1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
|
%include "defs.asm"
;************************* memcpy64.asm ************************************
; Author: Agner Fog
; Date created: 2008-07-19
; Last modified: 2016-11-12 (patched version with AVX512 support removed)
;
; Description:
; Faster version of the standard memcpy function:
; void * A_memcpy(void *dest, const void *src, size_t count);
; Copies 'count' bytes from 'src' to 'dest'
;
; Overriding standard function memcpy:
; The alias ?OVR_memcpy is changed to _memcpy in the object file if
; it is desired to override the standard library function memcpy.
;
; The function uses non-temporal writes to bypass the cache when the size is
; bigger than half the size of the largest_level cache. This limit can be
; read with GetMemcpyCacheLimit and changed with SetMemcpyCacheLimit
; C++ prototypes:
; extern "C" size_t GetMemcpyCacheLimit(); // in memcpy64.asm
; extern "C" void SetMemcpyCacheLimit(); // in memmove64.asm
; extern "C" void SetMemcpyCacheLimit1(); // used internally
;
; Position-independent code is generated if POSITIONINDEPENDENT is defined.
;
; CPU dispatching included SSE2, Suppl-SSE3 and AVX instruction sets.
;
; Copyright (c) 2008-2013 GNU General Public License www.gnu.org/licenses
;******************************************************************************
default rel
global A_memcpy: function ; Function A_memcpy
global EXP(memcpy): function ; ?OVR removed if standard function memcpy overridden
global memcpySSE2: function ; Version for processors with only SSE2
global memcpySSSE3: function ; Version for processors with SSSE3
global memcpyU: function ; Version for processors with fast unaligned read
global memcpyU256: function ; Version for processors with fast 256-bit read/write
global GetMemcpyCacheLimit: function ; Get the size limit for bypassing cache when copying with memcpy and memmove
global SetMemcpyCacheLimit1: function ; Set the size limit for bypassing cache when copying with memcpy
; Imported from instrset64.asm
extern InstructionSet ; Instruction set for CPU dispatcher
; Imported from unalignedisfaster64.asm:
extern UnalignedIsFaster ; Tells if unaligned read is faster than PALIGNR
extern Store256BitIsFaster ; Tells if a 256 bit store is faster than two 128 bit stores
; Imported from cachesize32.asm:
extern DataCacheSize ; Gets size of data cache
; Define prolog for this function
%MACRO PROLOGM 0
%IFDEF WINDOWS
push rsi
push rdi
mov rdi, rcx ; dest
mov r9, rcx ; dest
mov rsi, rdx ; src
mov rcx, r8 ; count
%ELSE ; Unix
mov rcx, rdx ; count
mov r9, rdi ; dest
%ENDIF
%ENDM
; Define return from this function
%MACRO RETURNM 0
%IFDEF WINDOWS
pop rdi
pop rsi
%ENDIF
mov rax, r9 ; Return value = dest
ret
%ENDM
SECTION .text align=16
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Common entry for dispatch
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; extern "C" void * A_memcpy(void * dest, const void * src, size_t count);
; Function entry:
A_memcpy:
EXP(memcpy):
jmp qword [memcpyDispatch] ; Go to appropriate version, depending on instruction set
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; AVX Version for processors with fast unaligned read and fast 32 bytes write
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
align 16
memcpyU256: ; global label
memcpyU256@: ; local label
PROLOGM
cmp rcx, 40H
jb A1000 ; Use simpler code if count < 64
; count >= 64
; Calculate size of first block up to first regular boundary of dest
mov edx, edi
neg edx
and edx, 1FH
jz B3100 ; Skip if dest aligned by 32
; edx = size of first partial block, 1 - 31 bytes
test dl, 3
jz B3030
test dl, 1
jz B3020
; move 1 byte
movzx eax, byte [rsi]
mov [rdi], al
inc rsi
inc rdi
B3020: test dl, 2
jz B3030
; move 2 bytes
movzx eax, word [rsi]
mov [rdi], ax
add rsi, 2
add rdi, 2
B3030: test dl, 4
jz B3040
; move 4 bytes
mov eax, [rsi]
mov [rdi], eax
add rsi, 4
add rdi, 4
B3040: test dl, 8
jz B3050
; move 8 bytes
mov rax, [rsi]
mov [rdi], rax
add rsi, 8
add rdi, 8
B3050: test dl, 16
jz B3060
; move 16 bytes
movups xmm0, [rsi]
movaps [rdi], xmm0
add rsi, 16
add rdi, 16
B3060: sub rcx, rdx
B3100: ; Now dest is aligned by 32. Any partial block has been moved
; Set up for loop moving 32 bytes per iteration:
mov rdx, rcx ; Save count
and rcx, -20H ; Round down to nearest multiple of 32
add rsi, rcx ; Point to the end
add rdi, rcx ; Point to the end
sub rdx, rcx ; Remaining data after loop
; Check if count very big
cmp rcx, [CacheBypassLimit]
ja I3100 ; Use non-temporal store if count > CacheBypassLimit
neg rcx ; Negative index from the end
H3100: ; copy -rcx bytes in blocks of 32 bytes.
