1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
|
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Timezone.hh"
#include "orc/OrcFile.hh"
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <atomic>
#include <map>
#include <sstream>
namespace orc {
// default location of the timezone files
static const char DEFAULT_TZDIR[] = "/usr/share/zoneinfo";
// location of a symlink to the local timezone
static const char LOCAL_TIMEZONE[] = "/etc/localtime";
enum TransitionKind { TRANSITION_JULIAN, TRANSITION_DAY, TRANSITION_MONTH };
static const int64_t MONTHS_PER_YEAR = 12;
/**
* The number of days in each month in non-leap and leap years.
*/
static const int64_t DAYS_PER_MONTH[2][MONTHS_PER_YEAR] = {
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}};
static const int64_t DAYS_PER_WEEK = 7;
// Leap years and day of the week repeat every 400 years, which makes it
// a good cycle length.
static const int64_t SECONDS_PER_400_YEARS =
SECONDS_PER_DAY * (365 * (300 + 3) + 366 * (100 - 3));
/**
* Is the given year a leap year?
*/
bool isLeap(int64_t year) {
return (year % 4 == 0) && ((year % 100 != 0) || (year % 400 == 0));
}
/**
* Find the position that is the closest and less than or equal to the
* target.
* @return -1 if the target < array[0] or array is empty or
* i if array[i] <= target and (i == n or array[i] < array[i+1])
*/
int64_t binarySearch(const std::vector<int64_t>& array, int64_t target) {
uint64_t size = array.size();
if (size == 0) {
return -1;
}
uint64_t min = 0;
uint64_t max = size - 1;
uint64_t mid = (min + max) / 2;
while ((array[mid] != target) && (min < max)) {
if (array[mid] < target) {
min = mid + 1;
} else if (mid == 0) {
max = 0;
} else {
max = mid - 1;
}
mid = (min + max) / 2;
}
if (target < array[mid]) {
return static_cast<int64_t>(mid) - 1;
} else {
return static_cast<int64_t>(mid);
}
}
struct Transition {
TransitionKind kind;
int64_t day;
int64_t week;
int64_t month;
int64_t time;
std::string toString() const {
std::stringstream buffer;
switch (kind) {
case TRANSITION_JULIAN:
buffer << "julian " << day;
break;
case TRANSITION_DAY:
buffer << "day " << day;
break;
case TRANSITION_MONTH:
buffer << "month " << month << " week " << week << " day " << day;
break;
}
buffer << " at " << (time / (60 * 60)) << ":" << ((time / 60) % 60) << ":" << (time % 60);
return buffer.str();
}
/**
* Get the transition time for the given year.
* @param year the year
* @return the number of seconds past local Jan 1 00:00:00 that the
* transition happens.
*/
int64_t getTime(int64_t year) const {
int64_t result = time;
switch (kind) {
case TRANSITION_JULIAN:
result += SECONDS_PER_DAY * day;
if (day > 60 && isLeap(year)) {
result += SECONDS_PER_DAY;
}
break;
case TRANSITION_DAY:
result += SECONDS_PER_DAY * day;
break;
case TRANSITION_MONTH: {
bool inLeap = isLeap(year);
int64_t adjustedMonth = (month + 9) % 12 + 1;
int64_t adjustedYear = (month <= 2) ? (year - 1) : year;
int64_t adjustedCentury = adjustedYear / 100;
int64_t adjustedRemainder = adjustedYear % 100;
// day of the week of the first day of month
int64_t dayOfWeek = ((26 * adjustedMonth - 2) / 10 + 1 + adjustedRemainder +
adjustedRemainder / 4 + adjustedCentury / 4 - 2 * adjustedCentury) %
7;
if (dayOfWeek < 0) {
dayOfWeek += DAYS_PER_WEEK;
}
int64_t d = day - dayOfWeek;
if (d < 0) {
d += DAYS_PER_WEEK;
}
for (int w = 1; w < week; ++w) {
if (d + DAYS_PER_WEEK >= DAYS_PER_MONTH[inLeap][month - 1]) {
break;
}
d += DAYS_PER_WEEK;
}
result += d * SECONDS_PER_DAY;
// Add in the time for the month
for (int m = 0; m < month - 1; ++m) {
result += DAYS_PER_MONTH[inLeap][m] * SECONDS_PER_DAY;
}
break;
}
}
return result;
}
};
/**
* The current rule for finding timezone variants arbitrarily far in
* the future. They are based on a string representation that
* specifies the standard name and offset. For timezones with
* daylight savings, the string specifies the daylight variant name
* and offset and the rules for switching between them.
