1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "parquet/statistics.h"
#include <algorithm>
#include <cmath>
#include <cstring>
#include <limits>
#include <type_traits>
#include <utility>
#include "arrow/array.h"
#include "arrow/type.h"
#include "arrow/type_traits.h"
#include "arrow/util/bit_run_reader.h"
#include "arrow/util/checked_cast.h"
#include "arrow/util/logging.h"
#include "arrow/util/optional.h"
#include "arrow/util/ubsan.h"
#include "arrow/visitor_inline.h"
#include "parquet/encoding.h"
#include "parquet/exception.h"
#include "parquet/platform.h"
#include "parquet/schema.h"
using arrow::default_memory_pool;
using arrow::MemoryPool;
using arrow::internal::checked_cast;
using arrow::util::SafeCopy;
namespace parquet {
namespace {
// ----------------------------------------------------------------------
// Comparator implementations
constexpr int value_length(int value_length, const ByteArray& value) { return value.len; }
constexpr int value_length(int type_length, const FLBA& value) { return type_length; }
template <typename DType, bool is_signed>
struct CompareHelper {
using T = typename DType::c_type;
static_assert(!std::is_unsigned<T>::value || std::is_same<T, bool>::value,
"T is an unsigned numeric");
constexpr static T DefaultMin() { return std::numeric_limits<T>::max(); }
constexpr static T DefaultMax() { return std::numeric_limits<T>::lowest(); }
// MSVC17 fix, isnan is not overloaded for IntegralType as per C++11
// standard requirements.
template <typename T1 = T>
static ::arrow::enable_if_t<std::is_floating_point<T1>::value, T> Coalesce(T val,
T fallback) {
return std::isnan(val) ? fallback : val;
}
template <typename T1 = T>
static ::arrow::enable_if_t<!std::is_floating_point<T1>::value, T> Coalesce(
T val, T fallback) {
return val;
}
static inline bool Compare(int type_length, const T& a, const T& b) { return a < b; }
static T Min(int type_length, T a, T b) { return a < b ? a : b; }
static T Max(int type_length, T a, T b) { return a < b ? b : a; }
};
template <typename DType>
struct UnsignedCompareHelperBase {
using T = typename DType::c_type;
using UCType = typename std::make_unsigned<T>::type;
static_assert(!std::is_same<T, UCType>::value, "T is unsigned");
static_assert(sizeof(T) == sizeof(UCType), "T and UCType not the same size");
// NOTE: according to the C++ spec, unsigned-to-signed conversion is
// implementation-defined if the original value does not fit in the signed type
// (i.e., two's complement cannot be assumed even on mainstream machines,
// because the compiler may decide otherwise). Hence the use of `SafeCopy`
// below for deterministic bit-casting.
// (see "Integer conversions" in
// https://en.cppreference.com/w/cpp/language/implicit_conversion)
static const T DefaultMin() { return SafeCopy<T>(std::numeric_limits<UCType>::max()); }
static const T DefaultMax() { return 0; }
static T Coalesce(T val, T fallback) { return val; }
static bool Compare(int type_length, T a, T b) {
return SafeCopy<UCType>(a) < SafeCopy<UCType>(b);
}
static T Min(int type_length, T a, T b) { return Compare(type_length, a, b) ? a : b; }
static T Max(int type_length, T a, T b) { return Compare(type_length, a, b) ? b : a; }
};
template <>
struct CompareHelper<Int32Type, false> : public UnsignedCompareHelperBase<Int32Type> {};
template <>
struct CompareHelper<Int64Type, false> : public UnsignedCompareHelperBase<Int64Type> {};
template <bool is_signed>
struct CompareHelper<Int96Type, is_signed> {
using T = typename Int96Type::c_type;
using msb_type = typename std::conditional<is_signed, int32_t, uint32_t>::type;
static T DefaultMin() {
uint32_t kMsbMax = SafeCopy<uint32_t>(std::numeric_limits<msb_type>::max());
uint32_t kMax = std::numeric_limits<uint32_t>::max();
return {kMax, kMax, kMsbMax};
}
static T DefaultMax() {
uint32_t kMsbMin = SafeCopy<uint32_t>(std::numeric_limits<msb_type>::min());
uint32_t kMin = std::numeric_limits<uint32_t>::min();
return {kMin, kMin, kMsbMin};
}
static T Coalesce(T val, T fallback) { return val; }
static inline bool Compare(int type_length, const T& a, const T& b) {
if (a.value[2] != b.value[2]) {
// Only the MSB bit is by Signed comparison. For little-endian, this is the
// last bit of Int96 type.
