aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/apache/orc/c++/src/RleEncoderV2.cc
blob: a75aeac2eb47e2bc7365d5c04a3df495b3874d3a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

#include "Adaptor.hh"
#include "Compression.hh"
#include "RLEV2Util.hh"
#include "RLEv2.hh"

#define MAX_SHORT_REPEAT_LENGTH 10

namespace orc {

  /**
   * Compute the bits required to represent pth percentile value
   * @param data - array
   * @param p - percentile value (>=0.0 to <=1.0)
   * @return pth percentile bits
   */
  uint32_t RleEncoderV2::percentileBits(int64_t* data, size_t offset, size_t length, double p,
                                        bool reuseHist) {
    if ((p > 1.0) || (p <= 0.0)) {
      throw InvalidArgument("Invalid p value: " + to_string(p));
    }

    if (!reuseHist) {
      // histogram that store the encoded bit requirement for each values.
      // maximum number of bits that can encoded is 32 (refer FixedBitSizes)
      memset(histgram, 0, FixedBitSizes::SIZE * sizeof(int32_t));
      // compute the histogram
      for (size_t i = offset; i < (offset + length); i++) {
        uint32_t idx = encodeBitWidth(findClosestNumBits(data[i]));
        histgram[idx] += 1;
      }
    }

    int32_t perLen = static_cast<int32_t>(static_cast<double>(length) * (1.0 - p));

    // return the bits required by pth percentile length
    for (int32_t i = HIST_LEN - 1; i >= 0; i--) {
      perLen -= histgram[i];
      if (perLen < 0) {
        return decodeBitWidth(static_cast<uint32_t>(i));
      }
    }
    return 0;
  }

  RleEncoderV2::RleEncoderV2(std::unique_ptr<BufferedOutputStream> outStream, bool hasSigned,
                             bool alignBitPacking)
      : RleEncoder(std::move(outStream), hasSigned),
        alignedBitPacking(alignBitPacking),
        prevDelta(0) {
    literals = new int64_t[MAX_LITERAL_SIZE];
    gapVsPatchList = new int64_t[MAX_LITERAL_SIZE];
    zigzagLiterals = hasSigned ? new int64_t[MAX_LITERAL_SIZE] : nullptr;
    baseRedLiterals = new int64_t[MAX_LITERAL_SIZE];
    adjDeltas = new int64_t[MAX_LITERAL_SIZE];
  }

  void RleEncoderV2::write(int64_t val) {
    if (numLiterals == 0) {
      initializeLiterals(val);
      return;
    }

    if (numLiterals == 1) {
      prevDelta = val - literals[0];
      literals[numLiterals++] = val;

      if (val == literals[0]) {
        fixedRunLength = 2;
        variableRunLength = 0;
      } else {
        fixedRunLength = 0;
        variableRunLength = 2;
      }
      return;
    }

    int64_t currentDelta = val - literals[numLiterals - 1];
    EncodingOption option = {};
    if (prevDelta == 0 && currentDelta == 0) {
      // case 1: fixed delta run
      literals[numLiterals++] = val;

      if (variableRunLength > 0) {
        // if variable run is non-zero then we are seeing repeating
        // values at the end of variable run in which case fixed Run
        // length is 2
        fixedRunLength = 2;
      }
      fixedRunLength++;

      // if fixed run met the minimum condition and if variable
      // run is non-zero then flush the variable run and shift the
      // tail fixed runs to start of the buffer
      if (fixedRunLength >= MIN_REPEAT && variableRunLength > 0) {
        numLiterals -= MIN_REPEAT;
        variableRunLength -= (MIN_REPEAT - 1);

        determineEncoding(option);
        writeValues(option);

        // shift tail fixed runs to beginning of the buffer
        for (size_t i = 0; i < MIN_REPEAT; ++i) {
          literals[i] = val;
        }
        numLiterals = MIN_REPEAT;
      }

      if (fixedRunLength == MAX_LITERAL_SIZE) {
        option.encoding = DELTA;
        option.isFixedDelta = true;
        writeValues(option);
      }
      return;
    }

    // case 2: variable delta run

    // if fixed run length is non-zero and if it satisfies the
    // short repeat conditions then write the values as short repeats
    // else use delta encoding
    if (fixedRunLength >= MIN_REPEAT) {
      if (fixedRunLength <= MAX_SHORT_REPEAT_LENGTH) {
        option.encoding = SHORT_REPEAT;
      } else {
        option.encoding = DELTA;
        option.isFixedDelta = true;
      }
      writeValues(option);
    }