; Check for false memory dependence: The CPU may falsely assume
; a partial overlap between the written destination and the following
; read source if source is unaligned and
; (src-dest) modulo 4096 is close to 4096
test sil, 1FH
jz H3110 ; aligned
mov eax, esi
sub eax, edi
and eax, 0FFFH ; modulo 4096
cmp eax, 1000H - 200H
ja J3100
align 16
H3110: ; main copy loop, 32 bytes at a time
; rcx has negative index from the end, counting up to zero
vmovups ymm0, [rsi+rcx]
vmovaps [rdi+rcx], ymm0
add rcx, 20H
jnz H3110
sfence
vzeroupper ; end of AVX mode
H3120: ; Move the remaining edx bytes (0 - 31):
add rsi, rdx
add rdi, rdx
neg rdx
jz H3500 ; Skip if no more data
; move 16-8-4-2-1 bytes, aligned
cmp edx, -10H
jg H3200
; move 16 bytes
movups xmm0, [rsi+rdx]
movaps [rdi+rdx], xmm0
add rdx, 10H
H3200: cmp edx, -8
jg H3210
; move 8 bytes
movq xmm0, qword [rsi+rdx]
movq qword [rdi+rdx], xmm0
add rdx, 8
jz H500 ; Early skip if count divisible by 8
H3210: cmp edx, -4
jg H3220
; move 4 bytes
mov eax, [rsi+rdx]
mov [rdi+rdx], eax
add rdx, 4
H3220: cmp edx, -2
jg H3230
; move 2 bytes
movzx eax, word [rsi+rdx]
mov [rdi+rdx], ax
add rdx, 2
H3230: cmp edx, -1
jg H3500
; move 1 byte
movzx eax, byte [rsi+rdx]
mov [rdi+rdx], al
H3500: ; finished
RETURNM
I3100: ; non-temporal move
neg rcx ; Negative index from the end
align 16
I3110: ; main copy loop, 32 bytes at a time
; rcx has negative index from the end, counting up to zero
vmovups ymm0, [rsi+rcx]
vmovntps [rdi+rcx], ymm0
add rcx, 20H
jnz I3110
sfence
vzeroupper ; end of AVX mode
jmp H3120 ; Move the remaining edx bytes (0 - 31)
align 16
J3100: ; There is a false memory dependence.
; check if src and dest overlap, if not then it is safe
; to copy backwards to avoid false memory dependence
%if 1
; Use this version if you want consistent behavior in the case
; where dest > src and overlap. However, this case is undefined
; anyway because part of src is overwritten before copying
push rdx
mov rax, rsi
sub rax, rdi
cqo
xor rax, rdx
sub rax, rdx ; abs(src-dest)
neg rcx ; size
pop rdx ; restore rdx
cmp rax, rcx
jnb J3110
neg rcx ; restore rcx
jmp H3110 ; overlap between src and dest. Can't copy backwards
%else
; save time by not checking the case that is undefined anyway
mov rax, rsi
sub rax, rdi
neg rcx ; size
cmp rax, rcx
jnb J3110 ; OK to copy backwards
; must copy forwards
neg rcx ; restore ecx
jmp H3110 ; copy forwards
%endif
J3110: ; copy backwards, rcx = size. rsi, rdi = end of src, dest
push rsi
push rdi
sub rsi, rcx
sub rdi, rcx
J3120: ; loop backwards
vmovups ymm0, [rsi+rcx-20H]
vmovaps [rdi+rcx-20H], ymm0
sub rcx, 20H
jnz J3120
sfence
vzeroupper
pop rdi
pop rsi
jmp H3120
align 16
; count < 64. Move 32-16-8-4-2-1 bytes
; multiple CPU versions (SSSE3 and above)
A1000: add rsi, rcx ; end of src
add rdi, rcx ; end of dest
neg rcx ; negative index from the end
cmp ecx, -20H
jg A1100
; move 32 bytes
; movdqu is faster than 64-bit moves on processors with SSSE3
movups xmm0, [rsi+rcx]
movups xmm1, [rsi+rcx+10H]
movups [rdi+rcx], xmm0
movups [rdi+rcx+10H], xmm1
add rcx, 20H
A1100: cmp ecx, -10H
jg A1200
; move 16 bytes
movups xmm0, [rsi+rcx]
movups [rdi+rcx], xmm0
add rcx, 10H
A1200: cmp ecx, -8
jg A1300
; move 8 bytes
mov rax, qword [rsi+rcx]
mov qword [rdi+rcx], rax
add rcx, 8
A1300: cmp ecx, -4
jg A1400
; move 4 bytes
mov eax, [rsi+rcx]
mov [rdi+rcx], eax
add rcx, 4
jz A1900 ; early out if count divisible by 4
A1400: cmp ecx, -2
jg A1500
; move 2 bytes
movzx eax, word [rsi+rcx]
mov [rdi+rcx], ax
add rcx, 2
A1500: cmp ecx, -1
jg A1900
; move 1 byte
movzx eax, byte [rsi+rcx]
mov [rdi+rcx], al
A1900: ; finished
RETURNM
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Version for processors with fast unaligned read and fast 16 bytes write
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
align 16
memcpyU: ; global label
memcpyU@: ; local label
PROLOGM
cmp rcx, 40H
jb A1000 ; Use simpler code if count < 64
; count >= 64
; Calculate size of first block up to first regular boundary of dest
mov edx, edi
neg edx
and edx, 0FH
jz B2100 ; Skip if dest aligned by 16
; edx = size of first partial block, 1 - 15 bytes
test dl, 3
jz B2030
test dl, 1
jz B2020
; move 1 byte
movzx eax, byte [rsi]
mov [rdi], al
inc rsi
inc rdi
B2020: test dl, 2
jz B2030
; move 2 bytes
movzx eax, word [rsi]
mov [rdi], ax
add rsi, 2
add rdi, 2
B2030: test dl, 4
jz B2040
; move 4 bytes
mov eax, [rsi]
mov [rdi], eax
add rsi, 4
add rdi, 4
B2040: test dl, 8
jz B2050
; move 8 bytes
mov rax, [rsi]
mov [rdi], rax
add rsi, 8
add rdi, 8
B2050: sub rcx, rdx
B2100: ; Now dest is aligned by 16. Any partial block has been moved
; Set up for loop moving 32 bytes per iteration:
mov rdx, rcx ; Save count
and rcx, -20H ; Round down to nearest multiple of 32
add rsi, rcx ; Point to the end
add rdi, rcx ; Point to the end
sub rdx, rcx ; Remaining data after loop
; Check if count very big
cmp rcx, [CacheBypassLimit]
ja I100 ; Use non-temporal store if count > CacheBypassLimit
neg rcx ; Negative index from the end
H100: ; copy -rcx bytes in blocks of 32 bytes.