return SafeCopy<msb_type>(a.value[2]) < SafeCopy<msb_type>(b.value[2]);
} else if (a.value[1] != b.value[1]) {
return (a.value[1] < b.value[1]);
}
return (a.value[0] < b.value[0]);
}
static T Min(int type_length, const T& a, const T& b) {
return Compare(0, a, b) ? a : b;
}
static T Max(int type_length, const T& a, const T& b) {
return Compare(0, a, b) ? b : a;
}
};
template <typename T, bool is_signed>
struct BinaryLikeComparer {};
template <typename T>
struct BinaryLikeComparer<T, /*is_signed=*/false> {
static bool Compare(int type_length, const T& a, const T& b) {
int a_length = value_length(type_length, a);
int b_length = value_length(type_length, b);
// Unsigned comparison is used for non-numeric types so straight
// lexiographic comparison makes sense. (a.ptr is always unsigned)....
return std::lexicographical_compare(a.ptr, a.ptr + a_length, b.ptr, b.ptr + b_length);
}
};
template <typename T>
struct BinaryLikeComparer<T, /*is_signed=*/true> {
static bool Compare(int type_length, const T& a, const T& b) {
// Is signed is used for integers encoded as big-endian twos
// complement integers. (e.g. decimals).
int a_length = value_length(type_length, a);
int b_length = value_length(type_length, b);
// At least of the lengths is zero.
if (a_length == 0 || b_length == 0) {
return a_length == 0 && b_length > 0;
}
int8_t first_a = *a.ptr;
int8_t first_b = *b.ptr;
// We can short circuit for different signed numbers or
// for equal length bytes arrays that have different first bytes.
// The equality requirement is necessary for sign extension cases.
// 0xFF10 should be eqaul to 0x10 (due to big endian sign extension).
if ((0x80 & first_a) != (0x80 & first_b) ||
(a_length == b_length && first_a != first_b)) {
return first_a < first_b;
}
// When the lengths are unequal and the numbers are of the same
// sign we need to do comparison by sign extending the shorter
// value first, and once we get to equal sized arrays, lexicographical
// unsigned comparison of everything but the first byte is sufficient.
const uint8_t* a_start = a.ptr;
const uint8_t* b_start = b.ptr;
if (a_length != b_length) {
const uint8_t* lead_start = nullptr;
const uint8_t* lead_end = nullptr;
if (a_length > b_length) {
int lead_length = a_length - b_length;
lead_start = a.ptr;
lead_end = a.ptr + lead_length;
a_start += lead_length;
} else {
DCHECK_LT(a_length, b_length);
int lead_length = b_length - a_length;
lead_start = b.ptr;
lead_end = b.ptr + lead_length;
b_start += lead_length;
}
// Compare extra bytes to the sign extension of the first
// byte of the other number.
uint8_t extension = first_a < 0 ? 0xFF : 0;
bool not_equal = std::any_of(lead_start, lead_end,
[extension](uint8_t a) { return extension != a; });
if (not_equal) {
// Since sign extension are extrema values for unsigned bytes:
//
// Four cases exist:
// negative values:
// b is the longer value.
// b must be the lesser value: return false
// else:
// a must be the lesser value: return true
//
// positive values:
// b is the longer value.
