1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "BlockBuffer.hh"
#include "orc/OrcFile.hh"
#include "orc/Writer.hh"
#include <algorithm>
namespace orc {
BlockBuffer::BlockBuffer(MemoryPool& pool, uint64_t _blockSize)
: memoryPool(pool), currentSize(0), currentCapacity(0), blockSize(_blockSize) {
if (blockSize == 0) {
throw std::logic_error("Block size cannot be zero");
}
reserve(blockSize);
}
BlockBuffer::~BlockBuffer() {
for (size_t i = 0; i < blocks.size(); ++i) {
memoryPool.free(blocks[i]);
}
blocks.clear();
currentSize = currentCapacity = 0;
}
BlockBuffer::Block BlockBuffer::getBlock(uint64_t blockIndex) const {
if (blockIndex >= getBlockNumber()) {
throw std::out_of_range("Block index out of range");
}
return Block(blocks[blockIndex], std::min(currentSize - blockIndex * blockSize, blockSize));
}
BlockBuffer::Block BlockBuffer::getNextBlock() {
if (currentSize < currentCapacity) {
Block emptyBlock(blocks[currentSize / blockSize] + currentSize % blockSize,
blockSize - currentSize % blockSize);
currentSize = (currentSize / blockSize + 1) * blockSize;
return emptyBlock;
} else {
resize(currentSize + blockSize);
return Block(blocks.back(), blockSize);
}
}
void BlockBuffer::resize(uint64_t size) {
reserve(size);
if (currentCapacity >= size) {
currentSize = size;
} else {
throw std::logic_error("Block buffer resize error");
}
}
void BlockBuffer::reserve(uint64_t newCapacity) {
while (currentCapacity < newCapacity) {
char* newBlockPtr = memoryPool.malloc(blockSize);
if (newBlockPtr != nullptr) {
blocks.push_back(newBlockPtr);
currentCapacity += blockSize;
} else {
break;
}
}
}
void BlockBuffer::writeTo(OutputStream* output, WriterMetrics* metrics) {
if (currentSize == 0) {
return;
}
static uint64_t MAX_CHUNK_SIZE = 1024 * 1024 * 1024;
uint64_t chunkSize = std::min(output->getNaturalWriteSize(), MAX_CHUNK_SIZE);
if (chunkSize == 0) {
throw std::logic_error("Natural write size cannot be zero");
}
uint64_t ioCount = 0;
uint64_t blockNumber = getBlockNumber();
// if only exists one block, currentSize is equal to first block size
if (blockNumber == 1 && currentSize <= chunkSize) {
Block block = getBlock(0);
output->write(block.data, block.size);
++ioCount;
} else {
char* chunk = memoryPool.malloc(chunkSize);
uint64_t chunkOffset = 0;
for (uint64_t i = 0; i < blockNumber; ++i) {
Block block = getBlock(i);
uint64_t blockOffset = 0;
while (blockOffset < block.size) {
// copy current block into chunk
uint64_t copySize = std::min(chunkSize - chunkOffset, block.size - blockOffset);
memcpy(chunk + chunkOffset, block.data + blockOffset, copySize);
chunkOffset += copySize;
blockOffset += copySize;
// chunk is full
if (chunkOffset >= chunkSize) {
output->write(chunk, chunkSize);
chunkOffset = 0;
++ioCount;
}
}
}
if (chunkOffset != 0) {
output->write(chunk, chunkOffset);
++ioCount;
}
memoryPool.free(chunk);
}
if (metrics != nullptr) {
metrics->IOCount.fetch_add(ioCount);
}
}
} // namespace orc
|