; Check for false memory dependence: The CPU may falsely assume
; a partial overlap between the written destination and the following
; read source if source is unaligned and
; (src-dest) modulo 4096 is close to 4096
test sil, 0FH
jz H110 ; aligned
mov eax, esi
sub eax, edi
and eax, 0FFFH ; modulo 4096
cmp eax, 1000H - 200H
ja J100
H110: ; main copy loop, 32 bytes at a time
; rcx has negative index from the end, counting up to zero
movups xmm0, [rsi+rcx]
movups xmm1, [rsi+rcx+10H]
movaps [rdi+rcx], xmm0
movaps [rdi+rcx+10H], xmm1
add rcx, 20H
jnz H110
H120: ; Move the remaining edx bytes (0 - 31):
add rsi, rdx
add rdi, rdx
neg rdx
jz H500 ; Skip if no more data
; move 16-8-4-2-1 bytes, aligned
cmp edx, -10H
jg H200
; move 16 bytes
movups xmm0, [rsi+rdx]
movaps [rdi+rdx], xmm0
add rdx, 10H
H200: cmp edx, -8
jg H210
; move 8 bytes
movq xmm0, qword [rsi+rdx]
movq qword [rdi+rdx], xmm0
add rdx, 8
jz H500 ; Early skip if count divisible by 8
H210: cmp edx, -4
jg H220
; move 4 bytes
mov eax, [rsi+rdx]
mov [rdi+rdx], eax
add rdx, 4
H220: cmp edx, -2
jg H230
; move 2 bytes
movzx eax, word [rsi+rdx]
mov [rdi+rdx], ax
add rdx, 2
H230: cmp edx, -1
jg H500
; move 1 byte
movzx eax, byte [rsi+rdx]
mov [rdi+rdx], al
H500: ; finished
RETURNM
I100: ; non-temporal move
neg rcx ; Negative index from the end
align 16
I110: ; main copy loop, 32 bytes at a time
; rcx has negative index from the end, counting up to zero
movups xmm0, [rsi+rcx]
movups xmm1, [rsi+rcx+10H]
movntps [rdi+rcx], xmm0
movntps [rdi+rcx+10H], xmm1
add rcx, 20H
jnz I110
sfence
jmp H120 ; Move the remaining edx bytes (0 - 31):
align 16
J100: ; There is a false memory dependence.
; check if src and dest overlap, if not then it is safe
; to copy backwards to avoid false memory dependence
%if 1
; Use this version if you want consistent behavior in the case
; where dest > src and overlap. However, this case is undefined
; anyway because part of src is overwritten before copying
push rdx
mov rax, rsi
sub rax, rdi
cqo
xor rax, rdx
sub rax, rdx ; abs(src-dest)
neg rcx ; size
pop rdx ; restore rdx
cmp rax, rcx
jnb J110
neg rcx ; restore rcx
jmp H110 ; overlap between src and dest. Can't copy backwards
%else
; save time by not checking the case that is undefined anyway
mov rax, rsi
sub rax, rdi
neg rcx ; size
cmp rax, rcx
jnb J110 ; OK to copy backwards
; must copy forwards
neg rcx ; restore ecx
jmp H110 ; copy forwards
%endif
J110: ; copy backwards, rcx = size. rsi, rdi = end of src, dest
push rsi
push rdi
sub rsi, rcx
sub rdi, rcx
J120: ; loop backwards
movups xmm1, [rsi+rcx-20H]
movups xmm0, [rsi+rcx-10H]
movaps [rdi+rcx-20H], xmm1
movaps [rdi+rcx-10H], xmm0
sub rcx, 20H
jnz J120
pop rdi
pop rsi
jmp H120
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Version for processors with SSSE3. Aligned read + shift + aligned write
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
align 16
memcpySSSE3: ; global label
memcpySSSE3@: ; local label
PROLOGM
cmp rcx, 40H
jb A1000 ; Use simpler code if count < 64
; count >= 64
; Calculate size of first block up to first regular boundary of dest
mov edx, edi
neg edx
and edx, 0FH
jz B1200 ; Skip if dest aligned by 16
; edx = size of first partial block, 1 - 15 bytes
test dl, 3
jz B1030
test dl, 1
jz B1020
; move 1 byte
movzx eax, byte [rsi]
mov [rdi], al
inc rsi
inc rdi
B1020: test dl, 2
jz B1030
; move 2 bytes
movzx eax, word [rsi]
mov [rdi], ax
add rsi, 2
add rdi, 2
B1030: test dl, 4
jz B1040
; move 4 bytes
mov eax, [rsi]
mov [rdi], eax
add rsi, 4
add rdi, 4
B1040: test dl, 8
jz B1050
; move 8 bytes
mov rax, [rsi]
mov [rdi], rax
add rsi, 8
add rdi, 8
B1050: sub rcx, rdx
B1200: ; Now dest is aligned by 16. Any partial block has been moved
