aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/apache/orc/c++/src/RleDecoderV2.cc
blob: ae05a70a36cfd8a7ca1939b61904f72e207b19e7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "Adaptor.hh"
#include "BpackingDefault.hh"
#if defined(ORC_HAVE_RUNTIME_AVX512)
#error #include "BpackingAvx512.hh"
#endif
#include "Compression.hh"
#include "Dispatch.hh"
#include "RLEV2Util.hh"
#include "RLEv2.hh"
#include "Utils.hh"

namespace orc {

  unsigned char RleDecoderV2::readByte() {
    SCOPED_MINUS_STOPWATCH(metrics, DecodingLatencyUs);
    if (bufferStart == bufferEnd) {
      int bufferLength;
      const void* bufferPointer;
      if (!inputStream->Next(&bufferPointer, &bufferLength)) {
        throw ParseError("bad read in RleDecoderV2::readByte");
      }
      bufferStart = const_cast<char*>(static_cast<const char*>(bufferPointer));
      bufferEnd = bufferStart + bufferLength;
    }

    unsigned char result = static_cast<unsigned char>(*bufferStart++);
    return result;
  }

  int64_t RleDecoderV2::readLongBE(uint64_t bsz) {
    int64_t ret = 0, val;
    uint64_t n = bsz;
    while (n > 0) {
      n--;
      val = readByte();
      ret |= (val << (n * 8));
    }
    return ret;
  }

  inline int64_t RleDecoderV2::readVslong() {
    return unZigZag(readVulong());
  }

  uint64_t RleDecoderV2::readVulong() {
    uint64_t ret = 0, b;
    uint64_t offset = 0;
    do {
      b = readByte();
      ret |= (0x7f & b) << offset;
      offset += 7;
    } while (b >= 0x80);
    return ret;
  }

  struct UnpackDynamicFunction {
    using FunctionType = decltype(&BitUnpack::readLongs);

    static std::vector<std::pair<DispatchLevel, FunctionType>> implementations() {
#if defined(ORC_HAVE_RUNTIME_AVX512)
      return {{DispatchLevel::NONE, BitUnpackDefault::readLongs},
              {DispatchLevel::AVX512, BitUnpackAVX512::readLongs}};
#else
      return {{DispatchLevel::NONE, BitUnpackDefault::readLongs}};
#endif
    }
  };

  void RleDecoderV2::readLongs(int64_t* data, uint64_t offset, uint64_t len, uint64_t fbs) {
    static DynamicDispatch<UnpackDynamicFunction> dispatch;
    return dispatch.func(this, data, offset, len, fbs);
  }

  RleDecoderV2::RleDecoderV2(std::unique_ptr<SeekableInputStream> input, bool _isSigned,
                             MemoryPool& pool, ReaderMetrics* _metrics)
      : RleDecoder(_metrics),
        inputStream(std::move(input)),
        isSigned(_isSigned),
        firstByte(0),
        bufferStart(nullptr),
        bufferEnd(bufferStart),
        runLength(0),
        runRead(0),
        bitsLeft(0),
        curByte(0),
        unpackedPatch(pool, 0),
        literals(pool, MAX_LITERAL_SIZE) {
    // PASS
  }

  void RleDecoderV2::seek(PositionProvider& location) {
    // move the input stream
    inputStream->seek(location);
    // clear state
    bufferEnd = bufferStart = nullptr;
    runRead = runLength = 0;
    // skip ahead the given number of records
    skip(location.next());
  }

  void RleDecoderV2::skip(uint64_t numValues) {
    // simple for now, until perf tests indicate something encoding specific is
    // needed
    const uint64_t N = 64;
    int64_t dummy[N];

    while (numValues) {
      uint64_t nRead = std::min(N, numValues);
      next(dummy, nRead, nullptr);
      numValues -= nRead;
    }
  }

  template <typename T>
  void RleDecoderV2::next(T* const data, const uint64_t numValues, const char* const notNull) {
    SCOPED_STOPWATCH(metrics, DecodingLatencyUs, DecodingCall);
    uint64_t nRead = 0;

    while (nRead < numValues) {
      // Skip any nulls before attempting to read first byte.
      while (notNull && !notNull[nRead]) {
        if (++nRead == numValues) {
          return;  // ended with null values
        }
      }

      if (runRead == runLength) {
        resetRun();
        firstByte = readByte();
      }

      uint64_t offset = nRead, length = numValues - nRead;

