1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "arrow/array/concatenate.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <memory>
#include <utility>
#include <vector>
#include "arrow/array.h"
#include "arrow/array/builder_primitive.h"
#include "arrow/array/builder_run_end.h"
#include "arrow/array/data.h"
#include "arrow/array/util.h"
#include "arrow/buffer.h"
#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/type.h"
#include "arrow/type_fwd.h"
#include "arrow/util/bit_block_counter.h"
#include "arrow/util/bit_run_reader.h"
#include "arrow/util/bit_util.h"
#include "arrow/util/bitmap_ops.h"
#include "arrow/util/checked_cast.h"
#include "arrow/util/int_util.h"
#include "arrow/util/int_util_overflow.h"
#include "arrow/util/list_util.h"
#include "arrow/util/logging.h"
#include "arrow/util/ree_util.h"
#include "arrow/util/slice_util_internal.h"
#include "arrow/visit_data_inline.h"
#include "arrow/visit_type_inline.h"
namespace arrow20 {
using internal::SafeSignedAdd;
namespace {
/// offset, length pair for representing a Range of a buffer or array
struct Range {
int64_t offset = -1, length = 0;
Range() = default;
Range(int64_t o, int64_t l) : offset(o), length(l) {}
};
/// non-owning view into a range of bits
struct Bitmap {
Bitmap() = default;
Bitmap(const uint8_t* d, Range r) : data(d), range(r) {}
explicit Bitmap(const std::shared_ptr<Buffer>& buffer, Range r)
: Bitmap(buffer ? buffer->data() : nullptr, r) {}
const uint8_t* data = nullptr;
Range range;
bool AllSet() const { return data == nullptr; }
};
enum class OffsetBufferOpOutcome {
kOk,
kOffsetOverflow,
};
Status OffsetOverflowStatus() {
return Status::Invalid("offset overflow while concatenating arrays");
}
#define RETURN_IF_NOT_OK_OUTCOME(outcome) \
switch (outcome) { \
case OffsetBufferOpOutcome::kOk: \
break; \
case OffsetBufferOpOutcome::kOffsetOverflow: \
return OffsetOverflowStatus(); \
}
struct ErrorHints {
/// \brief Suggested cast to avoid overflow during concatenation.
///
/// If the concatenation of offsets overflows, this field might be set to the
/// a type that uses larger offsets (e.g. large_utf8, large_list).
std::shared_ptr<DataType> suggested_cast;
};
// Allocate a buffer and concatenate bitmaps into it.
Status ConcatenateBitmaps(const std::vector<Bitmap>& bitmaps, MemoryPool* pool,
std::shared_ptr<Buffer>* out) {
int64_t out_length = 0;
for (const auto& bitmap : bitmaps) {
if (internal::AddWithOverflow(out_length, bitmap.range.length, &out_length)) {
return Status::Invalid("Length overflow when concatenating arrays");
}
}
ARROW_ASSIGN_OR_RAISE(*out, AllocateBitmap(out_length, pool));
uint8_t* dst = (*out)->mutable_data();
int64_t bitmap_offset = 0;
for (auto bitmap : bitmaps) {
if (bitmap.AllSet()) {
bit_util::SetBitsTo(dst, bitmap_offset, bitmap.range.length, true);
} else {
internal::CopyBitmap(bitmap.data, bitmap.range.offset, bitmap.range.length, dst,
bitmap_offset);
}
bitmap_offset += bitmap.range.length;
}
return Status::OK();
}
int64_t SumBufferSizesInBytes(const BufferVector& buffers) {
int64_t size = 0;
for (const auto& buffer : buffers) {
size += buffer->size();
}
return size;
}
// Write offsets in src into dst, adjusting them such that first_offset
// will be the first offset written.
template <typename Offset>
Result<OffsetBufferOpOutcome> PutOffsets(const Buffer& src, Offset first_offset,
Offset* dst, Range* values_range);
// Concatenate buffers holding offsets into a single buffer of offsets,
// also computing the ranges of values spanned by each buffer of offsets.