*
* rule = <standard name><standard offset><daylight>?
* name = string with no numbers or '+', '-', or ','
* offset = [-+]?hh(:mm(:ss)?)?
* daylight = <name><offset>,<start day>(/<offset>)?,<end day>(/<offset>)?
* day = J<day without 2/29>|<day with 2/29>|M<month>.<week>.<day of week>
*/
class FutureRuleImpl : public FutureRule {
std::string ruleString;
TimezoneVariant standard;
bool hasDst;
TimezoneVariant dst;
Transition start;
Transition end;
// expanded time_t offsets of transitions
std::vector<int64_t> offsets;
// Is the epoch (1 Jan 1970 00:00) in standard time?
// This code assumes that the transition dates fall in the same order
// each year. Hopefully no timezone regions decide to move across the
// equator, which is about what it would take.
bool startInStd;
void computeOffsets() {
if (!hasDst) {
startInStd = true;
offsets.resize(1);
} else {
// Insert a transition for the epoch and two per a year for the next
// 400 years. We assume that the all even positions are in standard
// time if and only if startInStd and the odd ones are the reverse.
offsets.resize(400 * 2 + 1);
startInStd = start.getTime(1970) < end.getTime(1970);
int64_t base = 0;
for (int64_t year = 1970; year < 1970 + 400; ++year) {
if (startInStd) {
offsets[static_cast<uint64_t>(year - 1970) * 2 + 1] =
base + start.getTime(year) - standard.gmtOffset;
offsets[static_cast<uint64_t>(year - 1970) * 2 + 2] =
base + end.getTime(year) - dst.gmtOffset;
} else {
offsets[static_cast<uint64_t>(year - 1970) * 2 + 1] =
base + end.getTime(year) - dst.gmtOffset;
offsets[static_cast<uint64_t>(year - 1970) * 2 + 2] =
base + start.getTime(year) - standard.gmtOffset;
}
base += (isLeap(year) ? 366 : 365) * SECONDS_PER_DAY;
}
}
offsets[0] = 0;
}
public:
virtual ~FutureRuleImpl() override;
bool isDefined() const override;
const TimezoneVariant& getVariant(int64_t clk) const override;
void print(std::ostream& out) const override;
friend class FutureRuleParser;
};
FutureRule::~FutureRule() {
// PASS
}
FutureRuleImpl::~FutureRuleImpl() {
// PASS
}
bool FutureRuleImpl::isDefined() const {
return ruleString.size() > 0;
}
const TimezoneVariant& FutureRuleImpl::getVariant(int64_t clk) const {
if (!hasDst) {
return standard;
} else {
int64_t adjusted = clk % SECONDS_PER_400_YEARS;
if (adjusted < 0) {
adjusted += SECONDS_PER_400_YEARS;
}
int64_t idx = binarySearch(offsets, adjusted);
if (startInStd == (idx % 2 == 0)) {
return standard;
} else {
return dst;
}
}
}
void FutureRuleImpl::print(std::ostream& out) const {
if (isDefined()) {
out << " Future rule: " << ruleString << "\n";
out << " standard " << standard.toString() << "\n";
if (hasDst) {
out << " dst " << dst.toString() << "\n";
out << " start " << start.toString() << "\n";
out << " end " << end.toString() << "\n";
}
}
}
/**
* A parser for the future rule strings.