; Find alignment of src modulo 16 at this point:
mov eax, esi
and eax, 0FH
; Set up for loop moving 32 bytes per iteration:
mov edx, ecx ; Save count (lower 32 bits)
and rcx, -20H ; Round down count to nearest multiple of 32
add rsi, rcx ; Point to the end
add rdi, rcx ; Point to the end
sub edx, ecx ; Remaining data after loop (0-31)
sub rsi, rax ; Nearest preceding aligned block of src
; Check if count very big
cmp rcx, [CacheBypassLimit]
ja B1400 ; Use non-temporal store if count > CacheBypassLimit
neg rcx ; Negative index from the end
; Dispatch to different codes depending on src alignment
lea r8, [AlignmentDispatchSSSE3]
jmp near [r8+rax*8]
B1400: neg rcx
; Dispatch to different codes depending on src alignment
lea r8, [AlignmentDispatchNT]
jmp near [r8+rax*8]
align 16
C100: ; Code for aligned src. SSE2 and SSSE3 versions
; The nice case, src and dest have same alignment.
; Loop. rcx has negative index from the end, counting up to zero
movaps xmm0, [rsi+rcx]
movaps xmm1, [rsi+rcx+10H]
movaps [rdi+rcx], xmm0
movaps [rdi+rcx+10H], xmm1
add rcx, 20H
jnz C100
; Move the remaining edx bytes (0 - 31):
add rsi, rdx
add rdi, rdx
neg rdx
jz C500 ; Skip if no more data
; move 16-8-4-2-1 bytes, aligned
cmp edx, -10H
jg C200
; move 16 bytes
movaps xmm0, [rsi+rdx]
movaps [rdi+rdx], xmm0
add rdx, 10H
C200: cmp edx, -8
jg C210
; move 8 bytes
mov rax, [rsi+rdx]
mov [rdi+rdx], rax
add rdx, 8
jz C500 ; Early skip if count divisible by 8
C210: cmp edx, -4
jg C220
; move 4 bytes
mov eax, [rsi+rdx]
mov [rdi+rdx], eax
add rdx, 4
C220: cmp edx, -2
jg C230
; move 2 bytes
movzx eax, word [rsi+rdx]
mov [rdi+rdx], ax
add rdx, 2
C230: cmp edx, -1
jg C500
; move 1 byte
movzx eax, byte [rsi+rdx]
mov [rdi+rdx], al
C500: ; finished
RETURNM
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Version for processors with SSE2. Aligned read + shift + aligned write
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
memcpySSE2: ; global label
memcpySSE2@: ; local label
PROLOGM
cmp rcx, 40H
jae B0100 ; Use simpler code if count < 64
; count < 64. Move 32-16-8-4-2-1 bytes
add rsi, rcx ; end of src
add rdi, rcx ; end of dest
neg rcx ; negative index from the end
cmp ecx, -20H
jg A100
; move 32 bytes
; mov r64 is faster than movdqu on Intel Pentium M and Core 1
; movdqu is fast on Nehalem and later
mov rax, [rsi+rcx]
mov rdx, [rsi+rcx+8]
mov [rdi+rcx], rax
mov [rdi+rcx+8], rdx
mov rax, qword [rsi+rcx+10H]
mov rdx, qword [rsi+rcx+18H]
mov qword [rdi+rcx+10H], rax
mov qword [rdi+rcx+18H], rdx
add rcx, 20H
A100: cmp ecx, -10H
jg A200
; move 16 bytes
mov rax, [rsi+rcx]
mov rdx, [rsi+rcx+8]
mov [rdi+rcx], rax
mov [rdi+rcx+8], rdx
add rcx, 10H
A200: cmp ecx, -8
jg A300
; move 8 bytes
mov rax, qword [rsi+rcx]
mov qword [rdi+rcx], rax
add rcx, 8
A300: cmp ecx, -4
jg A400
; move 4 bytes
mov eax, [rsi+rcx]
mov [rdi+rcx], eax
add rcx, 4
jz A900 ; early out if count divisible by 4
A400: cmp ecx, -2
jg A500
; move 2 bytes
movzx eax, word [rsi+rcx]
mov [rdi+rcx], ax
add rcx, 2
A500: cmp ecx, -1
jg A900
; move 1 byte
movzx eax, byte [rsi+rcx]
mov [rdi+rcx], al
A900: ; finished
RETURNM
B0100: ; count >= 64
; Calculate size of first block up to first regular boundary of dest
mov edx, edi
neg edx
and edx, 0FH
jz B0200 ; Skip if dest aligned by 16
; edx = size of first partial block, 1 - 15 bytes
test dl, 3
jz B0030
test dl, 1
jz B0020
; move 1 byte
movzx eax, byte [rsi]
mov [rdi], al
inc rsi
inc rdi
B0020: test dl, 2
jz B0030
; move 2 bytes
movzx eax, word [rsi]
mov [rdi], ax
add rsi, 2
add rdi, 2
B0030: test dl, 4
jz B0040
; move 4 bytes
mov eax, [rsi]
mov [rdi], eax
add rsi, 4
add rdi, 4
B0040: test dl, 8
jz B0050
; move 8 bytes