template <typename Offset>
Result<OffsetBufferOpOutcome> ConcatenateOffsets(const BufferVector& buffers,
MemoryPool* pool,
std::shared_ptr<Buffer>* out,
std::vector<Range>* values_ranges) {
values_ranges->resize(buffers.size());
// allocate output buffer
const int64_t out_size_in_bytes = SumBufferSizesInBytes(buffers);
ARROW_ASSIGN_OR_RAISE(*out, AllocateBuffer(sizeof(Offset) + out_size_in_bytes, pool));
auto* out_data = (*out)->mutable_data_as<Offset>();
int64_t elements_length = 0;
Offset values_length = 0;
for (size_t i = 0; i < buffers.size(); ++i) {
// the first offset from buffers[i] will be adjusted to values_length
// (the cumulative length of values spanned by offsets in previous buffers)
ARROW_ASSIGN_OR_RAISE(auto outcome, PutOffsets<Offset>(*buffers[i], values_length,
out_data + elements_length,
&(*values_ranges)[i]));
if (ARROW_PREDICT_FALSE(outcome != OffsetBufferOpOutcome::kOk)) {
return outcome;
}
elements_length += buffers[i]->size() / sizeof(Offset);
values_length += static_cast<Offset>((*values_ranges)[i].length);
}
// the final element in out_data is the length of all values spanned by the offsets
out_data[out_size_in_bytes / sizeof(Offset)] = values_length;
return OffsetBufferOpOutcome::kOk;
}
template <typename Offset>
Result<OffsetBufferOpOutcome> PutOffsets(const Buffer& src, Offset first_offset,
Offset* dst, Range* values_range) {
if (src.size() == 0) {
// It's allowed to have an empty offsets buffer for a 0-length array
// (see Array::Validate)
values_range->offset = 0;
values_range->length = 0;
return OffsetBufferOpOutcome::kOk;
}
// Get the range of offsets to transfer from src
auto src_begin = src.data_as<Offset>();
auto src_end = reinterpret_cast<const Offset*>(src.data() + src.size());
// Compute the range of values which is spanned by this range of offsets
values_range->offset = src_begin[0];
values_range->length = *src_end - values_range->offset;
if (ARROW_PREDICT_FALSE(first_offset >
std::numeric_limits<Offset>::max() - values_range->length)) {
return OffsetBufferOpOutcome::kOffsetOverflow;
}
// Write offsets into dst, ensuring that the first offset written is
// first_offset
auto displacement = first_offset - src_begin[0];
// NOTE: Concatenate can be called during IPC reads to append delta dictionaries.
// Avoid UB on non-validated input by doing the addition in the unsigned domain.
// (the result can later be validated using Array::ValidateFull)
std::transform(src_begin, src_end, dst, [displacement](Offset offset) {
return SafeSignedAdd(offset, displacement);
});
return OffsetBufferOpOutcome::kOk;
}
template <typename offset_type>
Result<OffsetBufferOpOutcome> PutListViewOffsets(const ArrayData& input,
offset_type* sizes, const Buffer& src,
offset_type displacement,
offset_type* dst);
// Concatenate buffers holding list-view offsets into a single buffer of offsets
//
// value_ranges contains the relevant ranges of values in the child array actually
// referenced to by the views. Most commonly, these ranges will start from 0,
// but when that is not the case, we need to adjust the displacement of offsets.
// The concatenated child array does not contain values from the beginning
// if they are not referenced to by any view.
//
// The child arrays and the sizes buffer are used to ensure we can trust the offsets in
// offset_buffers to be within the valid range.
//
// This function also mutates sizes so that null list-view entries have size 0.
//
// \param[in] in The child arrays
// \param[in,out] sizes The concatenated sizes buffer
template <typename offset_type>
Result<OffsetBufferOpOutcome> ConcatenateListViewOffsets(
const ArrayDataVector& in, offset_type* sizes, const BufferVector& offset_buffers,
const std::vector<Range>& value_ranges, MemoryPool* pool,
std::shared_ptr<Buffer>* out) {
DCHECK_EQ(offset_buffers.size(), value_ranges.size());
// Allocate resulting offsets buffer and initialize it with zeros
const int64_t out_size_in_bytes = SumBufferSizesInBytes(offset_buffers);
ARROW_ASSIGN_OR_RAISE(*out, AllocateBuffer(out_size_in_bytes, pool));
memset((*out)->mutable_data(), 0, static_cast<size_t>((*out)->size()));
auto* out_offsets = (*out)->mutable_data_as<offset_type>();
int64_t num_child_values = 0;
int64_t elements_length = 0;
for (size_t i = 0; i < offset_buffers.size(); ++i) {
const auto displacement =
static_cast<offset_type>(num_child_values - value_ranges[i].offset);
ARROW_ASSIGN_OR_RAISE(auto outcome,
PutListViewOffsets(*in[i], /*sizes=*/sizes + elements_length,
/*src=*/*offset_buffers[i], displacement,
/*dst=*/out_offsets + elements_length));
if (ARROW_PREDICT_FALSE(outcome != OffsetBufferOpOutcome::kOk)) {
return outcome;
}
elements_length += offset_buffers[i]->size() / sizeof(offset_type);
num_child_values += value_ranges[i].length;
if (num_child_values > std::numeric_limits<offset_type>::max()) {
return OffsetBufferOpOutcome::kOffsetOverflow;
}
}
DCHECK_EQ(elements_length,
static_cast<int64_t>(out_size_in_bytes / sizeof(offset_type)));
return OffsetBufferOpOutcome::kOk;
}
template <typename offset_type>
Result<OffsetBufferOpOutcome> PutListViewOffsets(const ArrayData& input,
offset_type* sizes, const Buffer& src,
offset_type displacement,
offset_type* dst) {
if (src.size() == 0) {
return OffsetBufferOpOutcome::kOk;
}
const auto& validity_buffer = input.buffers[0];
if (validity_buffer) {
// Ensure that it is safe to access all the bits in the validity bitmap of input.