*/
class FutureRuleParser {
public:
FutureRuleParser(const std::string& str, FutureRuleImpl* rule)
: ruleString(str), length(str.size()), position(0), output(*rule) {
output.ruleString = str;
if (position != length) {
parseName(output.standard.name);
output.standard.gmtOffset = -parseOffset();
output.standard.isDst = false;
output.hasDst = position < length;
if (output.hasDst) {
parseName(output.dst.name);
output.dst.isDst = true;
if (ruleString[position] != ',') {
output.dst.gmtOffset = -parseOffset();
} else {
output.dst.gmtOffset = output.standard.gmtOffset + 60 * 60;
}
parseTransition(output.start);
parseTransition(output.end);
}
if (position != length) {
throwError("Extra text");
}
output.computeOffsets();
}
}
private:
const std::string& ruleString;
size_t length;
size_t position;
FutureRuleImpl& output;
void throwError(const char* msg) {
std::stringstream buffer;
buffer << msg << " at " << position << " in '" << ruleString << "'";
throw TimezoneError(buffer.str());
}
/**
* Parse the names of the form:
* ([^-+0-9,]+|<[^>]+>)
* and set the output string.
*/
void parseName(std::string& result) {
if (position == length) {
throwError("name required");
}
size_t start = position;
if (ruleString[position] == '<') {
while (position < length && ruleString[position] != '>') {
position += 1;
}
if (position == length) {
throwError("missing close '>'");
}
position += 1;
} else {
while (position < length) {
char ch = ruleString[position];
if (isdigit(ch) || ch == '-' || ch == '+' || ch == ',') {
break;
}
position += 1;
}
}
if (position == start) {
throwError("empty string not allowed");
}
result = ruleString.substr(start, position - start);
}
/**
* Parse an integer of the form [0-9]+ and return it.
*/
int64_t parseNumber() {
if (position >= length) {
throwError("missing number");
}
int64_t result = 0;
while (position < length) {
char ch = ruleString[position];
if (isdigit(ch)) {
result = result * 10 + (ch - '0');
position += 1;
} else {
break;
}
}
return result;
}
/**
* Parse the offsets of the form:
* [-+]?[0-9]+(:[0-9]+(:[0-9]+)?)?
* and convert it into a number of seconds.
*/
int64_t parseOffset() {
int64_t scale = 3600;
bool isNegative = false;
if (position < length) {
char ch = ruleString[position];
isNegative = ch == '-';
if (ch == '-' || ch == '+') {
position += 1;
}
}
int64_t result = parseNumber() * scale;
while (position < length && scale > 1 && ruleString[position] == ':') {
scale /= 60;
position += 1;
result += parseNumber() * scale;
}
if (isNegative) {
result = -result;
}
return result;
}
/**
* Parse a transition of the following form:
* ,(J<number>|<number>|M<number>.<number>.<number>)(/<offset>)?
*/
void parseTransition(Transition& transition) {
if (length - position < 2 || ruleString[position] != ',') {
throwError("missing transition");
}
position += 1;
char ch = ruleString[position];
if (ch == 'J') {
transition.kind = TRANSITION_JULIAN;
position += 1;
transition.day = parseNumber();
} else if (ch == 'M') {
transition.kind = TRANSITION_MONTH;
position += 1;
transition.month = parseNumber();
if (position == length || ruleString[position] != '.') {
throwError("missing first .");
}
position += 1;
transition.week = parseNumber();
if (position == length || ruleString[position] != '.') {
throwError("missing second .");
}
position += 1;
transition.day = parseNumber();
} else {
transition.kind = TRANSITION_DAY;
transition.day = parseNumber();
}
if (position < length && ruleString[position] == '/') {
position += 1;
transition.time = parseOffset();
} else {
transition.time = 2 * 60 * 60;
}
}
};
/**
* Parse the POSIX TZ string.