    // if fixed run length is <MIN_REPEAT and current value is
    // different from previous then treat it as variable run
    if (fixedRunLength > 0 && fixedRunLength < MIN_REPEAT && val != literals[numLiterals - 1]) {
      variableRunLength = fixedRunLength;
      fixedRunLength = 0;
    }

    // after writing values re-initialize the variables
    if (numLiterals == 0) {
      initializeLiterals(val);
    } else {
      prevDelta = val - literals[numLiterals - 1];
      literals[numLiterals++] = val;
      variableRunLength++;

      if (variableRunLength == MAX_LITERAL_SIZE) {
        determineEncoding(option);
        writeValues(option);
      }
    }
  }

  void RleEncoderV2::computeZigZagLiterals(EncodingOption& option) {
    assert(isSigned);
    for (size_t i = 0; i < numLiterals; i++) {
      zigzagLiterals[option.zigzagLiteralsCount++] = zigZag(literals[i]);
    }
  }

  void RleEncoderV2::preparePatchedBlob(EncodingOption& option) {
    // mask will be max value beyond which patch will be generated
    int64_t mask = static_cast<int64_t>(static_cast<uint64_t>(1) << option.brBits95p) - 1;

    // since we are considering only 95 percentile, the size of gap and
    // patch array can contain only be 5% values
    option.patchLength = static_cast<uint32_t>(std::ceil((numLiterals / 20)));

    // #bit for patch
    option.patchWidth = option.brBits100p - option.brBits95p;
    option.patchWidth = getClosestFixedBits(option.patchWidth);

    // if patch bit requirement is 64 then it will not possible to pack
    // gap and patch together in a long. To make sure gap and patch can be
    // packed together adjust the patch width
    if (option.patchWidth == 64) {
      option.patchWidth = 56;
      option.brBits95p = 8;
      mask = static_cast<int64_t>(static_cast<uint64_t>(1) << option.brBits95p) - 1;
    }

    uint32_t gapIdx = 0;
    uint32_t patchIdx = 0;
    size_t prev = 0;
    size_t maxGap = 0;

    std::vector<int64_t> gapList;
    std::vector<int64_t> patchList;

    for (size_t i = 0; i < numLiterals; i++) {
      // if value is above mask then create the patch and record the gap
      if (baseRedLiterals[i] > mask) {
        size_t gap = i - prev;
        if (gap > maxGap) {
          maxGap = gap;
        }

        // gaps are relative, so store the previous patched value index
        prev = i;
        gapList.push_back(static_cast<int64_t>(gap));
        gapIdx++;

        // extract the most significant bits that are over mask bits
        int64_t patch = baseRedLiterals[i] >> option.brBits95p;
        patchList.push_back(patch);
        patchIdx++;

        // strip off the MSB to enable safe bit packing
        baseRedLiterals[i] &= mask;
      }
    }

    // adjust the patch length to number of entries in gap list
    option.patchLength = gapIdx;

    // if the element to be patched is the first and only element then
    // max gap will be 0, but to store the gap as 0 we need atleast 1 bit
    if (maxGap == 0 && option.patchLength != 0) {
      option.patchGapWidth = 1;
    } else {
      option.patchGapWidth = findClosestNumBits(static_cast<int64_t>(maxGap));
    }

    // special case: if the patch gap width is greater than 256, then
    // we need 9 bits to encode the gap width. But we only have 3 bits in
    // header to record the gap width. To deal with this case, we will save
    // two entries in patch list in the following way
    // 256 gap width => 0 for patch value
    // actual gap - 256 => actual patch value
    // We will do the same for gap width = 511. If the element to be patched is
    // the last element in the scope then gap width will be 511. In this case we
    // will have 3 entries in the patch list in the following way
    // 255 gap width => 0 for patch value
    // 255 gap width => 0 for patch value
    // 1 gap width => actual patch value
    if (option.patchGapWidth > 8) {
      option.patchGapWidth = 8;
      // for gap = 511, we need two additional entries in patch list
      if (maxGap == 511) {
        option.patchLength += 2;
      } else {
        option.patchLength += 1;
      }
    }

    // create gap vs patch list
    gapIdx = 0;
    patchIdx = 0;
    for (size_t i = 0; i < option.patchLength; i++) {
      int64_t g = gapList[gapIdx++];
      int64_t p = patchList[patchIdx++];
      while (g > 255) {
        gapVsPatchList[option.gapVsPatchListCount++] = (255L << option.patchWidth);
        i++;
        g -= 255;
      }