// values in b must be greater than a: return true
// else:
// values in a must be greater than b: return false
bool negative_values = first_a < 0;
bool b_longer = a_length < b_length;
return negative_values != b_longer;
}
} else {
a_start++;
b_start++;
}
return std::lexicographical_compare(a_start, a.ptr + a_length, b_start,
b.ptr + b_length);
}
};
template <typename DType, bool is_signed>
struct BinaryLikeCompareHelperBase {
using T = typename DType::c_type;
static T DefaultMin() { return {}; }
static T DefaultMax() { return {}; }
static T Coalesce(T val, T fallback) { return val; }
static inline bool Compare(int type_length, const T& a, const T& b) {
return BinaryLikeComparer<T, is_signed>::Compare(type_length, a, b);
}
static T Min(int type_length, const T& a, const T& b) {
if (a.ptr == nullptr) return b;
if (b.ptr == nullptr) return a;
return Compare(type_length, a, b) ? a : b;
}
static T Max(int type_length, const T& a, const T& b) {
if (a.ptr == nullptr) return b;
if (b.ptr == nullptr) return a;
return Compare(type_length, a, b) ? b : a;
}
};
template <bool is_signed>
struct CompareHelper<ByteArrayType, is_signed>
: public BinaryLikeCompareHelperBase<ByteArrayType, is_signed> {};
template <bool is_signed>
struct CompareHelper<FLBAType, is_signed>
: public BinaryLikeCompareHelperBase<FLBAType, is_signed> {};
using ::arrow::util::optional;
template <typename T>
::arrow::enable_if_t<std::is_integral<T>::value, optional<std::pair<T, T>>>
CleanStatistic(std::pair<T, T> min_max) {
return min_max;
}
// In case of floating point types, the following rules are applied (as per
// upstream parquet-mr):
// - If any of min/max is NaN, return nothing.
// - If min is 0.0f, replace with -0.0f
// - If max is -0.0f, replace with 0.0f
template <typename T>
::arrow::enable_if_t<std::is_floating_point<T>::value, optional<std::pair<T, T>>>
CleanStatistic(std::pair<T, T> min_max) {
T min = min_max.first;
T max = min_max.second;
// Ignore if one of the value is nan.
if (std::isnan(min) || std::isnan(max)) {
return ::arrow::util::nullopt;
}
if (min == std::numeric_limits<T>::max() && max == std::numeric_limits<T>::lowest()) {
return ::arrow::util::nullopt;
}
T zero{};
if (min == zero && !std::signbit(min)) {
min = -min;
}
if (max == zero && std::signbit(max)) {
max = -max;
}
return {{min, max}};
}
optional<std::pair<FLBA, FLBA>> CleanStatistic(std::pair<FLBA, FLBA> min_max) {
if (min_max.first.ptr == nullptr || min_max.second.ptr == nullptr) {
return ::arrow::util::nullopt;
}
return min_max;
}
optional<std::pair<ByteArray, ByteArray>> CleanStatistic(
std::pair<ByteArray, ByteArray> min_max) {
if (min_max.first.ptr == nullptr || min_max.second.ptr == nullptr) {
return ::arrow::util::nullopt;
}
return min_max;
}
template <bool is_signed, typename DType>
class TypedComparatorImpl : virtual public TypedComparator<DType> {
public:
using T = typename DType::c_type;
using Helper = CompareHelper<DType, is_signed>;
explicit TypedComparatorImpl(int type_length = -1) : type_length_(type_length) {}
bool CompareInline(const T& a, const T& b) const {
return Helper::Compare(type_length_, a, b);
}
bool Compare(const T& a, const T& b) override { return CompareInline(a, b); }
std::pair<T, T> GetMinMax(const T* values, int64_t length) override {
DCHECK_GT(length, 0);
T min = Helper::DefaultMin();
T max = Helper::DefaultMax();
for (int64_t i = 0; i < length; i++) {
auto val = values[i];
min = Helper::Min(type_length_, min, Helper::Coalesce(val, Helper::DefaultMin()));
max = Helper::Max(type_length_, max, Helper::Coalesce(val, Helper::DefaultMax()));
}
return {min, max};
}
std::pair<T, T> GetMinMaxSpaced(const T* values, int64_t length,
const uint8_t* valid_bits,
int64_t valid_bits_offset) override {
DCHECK_GT(length, 0);
T min = Helper::DefaultMin();
T max = Helper::DefaultMax();
::arrow::internal::VisitSetBitRunsVoid(
valid_bits, valid_bits_offset, length, [&](int64_t position, int64_t length) {
for (int64_t i = 0; i < length; i++) {
const auto val = values[i + position];
min = Helper::Min(type_length_, min,
Helper::Coalesce(val, Helper::DefaultMin()));
max = Helper::Max(type_length_, max,
Helper::Coalesce(val, Helper::DefaultMax()));
}
});
return {min, max};
}
std::pair<T, T> GetMinMax(const ::arrow::Array& values) override;
private:
int type_length_;
};
// ARROW-11675: A hand-written version of GetMinMax(), to work around
// what looks like a MSVC code generation bug.