mov rax, [rsi]
mov [rdi], rax
add rsi, 8
add rdi, 8
B0050: sub rcx, rdx
B0200: ; Now dest is aligned by 16. Any partial block has been moved
; This part will not always work if count < 64
; Calculate size of first block up to first regular boundary of dest
mov edx, edi
neg edx
and edx, 0FH
jz B300 ; Skip if dest aligned by 16
; rdx = size of first partial block, 1 - 15 bytes
add rsi, rdx
add rdi, rdx
sub rcx, rdx
neg rdx
cmp edx, -8
jg B200
; move 8 bytes
mov rax, [rsi+rdx]
mov [rdi+rdx], rax
add rdx, 8
B200: cmp edx, -4
jg B210
; move 4 bytes
mov eax, [rsi+rdx]
mov [rdi+rdx], eax
add rdx, 4
jz B300 ; early out if aligned by 4
B210: cmp edx, -2
jg B220
; move 2 bytes
movzx eax, word [rsi+rdx]
mov [rdi+rdx], ax
add rdx, 2
B220: cmp edx, -1
jg B300
; move 1 byte
movzx eax, byte [rsi+rdx]
mov [rdi+rdx], al
B300: ; Now dest is aligned by 16. Any partial block has been moved
; Find alignment of src modulo 16 at this point:
mov eax, esi
and eax, 0FH
; Set up for loop moving 32 bytes per iteration:
mov edx, ecx ; Save count (lower 32 bits)
and rcx, -20H ; Round down count to nearest multiple of 32
add rsi, rcx ; Point to the end
add rdi, rcx ; Point to the end
sub edx, ecx ; Remaining data after loop (0-31)
sub rsi, rax ; Nearest preceding aligned block of src
; Check if count very big
cmp rcx, [CacheBypassLimit]
ja B400 ; Use non-temporal store if count > CacheBypassLimit
neg rcx ; Negative index from the end
; Dispatch to different codes depending on src alignment
lea r8, [AlignmentDispatchSSE2]
jmp near [r8+rax*8]
B400: neg rcx
; Dispatch to different codes depending on src alignment
lea r8, [AlignmentDispatchNT]
jmp near [r8+rax*8]
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Macros and alignment jump tables
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Macros for each src alignment, SSE2 instruction set:
; Make separate code for each alignment u because the shift instructions
; have the shift count as a constant:
%MACRO MOVE_UNALIGNED_SSE2 2 ; u, nt
; Move rcx + rdx bytes of data
; Source is misaligned. (src-dest) modulo 16 = %1
; %2 = 1 if non-temporal store desired
; eax = %1
; rsi = src - %1 = nearest preceding 16-bytes boundary
; rdi = dest (aligned)
; rcx = - (count rounded down to nearest divisible by 32)
; edx = remaining bytes to move after loop
movdqa xmm0, [rsi+rcx] ; Read from nearest preceding 16B boundary
%%L1: ; Loop. rcx has negative index from the end, counting up to zero
movdqa xmm1, [rsi+rcx+10H] ; Read next two blocks aligned
movdqa xmm2, [rsi+rcx+20H]
movdqa xmm3, xmm1 ; Copy because used twice
psrldq xmm0, %1 ; shift right
pslldq xmm1, 16-%1 ; shift left
por xmm0, xmm1 ; combine blocks
%IF %2 == 0
movdqa [rdi+rcx], xmm0 ; Save aligned
%ELSE
movntdq [rdi+rcx], xmm0 ; non-temporal save
%ENDIF
movdqa xmm0, xmm2 ; Save for next iteration
psrldq xmm3, %1 ; shift right
pslldq xmm2, 16-%1 ; shift left
por xmm3, xmm2 ; combine blocks
%IF %2 == 0
movdqa [rdi+rcx+10H], xmm3 ; Save aligned
%ELSE
movntdq [rdi+rcx+10H], xmm3 ; non-temporal save
%ENDIF
add rcx, 20H ; Loop through negative values up to zero
jnz %%L1
; Set up for edx remaining bytes
add rsi, rdx
add rdi, rdx
neg rdx
cmp edx, -10H
jg %%L2
; One more 16-bytes block to move
movdqa xmm1, [rsi+rdx+10H]
psrldq xmm0, %1 ; shift right
pslldq xmm1, 16-%1 ; shift left
por xmm0, xmm1 ; combine blocks
%IF %2 == 0
movdqa [rdi+rdx], xmm0 ; Save aligned
%ELSE
movntdq [rdi+rdx], xmm0 ; non-temporal save
%ENDIF
add rdx, 10H
%%L2: ; Get src pointer back to misaligned state
add rsi, rax
%IF %2 == 1
sfence
%ENDIF
; Move remaining 0 - 15 bytes, unaligned
jmp C200
%ENDMACRO
%MACRO MOVE_UNALIGNED_SSE2_4 1 ; nt
; Special case for u = 4