      EncodingType enc = static_cast<EncodingType>((firstByte >> 6) & 0x03);
      switch (static_cast<int64_t>(enc)) {
        case SHORT_REPEAT:
          nRead += nextShortRepeats(data, offset, length, notNull);
          break;
        case DIRECT:
          nRead += nextDirect(data, offset, length, notNull);
          break;
        case PATCHED_BASE:
          nRead += nextPatched(data, offset, length, notNull);
          break;
        case DELTA:
          nRead += nextDelta(data, offset, length, notNull);
          break;
        default:
          throw ParseError("unknown encoding");
      }
    }
  }

  void RleDecoderV2::next(int64_t* data, uint64_t numValues, const char* notNull) {
    next<int64_t>(data, numValues, notNull);
  }

  void RleDecoderV2::next(int32_t* data, uint64_t numValues, const char* notNull) {
    next<int32_t>(data, numValues, notNull);
  }

  void RleDecoderV2::next(int16_t* data, uint64_t numValues, const char* notNull) {
    next<int16_t>(data, numValues, notNull);
  }

  template <typename T>
  uint64_t RleDecoderV2::nextShortRepeats(T* const data, uint64_t offset, uint64_t numValues,
                                          const char* const notNull) {
    if (runRead == runLength) {
      // extract the number of fixed bytes
      uint64_t byteSize = (firstByte >> 3) & 0x07;
      byteSize += 1;

      runLength = firstByte & 0x07;
      // run lengths values are stored only after MIN_REPEAT value is met
      runLength += MIN_REPEAT;
      runRead = 0;

      // read the repeated value which is store using fixed bytes
      literals[0] = readLongBE(byteSize);

      if (isSigned) {
        literals[0] = unZigZag(static_cast<uint64_t>(literals[0]));
      }
    }

    uint64_t nRead = std::min(runLength - runRead, numValues);

    if (notNull) {
      for (uint64_t pos = offset; pos < offset + nRead; ++pos) {
        if (notNull[pos]) {
          data[pos] = static_cast<T>(literals[0]);
          ++runRead;
        }
      }
    } else {
      for (uint64_t pos = offset; pos < offset + nRead; ++pos) {
        data[pos] = static_cast<T>(literals[0]);
        ++runRead;
      }
    }

    return nRead;
  }

  template <typename T>
  uint64_t RleDecoderV2::nextDirect(T* const data, uint64_t offset, uint64_t numValues,
                                    const char* const notNull) {
    if (runRead == runLength) {
      // extract the number of fixed bits
      unsigned char fbo = (firstByte >> 1) & 0x1f;
      uint32_t bitSize = decodeBitWidth(fbo);

      // extract the run length
      runLength = static_cast<uint64_t>(firstByte & 0x01) << 8;
      runLength |= readByte();
      // runs are one off
      runLength += 1;
      runRead = 0;

      readLongs(literals.data(), 0, runLength, bitSize);
      if (isSigned) {
        for (uint64_t i = 0; i < runLength; ++i) {
          literals[i] = unZigZag(static_cast<uint64_t>(literals[i]));
        }
      }
    }

    return copyDataFromBuffer(data, offset, numValues, notNull);
  }

  void RleDecoderV2::adjustGapAndPatch(uint32_t patchBitSize, int64_t patchMask, int64_t* resGap,
                                       int64_t* resPatch, uint64_t* patchIdx) {
    uint64_t idx = *patchIdx;
    uint64_t gap = static_cast<uint64_t>(unpackedPatch[idx]) >> patchBitSize;
    int64_t patch = unpackedPatch[idx] & patchMask;
    int64_t actualGap = 0;

    // special case: gap is >255 then patch value will be 0.
    // if gap is <=255 then patch value cannot be 0
    while (gap == 255 && patch == 0) {
      actualGap += 255;
      ++idx;
      gap = static_cast<uint64_t>(unpackedPatch[idx]) >> patchBitSize;
      patch = unpackedPatch[idx] & patchMask;
    }
    // add the left over gap
    actualGap += gap;

    *resGap = actualGap;
    *resPatch = patch;
    *patchIdx = idx;
  }

  template <typename T>
  uint64_t RleDecoderV2::nextPatched(T* const data, uint64_t offset, uint64_t numValues,
                                     const char* const notNull) {
    if (runRead == runLength) {
      // extract the number of fixed bits
      unsigned char fbo = (firstByte >> 1) & 0x1f;
      uint32_t bitSize = decodeBitWidth(fbo);

      // extract the run length
      runLength = static_cast<uint64_t>(firstByte & 0x01) << 8;
      runLength |= readByte();
      // runs are one off
      runLength += 1;
      runRead = 0;

      // extract the number of bytes occupied by base
      uint64_t thirdByte = readByte();
      uint64_t byteSize = (thirdByte >> 5) & 0x07;
      // base width is one off
      byteSize += 1;

      // extract patch width
      uint32_t pwo = thirdByte & 0x1f;
      uint32_t patchBitSize = decodeBitWidth(pwo);

      // read fourth byte and extract patch gap width
      uint64_t fourthByte = readByte();
      uint32_t pgw = (fourthByte >> 5) & 0x07;
      // patch gap width is one off
      pgw += 1;

      // extract the length of the patch list
      size_t pl = fourthByte & 0x1f;
      if (pl == 0) {
        throw ParseError("Corrupt PATCHED_BASE encoded data (pl==0)!");
      }