*/
std::shared_ptr<FutureRule> parseFutureRule(const std::string& ruleString) {
auto result = std::make_shared<FutureRuleImpl>();
FutureRuleParser parser(ruleString, dynamic_cast<FutureRuleImpl*>(result.get()));
return result;
}
std::string TimezoneVariant::toString() const {
std::stringstream buffer;
buffer << name << " " << gmtOffset;
if (isDst) {
buffer << " (dst)";
}
return buffer.str();
}
/**
* An abstraction of the differences between versions.
*/
class VersionParser {
public:
virtual ~VersionParser();
/**
* Get the version number.
*/
virtual uint64_t getVersion() const = 0;
/**
* Get the number of bytes
*/
virtual uint64_t getTimeSize() const = 0;
/**
* Parse the time at the given location.
*/
virtual int64_t parseTime(const unsigned char* ptr) const = 0;
/**
* Parse the future string
*/
virtual std::string parseFutureString(const unsigned char* ptr, uint64_t offset,
uint64_t length) const = 0;
};
VersionParser::~VersionParser() {
// PASS
}
static uint32_t decode32(const unsigned char* ptr) {
return static_cast<uint32_t>(ptr[0] << 24) | static_cast<uint32_t>(ptr[1] << 16) |
static_cast<uint32_t>(ptr[2] << 8) | static_cast<uint32_t>(ptr[3]);
}
class Version1Parser : public VersionParser {
public:
virtual ~Version1Parser() override;
virtual uint64_t getVersion() const override {
return 1;
}
/**
* Get the number of bytes
*/
virtual uint64_t getTimeSize() const override {
return 4;
}
/**
* Parse the time at the given location.
*/
virtual int64_t parseTime(const unsigned char* ptr) const override {
// sign extend from 32 bits
return static_cast<int32_t>(decode32(ptr));
}
virtual std::string parseFutureString(const unsigned char*, uint64_t, uint64_t) const override {
return "";
}
};
Version1Parser::~Version1Parser() {
// PASS
}
class Version2Parser : public VersionParser {
public:
virtual ~Version2Parser() override;
virtual uint64_t getVersion() const override {
return 2;
}
/**
* Get the number of bytes
*/
virtual uint64_t getTimeSize() const override {
return 8;
}
/**
* Parse the time at the given location.
*/
virtual int64_t parseTime(const unsigned char* ptr) const override {
return static_cast<int64_t>(decode32(ptr)) << 32 | decode32(ptr + 4);
}
virtual std::string parseFutureString(const unsigned char* ptr, uint64_t offset,
uint64_t length) const override {
return std::string(reinterpret_cast<const char*>(ptr) + offset + 1, length - 2);
}
};
Version2Parser::~Version2Parser() {
// PASS
}
class TimezoneImpl : public Timezone {
public:
TimezoneImpl(const std::string& _filename, const std::vector<unsigned char>& buffer);
virtual ~TimezoneImpl() override;
/**
* Get the variant for the given time (time_t).
*/
const TimezoneVariant& getVariant(int64_t clk) const override;
void print(std::ostream&) const override;
uint64_t getVersion() const override {
return version;
}
int64_t getEpoch() const override {
return epoch;
}
int64_t convertToUTC(int64_t clk) const override {
return clk + getVariant(clk).gmtOffset;
}
int64_t convertFromUTC(int64_t clk) const override {
int64_t adjustedTime = clk - getVariant(clk).gmtOffset;
const auto& adjustedReader = getVariant(adjustedTime);
return clk - adjustedReader.gmtOffset;
}
private:
void parseTimeVariants(const unsigned char* ptr, uint64_t variantOffset, uint64_t variantCount,
uint64_t nameOffset, uint64_t nameCount);
void parseZoneFile(const unsigned char* ptr, uint64_t sectionOffset, uint64_t fileLength,
const VersionParser& version);
// filename
std::string filename;
// the version of the file
uint64_t version;
// the list of variants for this timezone
std::vector<TimezoneVariant> variants;
// the list of the times where the local rules change
std::vector<int64_t> transitions;
// the variant that starts at this transition.
