aggregation_report_mode_ | ARM_DisplayReportAggregatesOnly);
} else {
aggregation_report_mode_ = static_cast<AggregationReportMode>(
aggregation_report_mode_ & ~ARM_DisplayReportAggregatesOnly);
}
return this;
}
Benchmark* Benchmark::MeasureProcessCPUTime() {
// Can be used together with UseRealTime() / UseManualTime().
measure_process_cpu_time_ = true;
return this;
}
Benchmark* Benchmark::UseRealTime() {
BM_CHECK(!use_manual_time_)
<< "Cannot set UseRealTime and UseManualTime simultaneously.";
use_real_time_ = true;
return this;
}
Benchmark* Benchmark::UseManualTime() {
BM_CHECK(!use_real_time_)
<< "Cannot set UseRealTime and UseManualTime simultaneously.";
use_manual_time_ = true;
return this;
}
Benchmark* Benchmark::Complexity(BigO complexity) {
complexity_ = complexity;
return this;
}
Benchmark* Benchmark::Complexity(BigOFunc* complexity) {
complexity_lambda_ = complexity;
complexity_ = oLambda;
return this;
}
Benchmark* Benchmark::ComputeStatistics(const std::string& name,
StatisticsFunc* statistics,
StatisticUnit unit) {
statistics_.emplace_back(name, statistics, unit);
return this;
}
Benchmark* Benchmark::Threads(int t) {
BM_CHECK_GT(t, 0);
thread_counts_.push_back(t);
return this;
}
Benchmark* Benchmark::ThreadRange(int min_threads, int max_threads) {
BM_CHECK_GT(min_threads, 0);
BM_CHECK_GE(max_threads, min_threads);
AddRange(&thread_counts_, min_threads, max_threads, 2);
return this;
}
Benchmark* Benchmark::DenseThreadRange(int min_threads, int max_threads,
int stride) {
BM_CHECK_GT(min_threads, 0);
BM_CHECK_GE(max_threads, min_threads);
BM_CHECK_GE(stride, 1);
for (auto i = min_threads; i < max_threads; i += stride) {
thread_counts_.push_back(i);
}
thread_counts_.push_back(max_threads);
return this;
}
Benchmark* Benchmark::ThreadPerCpu() {
thread_counts_.push_back(CPUInfo::Get().num_cpus);
return this;
}
void Benchmark::SetName(const char* name) { name_ = name; }
int Benchmark::ArgsCnt() const {
if (args_.empty()) {
if (arg_names_.empty()) return -1;
return static_cast<int>(arg_names_.size());
}
return static_cast<int>(args_.front().size());
}
TimeUnit Benchmark::GetTimeUnit() const {
return use_default_time_unit_ ? GetDefaultTimeUnit() : time_unit_;
}
//=============================================================================//
// FunctionBenchmark
//=============================================================================//
void FunctionBenchmark::Run(State& st) { func_(st); }
} // end namespace internal
void ClearRegisteredBenchmarks() {
internal::BenchmarkFamilies::GetInstance()->ClearBenchmarks();
}
std::vector<int64_t> CreateRange(int64_t lo, int64_t hi, int multi) {
std::vector<int64_t> args;
internal::AddRange(&args, lo, hi, multi);
return args;
}
std::vector<int64_t> CreateDenseRange(int64_t start, int64_t limit, int step) {
BM_CHECK_LE(start, limit);
std::vector<int64_t> args;
for (int64_t arg = start; arg <= limit; arg += step) {
args.push_back(arg);
}
return args;
}
} // end namespace benchmark
|