; %1 = 1 if non-temporal store desired
movaps xmm0, [rsi+rcx] ; Read from nearest preceding 16B boundary
%%L1: ; Loop. rcx has negative index from the end, counting up to zero
movaps xmm1, [rsi+rcx+10H] ; Read next two blocks aligned
movss xmm0, xmm1 ; Moves 4 bytes, leaves remaining bytes unchanged
shufps xmm0, xmm0, 00111001B ; Rotate
%IF %1 == 0
movaps [rdi+rcx], xmm0 ; Save aligned
%ELSE
movntps [rdi+rcx], xmm0 ; Non-temporal save
%ENDIF
movaps xmm0, [rsi+rcx+20H]
movss xmm1, xmm0
shufps xmm1, xmm1, 00111001B
%IF %1 == 0
movaps [rdi+rcx+10H], xmm1 ; Save aligned
%ELSE
movntps [rdi+rcx+10H], xmm1 ; Non-temporal save
%ENDIF
add rcx, 20H ; Loop through negative values up to zero
jnz %%L1
; Set up for edx remaining bytes
add rsi, rdx
add rdi, rdx
neg rdx
cmp edx, -10H
jg %%L2
; One more 16-bytes block to move
movaps xmm1, [rsi+rdx+10H] ; Read next two blocks aligned
movss xmm0, xmm1
shufps xmm0, xmm0, 00111001B
%IF %1 == 0
movaps [rdi+rdx], xmm0 ; Save aligned
%ELSE
movntps [rdi+rdx], xmm0 ; Non-temporal save
%ENDIF
add rdx, 10H
%%L2: ; Get src pointer back to misaligned state
add rsi, rax
%IF %1 == 1
sfence
%ENDIF
; Move remaining 0 - 15 bytes, unaligned
jmp C200
%ENDMACRO
%MACRO MOVE_UNALIGNED_SSE2_8 1 ; nt
; Special case for u = 8
; %1 = 1 if non-temporal store desired
movaps xmm0, [rsi+rcx] ; Read from nearest preceding 16B boundary
%%L1: ; Loop. rcx has negative index from the end, counting up to zero
movaps xmm1, [rsi+rcx+10H] ; Read next two blocks aligned
movsd xmm0, xmm1 ; Moves 8 bytes, leaves remaining bytes unchanged
shufps xmm0, xmm0, 01001110B ; Rotate
%IF %1 == 0
movaps [rdi+rcx], xmm0 ; Save aligned
%ELSE
movntps [rdi+rcx], xmm0 ; Non-temporal save
%ENDIF
movaps xmm0, [rsi+rcx+20H]
movsd xmm1, xmm0
shufps xmm1, xmm1, 01001110B
%IF %1 == 0
movaps [rdi+rcx+10H], xmm1 ; Save aligned
%ELSE
movntps [rdi+rcx+10H], xmm1 ; Non-temporal save
%ENDIF
add rcx, 20H ; Loop through negative values up to zero
jnz %%L1
; Set up for edx remaining bytes
add rsi, rdx
add rdi, rdx
neg rdx
cmp edx, -10H
jg %%L2
; One more 16-bytes block to move
movaps xmm1, [rsi+rdx+10H] ; Read next two blocks aligned
movsd xmm0, xmm1
shufps xmm0, xmm0, 01001110B
%IF %1 == 0
movaps [rdi+rdx], xmm0 ; Save aligned
%ELSE
movntps [rdi+rdx], xmm0 ; Non-temporal save
%ENDIF
add rdx, 10H
%%L2: ; Get src pointer back to misaligned state
add rsi, rax
%IF %1 == 1
sfence
%ENDIF
; Move remaining 0 - 15 bytes, unaligned
jmp C200
%ENDMACRO
%MACRO MOVE_UNALIGNED_SSE2_12 1 ; nt
; Special case for u = 12
; %1 = 1 if non-temporal store desired
movaps xmm0, [rsi+rcx] ; Read from nearest preceding 16B boundary
shufps xmm0, xmm0, 10010011B
%%L1: ; Loop. rcx has negative index from the end, counting up to zero
movaps xmm1, [rsi+rcx+10H] ; Read next two blocks aligned
movaps xmm2, [rsi+rcx+20H]
shufps xmm1, xmm1, 10010011B
shufps xmm2, xmm2, 10010011B
movaps xmm3, xmm2
movss xmm2, xmm1 ; Moves 4 bytes, leaves remaining bytes unchanged
movss xmm1, xmm0 ; Moves 4 bytes, leaves remaining bytes unchanged
%IF %1 == 0
movaps [rdi+rcx], xmm1 ; Save aligned
movaps [rdi+rcx+10H], xmm2 ; Save aligned
%ELSE
movntps [rdi+rcx], xmm1 ; Non-temporal save
movntps [rdi+rcx+10H], xmm2 ; Non-temporal save
%ENDIF
movaps xmm0, xmm3 ; Save for next iteration
add rcx, 20H ; Loop through negative values up to zero
jnz %%L1
; Set up for edx remaining bytes
add rsi, rdx
add rdi, rdx
neg rdx
cmp edx, -10H
jg %%L2
; One more 16-bytes block to move
movaps xmm1, [rsi+rdx+10H] ; Read next two blocks aligned
shufps xmm1, xmm1, 10010011B
movss xmm1, xmm0 ; Moves 4 bytes, leaves remaining bytes unchanged
%IF %1 == 0
movaps [rdi+rdx], xmm1 ; Save aligned
%ELSE
movntps [rdi+rdx], xmm1 ; Non-temporal save