// This does not seem to be required for GetMinMaxSpaced().
template <>
std::pair<int32_t, int32_t>
TypedComparatorImpl</*is_signed=*/false, Int32Type>::GetMinMax(const int32_t* values,
int64_t length) {
DCHECK_GT(length, 0);
const uint32_t* unsigned_values = reinterpret_cast<const uint32_t*>(values);
uint32_t min = std::numeric_limits<uint32_t>::max();
uint32_t max = std::numeric_limits<uint32_t>::lowest();
for (int64_t i = 0; i < length; i++) {
const auto val = unsigned_values[i];
min = std::min<uint32_t>(min, val);
max = std::max<uint32_t>(max, val);
}
return {SafeCopy<int32_t>(min), SafeCopy<int32_t>(max)};
}
template <bool is_signed, typename DType>
std::pair<typename DType::c_type, typename DType::c_type>
TypedComparatorImpl<is_signed, DType>::GetMinMax(const ::arrow::Array& values) {
ParquetException::NYI(values.type()->ToString());
}
template <bool is_signed>
std::pair<ByteArray, ByteArray> GetMinMaxBinaryHelper(
const TypedComparatorImpl<is_signed, ByteArrayType>& comparator,
const ::arrow::Array& values) {
using Helper = CompareHelper<ByteArrayType, is_signed>;
ByteArray min = Helper::DefaultMin();
ByteArray max = Helper::DefaultMax();
constexpr int type_length = -1;
const auto valid_func = [&](ByteArray val) {
min = Helper::Min(type_length, val, min);
max = Helper::Max(type_length, val, max);
};
const auto null_func = [&]() {};
if (::arrow::is_binary_like(values.type_id())) {
::arrow::VisitArrayDataInline<::arrow::BinaryType>(
*values.data(), std::move(valid_func), std::move(null_func));
} else {
DCHECK(::arrow::is_large_binary_like(values.type_id()));
::arrow::VisitArrayDataInline<::arrow::LargeBinaryType>(
*values.data(), std::move(valid_func), std::move(null_func));
}
return {min, max};
}
template <>
std::pair<ByteArray, ByteArray> TypedComparatorImpl<true, ByteArrayType>::GetMinMax(
const ::arrow::Array& values) {
return GetMinMaxBinaryHelper<true>(*this, values);
}
template <>
std::pair<ByteArray, ByteArray> TypedComparatorImpl<false, ByteArrayType>::GetMinMax(
const ::arrow::Array& values) {
return GetMinMaxBinaryHelper<false>(*this, values);
}
template <typename DType>
class TypedStatisticsImpl : public TypedStatistics<DType> {
public:
using T = typename DType::c_type;
TypedStatisticsImpl(const ColumnDescriptor* descr, MemoryPool* pool)
: descr_(descr),
pool_(pool),
min_buffer_(AllocateBuffer(pool_, 0)),
max_buffer_(AllocateBuffer(pool_, 0)) {
auto comp = Comparator::Make(descr);
comparator_ = std::static_pointer_cast<TypedComparator<DType>>(comp);
Reset();
has_null_count_ = true;
has_distinct_count_ = true;
}
TypedStatisticsImpl(const T& min, const T& max, int64_t num_values, int64_t null_count,
int64_t distinct_count)
: pool_(default_memory_pool()),
min_buffer_(AllocateBuffer(pool_, 0)),
max_buffer_(AllocateBuffer(pool_, 0)) {
IncrementNumValues(num_values);
IncrementNullCount(null_count);
IncrementDistinctCount(distinct_count);
Copy(min, &min_, min_buffer_.get());
Copy(max, &max_, max_buffer_.get());
has_min_max_ = true;
}
TypedStatisticsImpl(const ColumnDescriptor* descr, const std::string& encoded_min,
const std::string& encoded_max, int64_t num_values,
int64_t null_count, int64_t distinct_count, bool has_min_max,
bool has_null_count, bool has_distinct_count, MemoryPool* pool)
: TypedStatisticsImpl(descr, pool) {
IncrementNumValues(num_values);
if (has_null_count_) {
IncrementNullCount(null_count);
}
if (has_distinct_count) {
IncrementDistinctCount(distinct_count);
}
if (!encoded_min.empty()) {
PlainDecode(encoded_min, &min_);
}
if (!encoded_max.empty()) {
PlainDecode(encoded_max, &max_);
}
has_min_max_ = has_min_max;
}
bool HasDistinctCount() const override { return has_distinct_count_; };
bool HasMinMax() const override { return has_min_max_; }
bool HasNullCount() const override { return has_null_count_; };