      // store patch value in LSBs and gap in MSBs
      gapVsPatchList[option.gapVsPatchListCount++] = ((g << option.patchWidth) | p);
    }
  }

  /**
   * Prepare for Direct or PatchedBase encoding
   * compute zigZagLiterals and zzBits100p (Max number of encoding bits required)
   * @return zigzagLiterals
   */
  int64_t* RleEncoderV2::prepareForDirectOrPatchedBase(EncodingOption& option) {
    if (isSigned) {
      computeZigZagLiterals(option);
    }
    int64_t* currentZigzagLiterals = isSigned ? zigzagLiterals : literals;
    option.zzBits100p = percentileBits(currentZigzagLiterals, 0, numLiterals, 1.0);
    return currentZigzagLiterals;
  }

  void RleEncoderV2::determineEncoding(EncodingOption& option) {
    // We need to compute zigzag values for DIRECT and PATCHED_BASE encodings,
    // but not for SHORT_REPEAT or DELTA. So we only perform the zigzag
    // computation when it's determined to be necessary.

    // not a big win for shorter runs to determine encoding
    if (numLiterals <= MIN_REPEAT) {
      // we need to compute zigzag values for DIRECT encoding if we decide to
      // break early for delta overflows or for shorter runs
      prepareForDirectOrPatchedBase(option);
      option.encoding = DIRECT;
      return;
    }

    // DELTA encoding check

    // for identifying monotonic sequences
    bool isIncreasing = true;
    bool isDecreasing = true;
    option.isFixedDelta = true;

    option.min = literals[0];
    int64_t max = literals[0];
    int64_t initialDelta = literals[1] - literals[0];
    int64_t currDelta = 0;
    int64_t deltaMax = 0;
    adjDeltas[option.adjDeltasCount++] = initialDelta;

    for (size_t i = 1; i < numLiterals; i++) {
      const int64_t l1 = literals[i];
      const int64_t l0 = literals[i - 1];
      currDelta = l1 - l0;
      option.min = std::min(option.min, l1);
      max = std::max(max, l1);

      isIncreasing &= (l0 <= l1);
      isDecreasing &= (l0 >= l1);

      option.isFixedDelta &= (currDelta == initialDelta);
      if (i > 1) {
        adjDeltas[option.adjDeltasCount++] = std::abs(currDelta);
        deltaMax = std::max(deltaMax, adjDeltas[i - 1]);
      }
    }

    // it's faster to exit under delta overflow condition without checking for
    // PATCHED_BASE condition as encoding using DIRECT is faster and has less
    // overhead than PATCHED_BASE
    if (!isSafeSubtract(max, option.min)) {
      prepareForDirectOrPatchedBase(option);
      option.encoding = DIRECT;
      return;
    }

    // invariant - subtracting any number from any other in the literals after
    // option point won't overflow

    // if min is equal to max then the delta is 0, option condition happens for
    // fixed values run >10 which cannot be encoded with SHORT_REPEAT
    if (option.min == max) {
      if (!option.isFixedDelta) {
        throw InvalidArgument(to_string(option.min) + "==" + to_string(max) +
                              ", isFixedDelta cannot be false");
      }

      if (currDelta != 0) {
        throw InvalidArgument(to_string(option.min) + "==" + to_string(max) +
                              ", currDelta should be zero");
      }
      option.fixedDelta = 0;
      option.encoding = DELTA;
      return;
    }

    if (option.isFixedDelta) {
      if (currDelta != initialDelta) {
        throw InvalidArgument("currDelta should be equal to initialDelta for fixed delta encoding");
      }

      option.encoding = DELTA;
      option.fixedDelta = currDelta;
      return;
    }

    // if initialDelta is 0 then we cannot delta encode as we cannot identify
    // the sign of deltas (increasing or decreasing)
    if (initialDelta != 0) {
      // stores the number of bits required for packing delta blob in
      // delta encoding
      option.bitsDeltaMax = findClosestNumBits(deltaMax);

      // monotonic condition
      if (isIncreasing || isDecreasing) {
        option.encoding = DELTA;
        return;
      }
    }

    // PATCHED_BASE encoding check

    // percentile values are computed for the zigzag encoded values. if the
    // number of bit requirement between 90th and 100th percentile varies
    // beyond a threshold then we need to patch the values. if the variation
    // is not significant then we can use direct encoding

    int64_t* currentZigzagLiterals = prepareForDirectOrPatchedBase(option);
    option.zzBits90p = percentileBits(currentZigzagLiterals, 0, numLiterals, 0.9, true);
    uint32_t diffBitsLH = option.zzBits100p - option.zzBits90p;