RETURN_NOT_OK(internal::CheckSliceParams(/*size=*/8 * validity_buffer->size(),
input.offset, input.length, "buffer"));
}
const auto offsets = src.data_as<offset_type>();
DCHECK_EQ(static_cast<int64_t>(src.size() / sizeof(offset_type)), input.length);
auto visit_not_null = [&](int64_t position) {
if (sizes[position] > 0) {
// NOTE: Concatenate can be called during IPC reads to append delta
// dictionaries. Avoid UB on non-validated input by doing the addition in the
// unsigned domain. (the result can later be validated using
// Array::ValidateFull)
const auto displaced_offset = SafeSignedAdd(offsets[position], displacement);
// displaced_offset>=0 is guaranteed by RangeOfValuesUsed returning the
// smallest offset of valid and non-empty list-views.
DCHECK_GE(displaced_offset, 0);
dst[position] = displaced_offset;
} else {
// Do nothing to leave the dst[position] as 0.
}
};
const auto* validity = validity_buffer ? validity_buffer->data_as<uint8_t>() : nullptr;
internal::OptionalBitBlockCounter bit_counter(validity, input.offset, input.length);
int64_t position = 0;
while (position < input.length) {
internal::BitBlockCount block = bit_counter.NextBlock();
if (block.AllSet()) {
for (int64_t i = 0; i < block.length; ++i, ++position) {
visit_not_null(position);
}
} else if (block.NoneSet()) {
// NOTE: we don't have to do anything for the null entries regarding the
// offsets as the buffer is initialized to 0 when it is allocated.
// Zero-out the sizes of the null entries to ensure these sizes are not
// greater than the new values length of the concatenated array.
memset(sizes + position, 0, block.length * sizeof(offset_type));
position += block.length;
} else {
for (int64_t i = 0; i < block.length; ++i, ++position) {
if (bit_util::GetBit(validity, input.offset + position)) {
visit_not_null(position);
} else {
// Zero-out the size at position.
sizes[position] = 0;
}
}
}
}
return OffsetBufferOpOutcome::kOk;
}
class ConcatenateImpl {
public:
ConcatenateImpl(const ArrayDataVector& in, MemoryPool* pool)
: in_(in), pool_(pool), out_(std::make_shared<ArrayData>()) {
out_->type = in_[0]->type;
for (const auto& in_array : in_) {
out_->length = SafeSignedAdd(out_->length, in_array->length);
if (out_->null_count == kUnknownNullCount ||
in_array->null_count == kUnknownNullCount) {
out_->null_count = kUnknownNullCount;
continue;
}
out_->null_count =
SafeSignedAdd(out_->null_count.load(), in_array->null_count.load());
}
out_->buffers.resize(in_[0]->buffers.size());
out_->child_data.resize(in_[0]->child_data.size());
for (auto& data : out_->child_data) {
data = std::make_shared<ArrayData>();
}
}
Status Concatenate(std::shared_ptr<ArrayData>* out, ErrorHints* out_hints) && {
if (out_->null_count != 0 && internal::may_have_validity_bitmap(out_->type->id())) {
RETURN_NOT_OK(ConcatenateBitmaps(Bitmaps(0), pool_, &out_->buffers[0]));
}
auto status = VisitTypeInline(*out_->type, this);
if (!status.ok()) {
if (out_hints) {
out_hints->suggested_cast = std::move(suggested_cast_);
}
return status;
}
*out = std::move(out_);
return Status::OK();
}
Status Visit(const NullType&) { return Status::OK(); }
Status Visit(const BooleanType&) {
return ConcatenateBitmaps(Bitmaps(1), pool_, &out_->buffers[1]);
}
Status Visit(const FixedWidthType& fixed) {
// Handles numbers, decimal32, decimal64, decimal128, decimal256, fixed_size_binary
ARROW_ASSIGN_OR_RAISE(auto buffers, Buffers(1, fixed));
return ConcatenateBuffers(buffers, pool_).Value(&out_->buffers[1]);
}
Status Visit(const BinaryType& input_type) {
std::vector<Range> value_ranges;