      // read the next base width number of bytes to extract base value
      int64_t base = readLongBE(byteSize);
      int64_t mask = (static_cast<int64_t>(1) << ((byteSize * 8) - 1));
      // if mask of base value is 1 then base is negative value else positive
      if ((base & mask) != 0) {
        base = base & ~mask;
        base = -base;
      }

      readLongs(literals.data(), 0, runLength, bitSize);
      // any remaining bits are thrown out
      resetReadLongs();

      // TODO: something more efficient than resize
      unpackedPatch.resize(pl);
      // TODO: Skip corrupt?
      //    if ((patchBitSize + pgw) > 64 && !skipCorrupt) {
      if ((patchBitSize + pgw) > 64) {
        throw ParseError(
            "Corrupt PATCHED_BASE encoded data "
            "(patchBitSize + pgw > 64)!");
      }
      uint32_t cfb = getClosestFixedBits(patchBitSize + pgw);
      readLongs(unpackedPatch.data(), 0, pl, cfb);
      // any remaining bits are thrown out
      resetReadLongs();

      // apply the patch directly when decoding the packed data
      int64_t patchMask = ((static_cast<int64_t>(1) << patchBitSize) - 1);

      int64_t gap = 0;
      int64_t patch = 0;
      uint64_t patchIdx = 0;
      adjustGapAndPatch(patchBitSize, patchMask, &gap, &patch, &patchIdx);

      for (uint64_t i = 0; i < runLength; ++i) {
        if (static_cast<int64_t>(i) != gap) {
          // no patching required. add base to unpacked value to get final value
          literals[i] += base;
        } else {
          // extract the patch value
          int64_t patchedVal = literals[i] | (patch << bitSize);

          // add base to patched value
          literals[i] = base + patchedVal;

          // increment the patch to point to next entry in patch list
          ++patchIdx;

          if (patchIdx < unpackedPatch.size()) {
            adjustGapAndPatch(patchBitSize, patchMask, &gap, &patch, &patchIdx);

            // next gap is relative to the current gap
            gap += i;
          }
        }
      }
    }

    return copyDataFromBuffer(data, offset, numValues, notNull);
  }

  template <typename T>
  uint64_t RleDecoderV2::nextDelta(T* const data, uint64_t offset, uint64_t numValues,
                                   const char* const notNull) {
    if (runRead == runLength) {
      // extract the number of fixed bits
      unsigned char fbo = (firstByte >> 1) & 0x1f;
      uint32_t bitSize;
      if (fbo != 0) {
        bitSize = decodeBitWidth(fbo);
      } else {
        bitSize = 0;
      }

      // extract the run length
      runLength = static_cast<uint64_t>(firstByte & 0x01) << 8;
      runLength |= readByte();
      ++runLength;  // account for first value
      runRead = 0;

      int64_t prevValue;
      // read the first value stored as vint
      if (isSigned) {
        prevValue = readVslong();
      } else {
        prevValue = static_cast<int64_t>(readVulong());
      }

      literals[0] = prevValue;

      // read the fixed delta value stored as vint (deltas can be negative even
      // if all number are positive)
      int64_t deltaBase = readVslong();

      if (bitSize == 0) {
        // add fixed deltas to adjacent values
        for (uint64_t i = 1; i < runLength; ++i) {
          literals[i] = literals[i - 1] + deltaBase;
        }
      } else {
        prevValue = literals[1] = prevValue + deltaBase;
        if (runLength < 2) {
          std::stringstream ss;
          ss << "Illegal run length for delta encoding: " << runLength;
          throw ParseError(ss.str());
        }
        // write the unpacked values, add it to previous value and store final
        // value to result buffer. if the delta base value is negative then it
        // is a decreasing sequence else an increasing sequence.
        // read deltas using the literals buffer.
        readLongs(literals.data(), 2, runLength - 2, bitSize);
        if (deltaBase < 0) {
          for (uint64_t i = 2; i < runLength; ++i) {
            prevValue = literals[i] = prevValue - literals[i];
          }
        } else {
          for (uint64_t i = 2; i < runLength; ++i) {
            prevValue = literals[i] = prevValue + literals[i];
          }
        }
      }
    }

    return copyDataFromBuffer(data, offset, numValues, notNull);
  }

  template <typename T>
  uint64_t RleDecoderV2::copyDataFromBuffer(T* data, uint64_t offset, uint64_t numValues,
                                            const char* notNull) {
    uint64_t nRead = std::min(runLength - runRead, numValues);
    if (notNull) {
      for (uint64_t i = offset; i < (offset + nRead); ++i) {
        if (notNull[i]) {
          data[i] = static_cast<T>(literals[runRead++]);
        }
      }
    } else {
      for (uint64_t i = offset; i < (offset + nRead); ++i) {
        data[i] = static_cast<T>(literals[runRead++]);
      }
    }
    return nRead;
  }

}  // namespace orc