%ENDIF
add rdx, 10H
%%L2: ; Get src pointer back to misaligned state
add rsi, rax
%IF %1 == 1
sfence
%ENDIF
; Move remaining 0 - 15 bytes, unaligned
jmp C200
%ENDMACRO
; Macros for each src alignment, Suppl.SSE3 instruction set:
; Make separate code for each alignment u because the palignr instruction
; has the shift count as a constant:
%MACRO MOVE_UNALIGNED_SSSE3 1 ; u
; Move rcx + rdx bytes of data
; Source is misaligned. (src-dest) modulo 16 = %1
; eax = %1
; rsi = src - %1 = nearest preceding 16-bytes boundary
; rdi = dest (aligned)
; rcx = - (count rounded down to nearest divisible by 32)
; edx = remaining bytes to move after loop
movdqa xmm0, [rsi+rcx] ; Read from nearest preceding 16B boundary
%%L1: ; Loop. rcx has negative index from the end, counting up to zero
movdqa xmm2, [rsi+rcx+10H] ; Read next two blocks
movdqa xmm3, [rsi+rcx+20H]
movdqa xmm1, xmm0 ; Save xmm0
movdqa xmm0, xmm3 ; Save for next iteration
palignr xmm3, xmm2, %1 ; Combine parts into aligned block
palignr xmm2, xmm1, %1 ; Combine parts into aligned block
movdqa [rdi+rcx], xmm2 ; Save aligned
movdqa [rdi+rcx+10H], xmm3 ; Save aligned
add rcx, 20H
jnz %%L1
; Set up for edx remaining bytes
add rsi, rdx
add rdi, rdx
neg rdx
cmp edx, -10H
jg %%L2
; One more 16-bytes block to move
movdqa xmm2, [rsi+rdx+10H]
palignr xmm2, xmm0, %1
movdqa [rdi+rdx], xmm2
add rdx, 10H
%%L2: ; Get src pointer back to misaligned state
add rsi, rax
; Move remaining 0 - 15 bytes
jmp C200
%ENDMACRO
; Make 15 instances of SSE2 macro for each value of the alignment u.
; These are pointed to by the jump table AlignmentDispatchSSE2 below
; (alignments and fillers are inserted manually to minimize the number
; of 16-bytes boundaries inside loops)
align 16
D104: MOVE_UNALIGNED_SSE2_4 0
times 4 nop
D108: MOVE_UNALIGNED_SSE2_8 0
times 4 nop
D10C: MOVE_UNALIGNED_SSE2_12 0
times 1 nop
D101: MOVE_UNALIGNED_SSE2 1, 0
D102: MOVE_UNALIGNED_SSE2 2, 0
D103: MOVE_UNALIGNED_SSE2 3, 0
D105: MOVE_UNALIGNED_SSE2 5, 0
D106: MOVE_UNALIGNED_SSE2 6, 0
D107: MOVE_UNALIGNED_SSE2 7, 0
D109: MOVE_UNALIGNED_SSE2 9, 0
times 1 nop
D10A: MOVE_UNALIGNED_SSE2 0AH, 0
D10B: MOVE_UNALIGNED_SSE2 0BH, 0
D10D: MOVE_UNALIGNED_SSE2 0DH, 0
D10E: MOVE_UNALIGNED_SSE2 0EH, 0
D10F: MOVE_UNALIGNED_SSE2 0FH, 0
; Make 15 instances of Suppl-SSE3 macro for each value of the alignment u.
; These are pointed to by the jump table AlignmentDispatchSupSSE3 below
align 16
E104: MOVE_UNALIGNED_SSSE3 4
E108: MOVE_UNALIGNED_SSSE3 8
E10C: MOVE_UNALIGNED_SSSE3 0CH
E101: MOVE_UNALIGNED_SSSE3 1
E102: MOVE_UNALIGNED_SSSE3 2
E103: MOVE_UNALIGNED_SSSE3 3
E105: MOVE_UNALIGNED_SSSE3 5
E106: MOVE_UNALIGNED_SSSE3 6
E107: MOVE_UNALIGNED_SSSE3 7
E109: MOVE_UNALIGNED_SSSE3 9
times 1 nop
E10A: MOVE_UNALIGNED_SSSE3 0AH
E10B: MOVE_UNALIGNED_SSSE3 0BH
E10D: MOVE_UNALIGNED_SSSE3 0DH
E10E: MOVE_UNALIGNED_SSSE3 0EH
E10F: MOVE_UNALIGNED_SSSE3 0FH
; Codes for non-temporal move. Aligned case first
align 16
F100: ; Non-temporal move, src and dest have same alignment.
; Loop. rcx has negative index from the end, counting up to zero
movaps xmm0, [rsi+rcx] ; Read
movaps xmm1, [rsi+rcx+10H]
movntps [rdi+rcx], xmm0 ; Write non-temporal (bypass cache)
movntps [rdi+rcx+10H], xmm1
add rcx, 20H
jnz F100 ; Loop through negative rcx up to zero
; Move the remaining edx bytes (0 - 31):
add rsi, rdx
add rdi, rdx
neg rdx
jz C500 ; Skip if no more data
; Check if we can more one more 16-bytes block
cmp edx, -10H
jg C200
; move 16 bytes, aligned
movaps xmm0, [rsi+rdx]
movntps [rdi+rdx], xmm0
add rdx, 10H
sfence
; move the remaining 0 - 15 bytes
jmp C200
; Make 15 instances of MOVE_UNALIGNED_SSE2 macro for each value of
; the alignment u.