ARROW_ASSIGN_OR_RAISE(auto index_buffers, Buffers(1, sizeof(int32_t)));
ARROW_ASSIGN_OR_RAISE(
auto outcome, ConcatenateOffsets<int32_t>(index_buffers, pool_, &out_->buffers[1],
&value_ranges));
switch (outcome) {
case OffsetBufferOpOutcome::kOk:
break;
case OffsetBufferOpOutcome::kOffsetOverflow:
switch (input_type.id()) {
case Type::BINARY:
suggested_cast_ = large_binary();
break;
case Type::STRING:
suggested_cast_ = large_utf8();
break;
default:
DCHECK(false) << "unexpected type id from BinaryType: " << input_type;
break;
}
return OffsetOverflowStatus();
}
ARROW_ASSIGN_OR_RAISE(auto value_buffers, Buffers(2, value_ranges));
return ConcatenateBuffers(value_buffers, pool_).Value(&out_->buffers[2]);
}
Status Visit(const LargeBinaryType&) {
std::vector<Range> value_ranges;
ARROW_ASSIGN_OR_RAISE(auto index_buffers, Buffers(1, sizeof(int64_t)));
ARROW_ASSIGN_OR_RAISE(
auto outcome, ConcatenateOffsets<int64_t>(index_buffers, pool_, &out_->buffers[1],
&value_ranges));
RETURN_IF_NOT_OK_OUTCOME(outcome);
ARROW_ASSIGN_OR_RAISE(auto value_buffers, Buffers(2, value_ranges));
return ConcatenateBuffers(value_buffers, pool_).Value(&out_->buffers[2]);
}
Status Visit(const BinaryViewType& type) {
out_->buffers.resize(2);
for (const auto& in_data : in_) {
for (const auto& buf : util::span(in_data->buffers).subspan(2)) {
out_->buffers.push_back(buf);
}
}
ARROW_ASSIGN_OR_RAISE(auto view_buffers, Buffers(1, BinaryViewType::kSize));
ARROW_ASSIGN_OR_RAISE(auto view_buffer, ConcatenateBuffers(view_buffers, pool_));
auto* views = view_buffer->mutable_data_as<BinaryViewType::c_type>();
size_t preceding_buffer_count = 0;
int64_t i = in_[0]->length;
for (size_t in_index = 1; in_index < in_.size(); ++in_index) {
preceding_buffer_count += in_[in_index - 1]->buffers.size() - 2;
for (int64_t end_i = i + in_[in_index]->length; i < end_i; ++i) {
if (views[i].is_inline()) continue;
views[i].ref.buffer_index = SafeSignedAdd(
views[i].ref.buffer_index, static_cast<int32_t>(preceding_buffer_count));
}
}
if (out_->buffers[0] != nullptr) {
i = in_[0]->length;
VisitNullBitmapInline(
out_->buffers[0]->data(), i, out_->length - i, out_->null_count, [&] { ++i; },
[&] {
views[i++] = {}; // overwrite views under null bits with an empty view
});
}
out_->buffers[1] = std::move(view_buffer);
return Status::OK();
}
Status Visit(const ListType& input_type) {
std::vector<Range> value_ranges;
ARROW_ASSIGN_OR_RAISE(auto index_buffers, Buffers(1, sizeof(int32_t)));
ARROW_ASSIGN_OR_RAISE(auto offsets_outcome,
ConcatenateOffsets<int32_t>(index_buffers, pool_,
&out_->buffers[1], &value_ranges));
switch (offsets_outcome) {
case OffsetBufferOpOutcome::kOk:
break;
case OffsetBufferOpOutcome::kOffsetOverflow:
suggested_cast_ = large_list(input_type.value_type());
return OffsetOverflowStatus();
}
ARROW_ASSIGN_OR_RAISE(auto child_data, ChildData(0, value_ranges));
ErrorHints child_error_hints;
auto status = ConcatenateImpl(child_data, pool_)
.Concatenate(&out_->child_data[0], &child_error_hints);
if (!status.ok() && child_error_hints.suggested_cast) {
suggested_cast_ = list(std::move(child_error_hints.suggested_cast));
}
return status;
}
Status Visit(const LargeListType&) {
std::vector<Range> value_ranges;
ARROW_ASSIGN_OR_RAISE(auto index_buffers, Buffers(1, sizeof(int64_t)));
ARROW_ASSIGN_OR_RAISE(
auto outcome, ConcatenateOffsets<int64_t>(index_buffers, pool_, &out_->buffers[1],
&value_ranges));
RETURN_IF_NOT_OK_OUTCOME(outcome);
ARROW_ASSIGN_OR_RAISE(auto child_data, ChildData(0, value_ranges));
ErrorHints child_error_hints;
auto status = ConcatenateImpl(child_data, pool_)