    // if the difference between 90th percentile and 100th percentile fixed
    // bits is > 1 then we need patch the values
    if (diffBitsLH > 1) {
      // patching is done only on base reduced values.
      // remove base from literals
      for (size_t i = 0; i < numLiterals; i++) {
        baseRedLiterals[option.baseRedLiteralsCount++] = (literals[i] - option.min);
      }

      // 95th percentile width is used to determine max allowed value
      // after which patching will be done
      option.brBits95p = percentileBits(baseRedLiterals, 0, numLiterals, 0.95);

      // 100th percentile is used to compute the max patch width
      option.brBits100p = percentileBits(baseRedLiterals, 0, numLiterals, 1.0, true);

      // after base reducing the values, if the difference in bits between
      // 95th percentile and 100th percentile value is zero then there
      // is no point in patching the values, in which case we will
      // fallback to DIRECT encoding.
      // The decision to use patched base was based on zigzag values, but the
      // actual patching is done on base reduced literals.
      if ((option.brBits100p - option.brBits95p) != 0) {
        option.encoding = PATCHED_BASE;
        preparePatchedBlob(option);
        return;
      } else {
        option.encoding = DIRECT;
        return;
      }
    } else {
      // if difference in bits between 95th percentile and 100th percentile is
      // 0, then patch length will become 0. Hence we will fallback to direct
      option.encoding = DIRECT;
      return;
    }
  }

  uint64_t RleEncoderV2::flush() {
    if (numLiterals != 0) {
      EncodingOption option = {};
      if (variableRunLength != 0) {
        determineEncoding(option);
        writeValues(option);
      } else if (fixedRunLength != 0) {
        if (fixedRunLength < MIN_REPEAT) {
          variableRunLength = fixedRunLength;
          fixedRunLength = 0;
          determineEncoding(option);
          writeValues(option);
        } else if (fixedRunLength >= MIN_REPEAT && fixedRunLength <= MAX_SHORT_REPEAT_LENGTH) {
          option.encoding = SHORT_REPEAT;
          writeValues(option);
        } else {
          option.encoding = DELTA;
          option.isFixedDelta = true;
          writeValues(option);
        }
      }
    }

    outputStream->BackUp(static_cast<int>(bufferLength - bufferPosition));
    uint64_t dataSize = outputStream->flush();
    bufferLength = bufferPosition = 0;
    return dataSize;
  }

  void RleEncoderV2::writeValues(EncodingOption& option) {
    if (numLiterals != 0) {
      switch (option.encoding) {
        case SHORT_REPEAT:
          writeShortRepeatValues(option);
          break;
        case DIRECT:
          writeDirectValues(option);
          break;
        case PATCHED_BASE:
          writePatchedBasedValues(option);
          break;
        case DELTA:
          writeDeltaValues(option);
          break;
        default:
          throw NotImplementedYet("Not implemented yet");
      }

      numLiterals = 0;
      prevDelta = 0;
    }
  }

  void RleEncoderV2::writeShortRepeatValues(EncodingOption&) {
    int64_t repeatVal;
    if (isSigned) {
      repeatVal = zigZag(literals[0]);
    } else {
      repeatVal = literals[0];
    }

    const uint32_t numBitsRepeatVal = findClosestNumBits(repeatVal);
    const uint32_t numBytesRepeatVal =
        numBitsRepeatVal % 8 == 0 ? (numBitsRepeatVal >> 3) : ((numBitsRepeatVal >> 3) + 1);

    uint32_t header = getOpCode(SHORT_REPEAT);

    fixedRunLength -= MIN_REPEAT;
    header |= fixedRunLength;
    header |= ((numBytesRepeatVal - 1) << 3);

    writeByte(static_cast<char>(header));

    for (int32_t i = static_cast<int32_t>(numBytesRepeatVal - 1); i >= 0; i--) {
      int64_t b = ((repeatVal >> (i * 8)) & 0xff);
      writeByte(static_cast<char>(b));
    }

    fixedRunLength = 0;
  }

  void RleEncoderV2::writeDirectValues(EncodingOption& option) {
    // write the number of fixed bits required in next 5 bits
    uint32_t fb = option.zzBits100p;
    if (alignedBitPacking) {
      fb = getClosestAlignedFixedBits(fb);
    }

    const uint32_t efb = encodeBitWidth(fb) << 1;