std::vector<uint64_t> currentVariant;
// the variant before the first transition
uint64_t ancientVariant;
// the rule for future times
std::shared_ptr<FutureRule> futureRule;
// the last explicit transition after which we use the future rule
int64_t lastTransition;
// The ORC epoch time in this timezone.
int64_t epoch;
};
DIAGNOSTIC_PUSH
#ifdef __clang__
DIAGNOSTIC_IGNORE("-Wglobal-constructors")
DIAGNOSTIC_IGNORE("-Wexit-time-destructors")
#endif
static std::mutex timezone_mutex;
static std::map<std::string, std::shared_ptr<Timezone> > timezoneCache;
DIAGNOSTIC_POP
Timezone::~Timezone() {
// PASS
}
TimezoneImpl::TimezoneImpl(const std::string& _filename, const std::vector<unsigned char>& buffer)
: filename(_filename) {
parseZoneFile(&buffer[0], 0, buffer.size(), Version1Parser());
// Build the literal for the ORC epoch
// 2015 Jan 1 00:00:00
tm epochStruct;
epochStruct.tm_sec = 0;
epochStruct.tm_min = 0;
epochStruct.tm_hour = 0;
epochStruct.tm_mday = 1;
epochStruct.tm_mon = 0;
epochStruct.tm_year = 2015 - 1900;
epochStruct.tm_isdst = 0;
time_t utcEpoch = timegm(&epochStruct);
epoch = utcEpoch - getVariant(utcEpoch).gmtOffset;
}
std::string getTimezoneDirectory() {
const char* dir = getenv("TZDIR");
if (!dir) {
// this is present if we're in an activated conda environment
const char* condaPrefix = getenv("CONDA_PREFIX");
if (condaPrefix) {
std::string condaDir(condaPrefix);
condaDir += "/share/zoneinfo";
return condaDir;
} else {
dir = DEFAULT_TZDIR;
}
}
return dir;
}
static std::vector<unsigned char> loadTZDB(const std::string& filename) {
std::vector<unsigned char> buffer;
if (!fileExists(filename.c_str())) {
std::stringstream ss;
ss << "Time zone file " << filename << " does not exist."
<< " Please install IANA time zone database and set TZDIR env.";
throw TimezoneError(ss.str());
}
try {
std::unique_ptr<InputStream> file = readFile(filename);
size_t size = static_cast<size_t>(file->getLength());
buffer.resize(size);
file->read(&buffer[0], size, 0);
} catch (ParseError& err) {
throw TimezoneError(err.what());
}
return buffer;
}
class LazyTimezone : public Timezone {
private:
std::string filename_;
mutable std::unique_ptr<TimezoneImpl> impl_;
mutable std::once_flag initialized_;
TimezoneImpl* getImpl() const {
std::call_once(initialized_, [&]() {
auto buffer = loadTZDB(filename_);
impl_ = std::make_unique<TimezoneImpl>(filename_, std::move(buffer));
});
return impl_.get();
}
public:
LazyTimezone(const std::string& filename) : filename_(filename) {}
const TimezoneVariant& getVariant(int64_t clk) const override {
return getImpl()->getVariant(clk);
}
int64_t getEpoch() const override {
return getImpl()->getEpoch();
}
void print(std::ostream& os) const override {
return getImpl()->print(os);
}
uint64_t getVersion() const override {
return getImpl()->getVersion();
}
int64_t convertToUTC(int64_t clk) const override {
return getImpl()->convertToUTC(clk);
}
int64_t convertFromUTC(int64_t clk) const override {
return getImpl()->convertFromUTC(clk);
}
};
/**
* Get a timezone by absolute filename.