.Concatenate(&out_->child_data[0], &child_error_hints);
if (!status.ok() && child_error_hints.suggested_cast) {
suggested_cast_ = large_list(std::move(child_error_hints.suggested_cast));
}
return status;
}
template <typename T>
enable_if_list_view<T, Status> Visit(const T& type) {
using offset_type = typename T::offset_type;
out_->buffers.resize(3);
out_->child_data.resize(1);
// Calculate the ranges of values that each list-view array uses
std::vector<Range> value_ranges;
value_ranges.reserve(in_.size());
for (const auto& input : in_) {
ArraySpan input_span(*input);
Range range;
ARROW_ASSIGN_OR_RAISE(std::tie(range.offset, range.length),
list_util::internal::RangeOfValuesUsed(input_span));
value_ranges.push_back(range);
}
// Concatenate the values
ErrorHints child_error_hints;
ARROW_ASSIGN_OR_RAISE(ArrayDataVector value_data, ChildData(0, value_ranges));
auto values_status = ConcatenateImpl(value_data, pool_)
.Concatenate(&out_->child_data[0], &child_error_hints);
if (!values_status.ok()) {
if (child_error_hints.suggested_cast) {
suggested_cast_ = std::make_shared<std::remove_reference_t<T>>(
std::move(child_error_hints.suggested_cast));
}
return values_status;
}
out_->child_data[0]->type = type.value_type();
// Concatenate the sizes first
ARROW_ASSIGN_OR_RAISE(auto size_buffers, Buffers(2, sizeof(offset_type)));
RETURN_NOT_OK(ConcatenateBuffers(size_buffers, pool_).Value(&out_->buffers[2]));
// Concatenate the offsets
ARROW_ASSIGN_OR_RAISE(auto offset_buffers, Buffers(1, sizeof(offset_type)));
ARROW_ASSIGN_OR_RAISE(
auto outcome, ConcatenateListViewOffsets<offset_type>(
in_, /*sizes=*/out_->buffers[2]->mutable_data_as<offset_type>(),
offset_buffers, value_ranges, pool_, &out_->buffers[1]));
switch (outcome) {
case OffsetBufferOpOutcome::kOk:
break;
case OffsetBufferOpOutcome::kOffsetOverflow:
if constexpr (T::type_id == Type::LIST_VIEW) {
suggested_cast_ = large_list_view(type.value_type());
}
return OffsetOverflowStatus();
}
return Status::OK();
}
Status Visit(const FixedSizeListType& fsl_type) {
ARROW_ASSIGN_OR_RAISE(auto child_data, ChildData(0, fsl_type.list_size()));
ErrorHints hints;
auto status =
ConcatenateImpl(child_data, pool_).Concatenate(&out_->child_data[0], &hints);
if (!status.ok() && hints.suggested_cast) {
suggested_cast_ =
fixed_size_list(std::move(hints.suggested_cast), fsl_type.list_size());
}
return status;
}
Status Visit(const StructType& s) {
for (int i = 0; i < s.num_fields(); ++i) {
ARROW_ASSIGN_OR_RAISE(auto child_data, ChildData(i));
RETURN_NOT_OK(ConcatenateImpl(child_data, pool_)
.Concatenate(&out_->child_data[i], /*hints=*/nullptr));
}
return Status::OK();
}
Result<BufferVector> UnifyDictionaries(const DictionaryType& d) {
BufferVector new_index_lookup;
ARROW_ASSIGN_OR_RAISE(auto unifier, DictionaryUnifier::Make(d.value_type()));
new_index_lookup.resize(in_.size());
for (size_t i = 0; i < in_.size(); i++) {
auto item = in_[i];
auto dictionary_array = MakeArray(item->dictionary);
RETURN_NOT_OK(unifier->Unify(*dictionary_array, &new_index_lookup[i]));
}
std::shared_ptr<Array> out_dictionary;
RETURN_NOT_OK(unifier->GetResultWithIndexType(d.index_type(), &out_dictionary));
out_->dictionary = out_dictionary->data();
return new_index_lookup;
}
// Transpose and concatenate dictionary indices
Result<std::shared_ptr<Buffer>> ConcatenateDictionaryIndices(
const DataType& index_type, const BufferVector& index_transpositions) {
const auto index_width =
internal::checked_cast<const FixedWidthType&>(index_type).bit_width() / 8;
int64_t out_length = 0;
for (const auto& data : in_) {
out_length += data->length;