; These are pointed to by the jump table AlignmentDispatchNT below
;align 16
F104: MOVE_UNALIGNED_SSE2_4 1
F108: MOVE_UNALIGNED_SSE2_8 1
F10C: MOVE_UNALIGNED_SSE2_12 1
F101: MOVE_UNALIGNED_SSE2 1, 1
F102: MOVE_UNALIGNED_SSE2 2, 1
F103: MOVE_UNALIGNED_SSE2 3, 1
F105: MOVE_UNALIGNED_SSE2 5, 1
F106: MOVE_UNALIGNED_SSE2 6, 1
F107: MOVE_UNALIGNED_SSE2 7, 1
F109: MOVE_UNALIGNED_SSE2 9, 1
F10A: MOVE_UNALIGNED_SSE2 0AH, 1
F10B: MOVE_UNALIGNED_SSE2 0BH, 1
F10D: MOVE_UNALIGNED_SSE2 0DH, 1
F10E: MOVE_UNALIGNED_SSE2 0EH, 1
F10F: MOVE_UNALIGNED_SSE2 0FH, 1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; CPU dispatcher
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
memcpyCPUDispatch: ; CPU dispatcher, check for instruction sets and which method is fastest
; This part is executed only once
push rbx
push rcx
push rdx
push rsi
push rdi
push r8
; set CacheBypassLimit to half the size of the largest level cache
call GetMemcpyCacheLimit@
mov eax, 1
cpuid ; Get feature flags
lea rbx, [memcpySSE2@]
bt ecx, 9 ; Test bit for SupplSSE3
jnc Q100
lea rbx, [memcpySSSE3@]
call UnalignedIsFaster ; Test if unaligned read is faster than aligned read and shift
test eax, eax
jz Q100
lea rbx, [memcpyU@]
call Store256BitIsFaster ; Test if 256-bit read/write is available and faster than 128-bit read/write
test eax, eax
jz Q100
lea rbx, [memcpyU256@]
Q100:
; Insert appropriate pointer
mov [memcpyDispatch], rbx
mov rax, rbx
pop r8
pop rdi
pop rsi
pop rdx
pop rcx
pop rbx
; Jump according to the replaced function pointer
jmp rax
; extern "C" size_t GetMemcpyCacheLimit();
GetMemcpyCacheLimit:
GetMemcpyCacheLimit@: ; local limit
mov rax, [CacheBypassLimit]
test rax, rax
jnz U200
; Get half the size of the largest level cache
%ifdef WINDOWS
xor ecx, ecx ; 0 means largest level cache
%else
xor edi, edi ; 0 means largest level cache
%endif
call DataCacheSize ; get cache size
shr rax, 1 ; half the size
jnz U100
mov eax, 400000H ; cannot determine cache size. use 4 Mbytes
U100: mov [CacheBypassLimit], rax
U200: ret
; Note: SetMemcpyCacheLimit is defined in memmove64.asm, calling SetMemcpyCacheLimit1
SetMemcpyCacheLimit1:
%ifdef WINDOWS
mov rax, rcx
%else
mov rax, rdi
%endif
test rax, rax
jnz U400
; zero, means default
mov [CacheBypassLimit], rax
call GetMemcpyCacheLimit@
U400: mov [CacheBypassLimit], rax
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; getDispatch, for testing only
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
getDispatch:
mov rax,[memcpyDispatch]
ret
global getDispatch
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; data section. jump tables, dispatch function pointer, cache size
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Data segment must be included in function namespace
SECTION .data
align 16
; Jump tables for alignments 0 - 15:
; The CPU dispatcher replaces AlignmentDispatch with
; AlignmentDispatchSSE2 or AlignmentDispatchSupSSE3 if Suppl-SSE3
; is supported.
; Code pointer for each alignment for SSE2 instruction set
AlignmentDispatchSSE2:
DQ C100, D101, D102, D103, D104, D105, D106, D107
DQ D108, D109, D10A, D10B, D10C, D10D, D10E, D10F
; Code pointer for each alignment for Suppl-SSE3 instruction set
AlignmentDispatchSSSE3:
DQ C100, E101, E102, E103, E104, E105, E106, E107
DQ E108, E109, E10A, E10B, E10C, E10D, E10E, E10F
; Code pointer for each alignment for non-temporal store
AlignmentDispatchNT:
DQ F100, F101, F102, F103, F104, F105, F106, F107
DQ F108, F109, F10A, F10B, F10C, F10D, F10E, F10F
; Pointer to appropriate version.
; This initially points to memcpyCPUDispatch. memcpyCPUDispatch will
; change this to the appropriate version of memcpy, so that
; memcpyCPUDispatch is only executed once:
memcpyDispatch DQ memcpyCPUDispatch
; Bypass cache by using non-temporal moves if count > CacheBypassLimit
; The optimal value of _CacheBypassLimit is difficult to estimate, but
; a reasonable value is half the size of the largest cache:
CacheBypassLimit: DQ 0
|