    // adjust variable run length
    variableRunLength -= 1;

    // extract the 9th bit of run length
    const uint32_t tailBits = (variableRunLength & 0x100) >> 8;

    // create first byte of the header
    const char headerFirstByte = static_cast<char>(getOpCode(DIRECT) | efb | tailBits);

    // second byte of the header stores the remaining 8 bits of runlength
    const char headerSecondByte = static_cast<char>(variableRunLength & 0xff);

    // write header
    writeByte(headerFirstByte);
    writeByte(headerSecondByte);

    // bit packing the zigzag encoded literals
    int64_t* currentZigzagLiterals = isSigned ? zigzagLiterals : literals;
    writeInts(currentZigzagLiterals, 0, numLiterals, fb);

    // reset run length
    variableRunLength = 0;
  }

  void RleEncoderV2::writePatchedBasedValues(EncodingOption& option) {
    // NOTE: Aligned bit packing cannot be applied for PATCHED_BASE encoding
    // because patch is applied to MSB bits. For example: If fixed bit width of
    // base value is 7 bits and if patch is 3 bits, the actual value is
    // constructed by shifting the patch to left by 7 positions.
    // actual_value = patch << 7 | base_value
    // So, if we align base_value then actual_value can not be reconstructed.

    // write the number of fixed bits required in next 5 bits
    const uint32_t efb = encodeBitWidth(option.brBits95p) << 1;

    // adjust variable run length, they are one off
    variableRunLength -= 1;

    // extract the 9th bit of run length
    const uint32_t tailBits = (variableRunLength & 0x100) >> 8;

    // create first byte of the header
    const char headerFirstByte = static_cast<char>(getOpCode(PATCHED_BASE) | efb | tailBits);

    // second byte of the header stores the remaining 8 bits of runlength
    const char headerSecondByte = static_cast<char>(variableRunLength & 0xff);

    // if the min value is negative toggle the sign
    const bool isNegative = (option.min < 0);
    if (isNegative) {
      option.min = -option.min;
    }

    // find the number of bytes required for base and shift it by 5 bits
    // to accommodate patch width. The additional bit is used to store the sign
    // of the base value.
    const uint32_t baseWidth = findClosestNumBits(option.min) + 1;
    const uint32_t baseBytes = baseWidth % 8 == 0 ? baseWidth / 8 : (baseWidth / 8) + 1;
    const uint32_t bb = (baseBytes - 1) << 5;

    // if the base value is negative then set MSB to 1
    if (isNegative) {
      option.min |= (1LL << ((baseBytes * 8) - 1));
    }

    // third byte contains 3 bits for number of bytes occupied by base
    // and 5 bits for patchWidth
    const char headerThirdByte = static_cast<char>(bb | encodeBitWidth(option.patchWidth));

    // fourth byte contains 3 bits for page gap width and 5 bits for
    // patch length
    const char headerFourthByte =
        static_cast<char>((option.patchGapWidth - 1) << 5 | option.patchLength);

    // write header
    writeByte(headerFirstByte);
    writeByte(headerSecondByte);
    writeByte(headerThirdByte);
    writeByte(headerFourthByte);

    // write the base value using fixed bytes in big endian order
    for (int32_t i = static_cast<int32_t>(baseBytes - 1); i >= 0; i--) {
      char b = static_cast<char>(((option.min >> (i * 8)) & 0xff));
      writeByte(b);
    }

    // base reduced literals are bit packed
    uint32_t closestFixedBits = getClosestFixedBits(option.brBits95p);

    writeInts(baseRedLiterals, 0, numLiterals, closestFixedBits);

    // write patch list
    closestFixedBits = getClosestFixedBits(option.patchGapWidth + option.patchWidth);

    writeInts(gapVsPatchList, 0, option.patchLength, closestFixedBits);

    // reset run length
    variableRunLength = 0;
  }

  void RleEncoderV2::writeDeltaValues(EncodingOption& option) {
    uint32_t len = 0;
    uint32_t fb = option.bitsDeltaMax;
    uint32_t efb = 0;

    if (alignedBitPacking) {
      fb = getClosestAlignedFixedBits(fb);
    }

    if (option.isFixedDelta) {
      // if fixed run length is greater than threshold then it will be fixed
      // delta sequence with delta value 0 else fixed delta sequence with
      // non-zero delta value
      if (fixedRunLength > MIN_REPEAT) {
        // ex. sequence: 2 2 2 2 2 2 2 2
        len = fixedRunLength - 1;
        fixedRunLength = 0;
      } else {
        // ex. sequence: 4 6 8 10 12 14 16
        len = variableRunLength - 1;
        variableRunLength = 0;
      }
    } else {
      // fixed width 0 is used for long repeating values.
      // sequences that require only 1 bit to encode will have an additional bit
      if (fb == 1) {
        fb = 2;
      }
      efb = encodeBitWidth(fb) << 1;
      len = variableRunLength - 1;
      variableRunLength = 0;
    }