}
ARROW_ASSIGN_OR_RAISE(auto out, AllocateBuffer(out_length * index_width, pool_));
uint8_t* out_data = out->mutable_data();
for (size_t i = 0; i < in_.size(); i++) {
const auto& data = in_[i];
auto transpose_map =
reinterpret_cast<const int32_t*>(index_transpositions[i]->data());
const uint8_t* src = data->GetValues<uint8_t>(1, 0);
if (!data->buffers[0]) {
RETURN_NOT_OK(internal::TransposeInts(index_type, index_type,
/*src=*/data->GetValues<uint8_t>(1, 0),
/*dest=*/out_data,
/*src_offset=*/data->offset,
/*dest_offset=*/0, /*length=*/data->length,
transpose_map));
} else {
internal::BitRunReader reader(data->buffers[0]->data(), data->offset,
data->length);
int64_t position = 0;
while (true) {
internal::BitRun run = reader.NextRun();
if (run.length == 0) break;
if (run.set) {
RETURN_NOT_OK(internal::TransposeInts(index_type, index_type, src,
/*dest=*/out_data,
/*src_offset=*/data->offset + position,
/*dest_offset=*/position, run.length,
transpose_map));
} else {
std::fill(out_data + (position * index_width),
out_data + (position + run.length) * index_width, 0x00);
}
position += run.length;
}
}
out_data += data->length * index_width;
}
// R build with openSUSE155 requires an explicit shared_ptr construction
return std::shared_ptr<Buffer>(std::move(out));
}
Status Visit(const DictionaryType& d) {
auto fixed = internal::checked_cast<const FixedWidthType*>(d.index_type().get());
// Two cases: all the dictionaries are the same, or unification is
// required
bool dictionaries_same = true;
std::shared_ptr<Array> dictionary0 = MakeArray(in_[0]->dictionary);
for (size_t i = 1; i < in_.size(); ++i) {
if (!MakeArray(in_[i]->dictionary)->Equals(dictionary0)) {
dictionaries_same = false;
break;
}
}
ARROW_ASSIGN_OR_RAISE(auto index_buffers, Buffers(1, *fixed));
if (dictionaries_same) {
out_->dictionary = in_[0]->dictionary;
return ConcatenateBuffers(index_buffers, pool_).Value(&out_->buffers[1]);
} else {
ARROW_ASSIGN_OR_RAISE(auto index_lookup, UnifyDictionaries(d));
ARROW_ASSIGN_OR_RAISE(out_->buffers[1],
ConcatenateDictionaryIndices(*fixed, index_lookup));
return Status::OK();
}
}
Status Visit(const UnionType& u) {
// This implementation assumes that all input arrays are valid union arrays
// with same number of variants.
// Concatenate the type buffers.
ARROW_ASSIGN_OR_RAISE(auto type_buffers, Buffers(1, sizeof(int8_t)));
RETURN_NOT_OK(ConcatenateBuffers(type_buffers, pool_).Value(&out_->buffers[1]));
// Concatenate the child data. For sparse unions the child data is sliced
// based on the offset and length of the array data. For dense unions the
// child data is not sliced because this makes constructing the concatenated
// offsets buffer more simple. We could however choose to modify this and
// slice the child arrays and reflect this in the concatenated offsets
// buffer.
switch (u.mode()) {
case UnionMode::SPARSE: {
for (int i = 0; i < u.num_fields(); i++) {
ARROW_ASSIGN_OR_RAISE(auto child_data, ChildData(i));
RETURN_NOT_OK(ConcatenateImpl(child_data, pool_)
.Concatenate(&out_->child_data[i], /*hints=*/nullptr));
}
break;
}
case UnionMode::DENSE: {
for (int i = 0; i < u.num_fields(); i++) {
ArrayDataVector child_data(in_.size());
for (size_t j = 0; j < in_.size(); j++) {
child_data[j] = in_[j]->child_data[i];
}
RETURN_NOT_OK(ConcatenateImpl(child_data, pool_)
.Concatenate(&out_->child_data[i], /*hints=*/nullptr));
}
break;
}
}
// Concatenate offsets buffers for dense union arrays.
if (u.mode() == UnionMode::DENSE) {
// The number of offset values is equal to the number of type_ids in the
// concatenated type buffers.