* Results are cached.
*/
const Timezone& getTimezoneByFilename(const std::string& filename) {
// ORC-110
std::lock_guard<std::mutex> timezone_lock(timezone_mutex);
std::map<std::string, std::shared_ptr<Timezone> >::iterator itr = timezoneCache.find(filename);
if (itr != timezoneCache.end()) {
return *(itr->second).get();
}
timezoneCache[filename] = std::make_shared<LazyTimezone>(filename);
return *timezoneCache[filename].get();
}
/**
* Get the local timezone.
*/
const Timezone& getLocalTimezone() {
#ifdef _MSC_VER
return getTimezoneByName("UTC");
#else
return getTimezoneByFilename(LOCAL_TIMEZONE);
#endif
}
/**
* Get a timezone by name (eg. America/Los_Angeles).
* Results are cached.
*/
const Timezone& getTimezoneByName(const std::string& zone) {
std::string filename(getTimezoneDirectory());
filename += "/";
filename += zone;
return getTimezoneByFilename(filename);
}
/**
* Parse a set of bytes as a timezone file as if they came from filename.
*/
std::unique_ptr<Timezone> getTimezone(const std::string& filename,
const std::vector<unsigned char>& b) {
return std::make_unique<TimezoneImpl>(filename, b);
}
TimezoneImpl::~TimezoneImpl() {
// PASS
}
void TimezoneImpl::parseTimeVariants(const unsigned char* ptr, uint64_t variantOffset,
uint64_t variantCount, uint64_t nameOffset,
uint64_t nameCount) {
for (uint64_t variant = 0; variant < variantCount; ++variant) {
variants[variant].gmtOffset =
static_cast<int32_t>(decode32(ptr + variantOffset + 6 * variant));
variants[variant].isDst = ptr[variantOffset + 6 * variant + 4] != 0;
uint64_t nameStart = ptr[variantOffset + 6 * variant + 5];
if (nameStart >= nameCount) {
std::stringstream buffer;
buffer << "name out of range in variant " << variant << " - " << nameStart
<< " >= " << nameCount;
throw TimezoneError(buffer.str());
}
variants[variant].name =
std::string(reinterpret_cast<const char*>(ptr) + nameOffset + nameStart);
}
}
/**
* Parse the zone file to get the bits we need.
* There are two versions of the timezone file:
*
* Version 1(version = 0x00):
* Magic(version)
* Header
* TransitionTimes(4 byte)
* TransitionRules
* Rules
* LeapSeconds(4 byte)
* IsStd
* IsGmt
*
* Version2:
* Version1(0x32) = a version 1 copy of the data for old clients
* Magic(0x32)
* Header
* TransitionTimes(8 byte)
* TransitionRules
* Rules
* LeapSeconds(8 byte)
* IsStd
* IsGmt
* FutureString
*/
void TimezoneImpl::parseZoneFile(const unsigned char* ptr, uint64_t sectionOffset,
uint64_t fileLength, const VersionParser& versionParser) {
const uint64_t magicOffset = sectionOffset + 0;
const uint64_t headerOffset = magicOffset + 20;
// check for validity before we start parsing
if (fileLength < headerOffset + 6 * 4 ||
strncmp(reinterpret_cast<const char*>(ptr) + magicOffset, "TZif", 4) != 0) {
std::stringstream buffer;
buffer << "non-tzfile " << filename;
throw TimezoneError(buffer.str());
}
const uint64_t isGmtCount = decode32(ptr + headerOffset + 0);
const uint64_t isStdCount = decode32(ptr + headerOffset + 4);
const uint64_t leapCount = decode32(ptr + headerOffset + 8);
const uint64_t timeCount = decode32(ptr + headerOffset + 12);
const uint64_t variantCount = decode32(ptr + headerOffset + 16);
const uint64_t nameCount = decode32(ptr + headerOffset + 20);
const uint64_t timeOffset = headerOffset + 24;
const uint64_t timeVariantOffset = timeOffset + versionParser.getTimeSize() * timeCount;
const uint64_t variantOffset = timeVariantOffset + timeCount;
const uint64_t nameOffset = variantOffset + variantCount * 6;
const uint64_t sectionLength = nameOffset + nameCount +
(versionParser.getTimeSize() + 4) * leapCount + isGmtCount +
isStdCount;
if (sectionLength > fileLength) {
std::stringstream buffer;
buffer << "tzfile too short " << filename << " needs " << sectionLength << " and has "
<< fileLength;
throw TimezoneError(buffer.str());
}
// if it is version 2, skip over the old layout and read the new one.