    // extract the 9th bit of run length
    const uint32_t tailBits = (len & 0x100) >> 8;

    // create first byte of the header
    const char headerFirstByte = static_cast<char>(getOpCode(DELTA) | efb | tailBits);

    // second byte of the header stores the remaining 8 bits of runlength
    const char headerSecondByte = static_cast<char>(len & 0xff);

    // write header
    writeByte(headerFirstByte);
    writeByte(headerSecondByte);

    // store the first value from zigzag literal array
    if (isSigned) {
      writeVslong(literals[0]);
    } else {
      writeVulong(literals[0]);
    }

    if (option.isFixedDelta) {
      // if delta is fixed then we don't need to store delta blob
      writeVslong(option.fixedDelta);
    } else {
      // store the first value as delta value using zigzag encoding
      writeVslong(adjDeltas[0]);

      // adjacent delta values are bit packed. The length of adjDeltas array is
      // always one less than the number of literals (delta difference for n
      // elements is n-1). We have already written one element, write the
      // remaining numLiterals - 2 elements here
      writeInts(adjDeltas, 1, numLiterals - 2, fb);
    }
  }

  void RleEncoderV2::writeInts(int64_t* input, uint32_t offset, size_t len, uint32_t bitSize) {
    if (input == nullptr || len < 1 || bitSize < 1) {
      return;
    }

    if (getClosestAlignedFixedBits(bitSize) == bitSize) {
      uint32_t numBytes;
      uint32_t endOffSet = static_cast<uint32_t>(offset + len);
      if (bitSize < 8) {
        char bitMask = static_cast<char>((1 << bitSize) - 1);
        uint32_t numHops = 8 / bitSize;
        uint32_t remainder = static_cast<uint32_t>(len % numHops);
        uint32_t endUnroll = endOffSet - remainder;
        for (uint32_t i = offset; i < endUnroll; i += numHops) {
          char toWrite = 0;
          for (uint32_t j = 0; j < numHops; ++j) {
            toWrite |= static_cast<char>((input[i + j] & bitMask) << (8 - (j + 1) * bitSize));
          }
          writeByte(toWrite);
        }

        if (remainder > 0) {
          uint32_t startShift = 8 - bitSize;
          char toWrite = 0;
          for (uint32_t i = endUnroll; i < endOffSet; ++i) {
            toWrite |= static_cast<char>((input[i] & bitMask) << startShift);
            startShift -= bitSize;
          }
          writeByte(toWrite);
        }

      } else {
        numBytes = bitSize / 8;

        for (uint32_t i = offset; i < endOffSet; ++i) {
          for (uint32_t j = 0; j < numBytes; ++j) {
            char toWrite = static_cast<char>((input[i] >> (8 * (numBytes - j - 1))) & 255);
            writeByte(toWrite);
          }
        }
      }

      return;
    }

    // write for unaligned bit size
    uint32_t bitsLeft = 8;
    char current = 0;
    for (uint32_t i = offset; i < (offset + len); i++) {
      int64_t value = input[i];
      uint32_t bitsToWrite = bitSize;
      while (bitsToWrite > bitsLeft) {
        // add the bits to the bottom of the current word
        current |= static_cast<char>(value >> (bitsToWrite - bitsLeft));
        // subtract out the bits we just added
        bitsToWrite -= bitsLeft;
        // zero out the bits above bitsToWrite
        value &= (static_cast<uint64_t>(1) << bitsToWrite) - 1;
        writeByte(current);
        current = 0;
        bitsLeft = 8;
      }
      bitsLeft -= bitsToWrite;
      current |= static_cast<char>(value << bitsLeft);
      if (bitsLeft == 0) {
        writeByte(current);
        current = 0;
        bitsLeft = 8;
      }
    }

    // flush
    if (bitsLeft != 8) {
      writeByte(current);
    }
  }

  void RleEncoderV2::initializeLiterals(int64_t val) {
    literals[numLiterals++] = val;
    fixedRunLength = 1;
    variableRunLength = 1;
  }
}  // namespace orc