TypedBufferBuilder<int32_t> builder;
RETURN_NOT_OK(builder.Reserve(out_->length));
// Initialize a vector for child array lengths. These are updated during
// iteration over the input arrays to track the concatenated child array
// lengths. These lengths are used as offsets for the concatenated offsets
// buffer.
std::vector<int32_t> offset_map(u.num_fields());
// Iterate over all input arrays.
for (size_t i = 0; i < in_.size(); i++) {
// Get sliced type ids and offsets.
auto type_ids = in_[i]->GetValues<int8_t>(1);
auto offset_values = in_[i]->GetValues<int32_t>(2);
// Iterate over all elements in the type buffer and append the updated
// offset to the concatenated offsets buffer.
for (auto j = 0; j < in_[i]->length; j++) {
int32_t offset;
if (internal::AddWithOverflow(offset_map[u.child_ids()[type_ids[j]]],
offset_values[j], &offset)) {
return Status::Invalid("Offset value overflow when concatenating arrays");
}
RETURN_NOT_OK(builder.Append(offset));
}
// Increment the offsets in the offset map for the next iteration.
for (int j = 0; j < u.num_fields(); j++) {
int64_t length;
if (internal::AddWithOverflow(static_cast<int64_t>(offset_map[j]),
in_[i]->child_data[j]->length, &length)) {
return Status::Invalid("Offset value overflow when concatenating arrays");
}
// Make sure we can safely downcast to int32_t.
if (length > std::numeric_limits<int32_t>::max()) {
return Status::Invalid("Length overflow when concatenating arrays");
}
offset_map[j] = static_cast<int32_t>(length);
}
}
ARROW_ASSIGN_OR_RAISE(out_->buffers[2], builder.Finish());
}
return Status::OK();
}
Status Visit(const RunEndEncodedType& type) {
int64_t physical_length = 0;
for (const auto& input : in_) {
if (internal::AddWithOverflow(physical_length,
ree_util::FindPhysicalLength(ArraySpan(*input)),
&physical_length)) {
return Status::Invalid("Length overflow when concatenating arrays");
}
}
ARROW_ASSIGN_OR_RAISE(auto builder, MakeBuilder(in_[0]->type, pool_));
RETURN_NOT_OK(internal::checked_cast<RunEndEncodedBuilder&>(*builder).ReservePhysical(
physical_length));
for (const auto& input : in_) {
RETURN_NOT_OK(builder->AppendArraySlice(ArraySpan(*input), 0, input->length));
}
ARROW_ASSIGN_OR_RAISE(std::shared_ptr<Array> out_array, builder->Finish());
out_ = out_array->data();
return Status::OK();
}
Status Visit(const ExtensionType& e) {
ArrayDataVector storage_data(in_.size());
for (size_t i = 0; i < in_.size(); ++i) {
storage_data[i] = in_[i]->Copy();
storage_data[i]->type = e.storage_type();
}
std::shared_ptr<ArrayData> out_storage;
RETURN_NOT_OK(ConcatenateImpl(storage_data, pool_)
.Concatenate(&out_storage, /*hints=*/nullptr));
out_storage->type = in_[0]->type;
out_ = std::move(out_storage);
return Status::OK();
}
private:
// NOTE: Concatenate() can be called during IPC reads to append delta dictionaries
// on non-validated input. Therefore, the input-checking SliceBufferSafe and
// ArrayData::SliceSafe are used below.
// Gather the index-th buffer of each input into a vector.
// Bytes are sliced with that input's offset and length.
// Note that BufferVector will not contain the buffer of in_[i] if it's
// nullptr.
Result<BufferVector> Buffers(size_t index) {
BufferVector buffers;
buffers.reserve(in_.size());
for (const auto& array_data : in_) {
const auto& buffer = array_data->buffers[index];
if (buffer != nullptr) {
ARROW_ASSIGN_OR_RAISE(
auto sliced_buffer,
SliceBufferSafe(buffer, array_data->offset, array_data->length));
buffers.push_back(std::move(sliced_buffer));
}
}
return buffers;
}
// Gather the index-th buffer of each input into a vector.
// Bytes are sliced with the explicitly passed ranges.
// Note that BufferVector will not contain the buffer of in_[i] if it's
// nullptr.
Result<BufferVector> Buffers(size_t index, const std::vector<Range>& ranges) {
DCHECK_EQ(in_.size(), ranges.size());
BufferVector buffers;
buffers.reserve(in_.size());
for (size_t i = 0; i < in_.size(); ++i) {
const auto& buffer = in_[i]->buffers[index];
if (buffer != nullptr) {
ARROW_ASSIGN_OR_RAISE(
auto sliced_buffer,
SliceBufferSafe(buffer, ranges[i].offset, ranges[i].length));
buffers.push_back(std::move(sliced_buffer));
} else {
DCHECK_EQ(ranges[i].length, 0);
}
}
return buffers;
}
// Gather the index-th buffer of each input into a vector.
// Buffers are assumed to contain elements of the given byte_width,
// those elements are sliced with that input's offset and length.
// Note that BufferVector will not contain the buffer of in_[i] if it's
// nullptr.