if (sectionOffset == 0 && ptr[magicOffset + 4] != 0) {
parseZoneFile(ptr, sectionLength, fileLength, Version2Parser());
return;
}
version = versionParser.getVersion();
variants.resize(variantCount);
transitions.resize(timeCount);
currentVariant.resize(timeCount);
parseTimeVariants(ptr, variantOffset, variantCount, nameOffset, nameCount);
bool foundAncient = false;
for (uint64_t t = 0; t < timeCount; ++t) {
transitions[t] = versionParser.parseTime(ptr + timeOffset + t * versionParser.getTimeSize());
currentVariant[t] = ptr[timeVariantOffset + t];
if (currentVariant[t] >= variantCount) {
std::stringstream buffer;
buffer << "tzfile rule out of range " << filename << " references rule "
<< currentVariant[t] << " of " << variantCount;
throw TimezoneError(buffer.str());
}
// find the oldest standard time and use that as the ancient value
if (!foundAncient && !variants[currentVariant[t]].isDst) {
foundAncient = true;
ancientVariant = currentVariant[t];
}
}
if (!foundAncient) {
ancientVariant = 0;
}
futureRule = parseFutureRule(
versionParser.parseFutureString(ptr, sectionLength, fileLength - sectionLength));
// find the lower bound for applying the future rule
if (futureRule->isDefined()) {
if (timeCount > 0) {
lastTransition = transitions[timeCount - 1];
} else {
lastTransition = INT64_MIN;
}
} else {
lastTransition = INT64_MAX;
}
}
const TimezoneVariant& TimezoneImpl::getVariant(int64_t clk) const {
// if it is after the last explicit entry in the table,
// use the future rule to get an answer
if (clk > lastTransition) {
return futureRule->getVariant(clk);
} else {
int64_t transition = binarySearch(transitions, clk);
uint64_t idx;
if (transition < 0) {
idx = ancientVariant;
} else {
idx = currentVariant[static_cast<size_t>(transition)];
}
return variants[idx];
}
}
void TimezoneImpl::print(std::ostream& out) const {
out << "Timezone file: " << filename << "\n";
out << " Version: " << version << "\n";
futureRule->print(out);
for (uint64_t r = 0; r < variants.size(); ++r) {
out << " Variant " << r << ": " << variants[r].toString() << "\n";
}
for (uint64_t t = 0; t < transitions.size(); ++t) {
tm timeStruct;
tm* result = nullptr;
char buffer[25];
if (sizeof(time_t) >= 8) {
time_t val = transitions[t];
result = gmtime_r(&val, &timeStruct);
if (result) {
strftime(buffer, sizeof(buffer), "%F %H:%M:%S", &timeStruct);
}
}
out << " Transition: " << (result == nullptr ? "null" : buffer) << " (" << transitions[t]
<< ") -> " << variants[currentVariant[t]].name << "\n";
}
}
TimezoneError::TimezoneError(const std::string& what) : std::runtime_error(what) {
// PASS
}
TimezoneError::TimezoneError(const TimezoneError& other) : std::runtime_error(other) {
// PASS
}
TimezoneError::~TimezoneError() noexcept {
// PASS
}
} // namespace orc
|