Result<BufferVector> Buffers(size_t index, int byte_width) {
BufferVector buffers;
buffers.reserve(in_.size());
for (const auto& array_data : in_) {
const auto& buffer = array_data->buffers[index];
if (buffer != nullptr) {
ARROW_ASSIGN_OR_RAISE(auto sliced_buffer,
SliceBufferSafe(buffer, array_data->offset * byte_width,
array_data->length * byte_width));
buffers.push_back(std::move(sliced_buffer));
}
}
return buffers;
}
// Gather the index-th buffer of each input into a vector.
// Buffers are assumed to contain elements of fixed.bit_width(),
// those elements are sliced with that input's offset and length.
// Note that BufferVector will not contain the buffer of in_[i] if it's
// nullptr.
Result<BufferVector> Buffers(size_t index, const FixedWidthType& fixed) {
DCHECK_EQ(fixed.bit_width() % 8, 0);
return Buffers(index, fixed.bit_width() / 8);
}
// Gather the index-th buffer of each input as a Bitmap
// into a vector of Bitmaps.
std::vector<Bitmap> Bitmaps(size_t index) {
std::vector<Bitmap> bitmaps(in_.size());
for (size_t i = 0; i < in_.size(); ++i) {
Range range(in_[i]->offset, in_[i]->length);
bitmaps[i] = Bitmap(in_[i]->buffers[index], range);
}
return bitmaps;
}
// Gather the index-th child_data of each input into a vector.
// Elements are sliced with that input's offset and length.
Result<ArrayDataVector> ChildData(size_t index) {
ArrayDataVector child_data(in_.size());
for (size_t i = 0; i < in_.size(); ++i) {
ARROW_ASSIGN_OR_RAISE(child_data[i], in_[i]->child_data[index]->SliceSafe(
in_[i]->offset, in_[i]->length));
}
return child_data;
}
// Gather the index-th child_data of each input into a vector.
// Elements are sliced with that input's offset and length multiplied by multiplier.
Result<ArrayDataVector> ChildData(size_t index, size_t multiplier) {
ArrayDataVector child_data(in_.size());
for (size_t i = 0; i < in_.size(); ++i) {
ARROW_ASSIGN_OR_RAISE(
child_data[i], in_[i]->child_data[index]->SliceSafe(
in_[i]->offset * multiplier, in_[i]->length * multiplier));
}
return child_data;
}
// Gather the index-th child_data of each input into a vector.
// Elements are sliced with the explicitly passed ranges.
Result<ArrayDataVector> ChildData(size_t index, const std::vector<Range>& ranges) {
DCHECK_EQ(in_.size(), ranges.size());
ArrayDataVector child_data(in_.size());
for (size_t i = 0; i < in_.size(); ++i) {
ARROW_ASSIGN_OR_RAISE(child_data[i], in_[i]->child_data[index]->SliceSafe(
ranges[i].offset, ranges[i].length));
}
return child_data;
}
const ArrayDataVector& in_;
MemoryPool* pool_;
std::shared_ptr<ArrayData> out_;
std::shared_ptr<DataType> suggested_cast_;
};
} // namespace
namespace internal {
Result<std::shared_ptr<Array>> Concatenate(
const ArrayVector& arrays, MemoryPool* pool,
std::shared_ptr<DataType>* out_suggested_cast) {
DCHECK(out_suggested_cast);
*out_suggested_cast = nullptr;
if (arrays.size() == 0) {
return Status::Invalid("Must pass at least one array");
}
// gather ArrayData of input arrays
ArrayDataVector data(arrays.size());
for (size_t i = 0; i < arrays.size(); ++i) {
if (!arrays[i]->type()->Equals(*arrays[0]->type())) {
return Status::Invalid("arrays to be concatenated must be identically typed, but ",
*arrays[0]->type(), " and ", *arrays[i]->type(),
" were encountered.");
}
data[i] = arrays[i]->data();
}
std::shared_ptr<ArrayData> out_data;
ErrorHints hints;
auto status = ConcatenateImpl(data, pool).Concatenate(&out_data, &hints);
if (!status.ok()) {
if (hints.suggested_cast) {
DCHECK(status.IsInvalid());
*out_suggested_cast = std::move(hints.suggested_cast);
}
return status;
}
return MakeArray(std::move(out_data));
}
} // namespace internal
Result<std::shared_ptr<Array>> Concatenate(const ArrayVector& arrays, MemoryPool* pool) {
std::shared_ptr<DataType> suggested_cast;
auto result = internal::Concatenate(arrays, pool, &suggested_cast);
if (!result.ok() && suggested_cast && arrays.size() > 0) {
DCHECK(result.status().IsInvalid());
return Status::Invalid(result.status().message(), ", consider casting input from `",
*arrays[0]->type(), "` to `", *suggested_cast, "` first.");
}
return result;
}
#undef RETURN_IF_NOT_OK_OUTCOME
} // namespace arrow20
|