bool Equals(const Statistics& raw_other) const override {
if (physical_type() != raw_other.physical_type()) return false;
const auto& other = checked_cast<const TypedStatisticsImpl&>(raw_other);
if (has_min_max_ != other.has_min_max_) return false;
return (has_min_max_ && MinMaxEqual(other)) && null_count() == other.null_count() &&
distinct_count() == other.distinct_count() &&
num_values() == other.num_values();
}
bool MinMaxEqual(const TypedStatisticsImpl& other) const;
void Reset() override {
ResetCounts();
has_min_max_ = false;
has_distinct_count_ = false;
has_null_count_ = false;
}
void SetMinMax(const T& arg_min, const T& arg_max) override {
SetMinMaxPair({arg_min, arg_max});
}
void Merge(const TypedStatistics<DType>& other) override {
this->num_values_ += other.num_values();
if (other.HasNullCount()) {
this->statistics_.null_count += other.null_count();
}
if (other.HasDistinctCount()) {
this->statistics_.distinct_count += other.distinct_count();
}
if (other.HasMinMax()) {
SetMinMax(other.min(), other.max());
}
}
void Update(const T* values, int64_t num_not_null, int64_t num_null) override;
void UpdateSpaced(const T* values, const uint8_t* valid_bits, int64_t valid_bits_spaced,
int64_t num_not_null, int64_t num_null) override;
void Update(const ::arrow::Array& values) override {
IncrementNullCount(values.null_count());
IncrementNumValues(values.length() - values.null_count());
if (values.null_count() == values.length()) {
return;
}
SetMinMaxPair(comparator_->GetMinMax(values));
}
const T& min() const override { return min_; }
const T& max() const override { return max_; }
Type::type physical_type() const override { return descr_->physical_type(); }
const ColumnDescriptor* descr() const override { return descr_; }
std::string EncodeMin() const override {
std::string s;
if (HasMinMax()) this->PlainEncode(min_, &s);
return s;
}
std::string EncodeMax() const override {
std::string s;
if (HasMinMax()) this->PlainEncode(max_, &s);
return s;
}
EncodedStatistics Encode() override {
EncodedStatistics s;
if (HasMinMax()) {
s.set_min(this->EncodeMin());
s.set_max(this->EncodeMax());
}
if (HasNullCount()) {
s.set_null_count(this->null_count());
}
return s;
}
int64_t null_count() const override { return statistics_.null_count; }
int64_t distinct_count() const override { return statistics_.distinct_count; }
int64_t num_values() const override { return num_values_; }
private:
const ColumnDescriptor* descr_;
bool has_min_max_ = false;
bool has_null_count_ = false;
bool has_distinct_count_ = false;
T min_;
T max_;
::arrow::MemoryPool* pool_;
int64_t num_values_ = 0;
EncodedStatistics statistics_;
std::shared_ptr<TypedComparator<DType>> comparator_;
std::shared_ptr<ResizableBuffer> min_buffer_, max_buffer_;
void PlainEncode(const T& src, std::string* dst) const;
void PlainDecode(const std::string& src, T* dst) const;
void Copy(const T& src, T* dst, ResizableBuffer*) { *dst = src; }
void IncrementNullCount(int64_t n) {
statistics_.null_count += n;
has_null_count_ = true;
}
void IncrementNumValues(int64_t n) { num_values_ += n; }
void IncrementDistinctCount(int64_t n) {
statistics_.distinct_count += n;
has_distinct_count_ = true;
}
void ResetCounts() {
this->statistics_.null_count = 0;
this->statistics_.distinct_count = 0;
this->num_values_ = 0;
}
void SetMinMaxPair(std::pair<T, T> min_max) {
// CleanStatistic can return a nullopt in case of erroneous values, e.g. NaN
auto maybe_min_max = CleanStatistic(min_max);
if (!maybe_min_max) return;
auto min = maybe_min_max.value().first;
auto max = maybe_min_max.value().second;
if (!has_min_max_) {
has_min_max_ = true;
Copy(min, &min_, min_buffer_.get());
Copy(max, &max_, max_buffer_.get());
} else {
Copy(comparator_->Compare(min_, min) ? min_ : min, &min_, min_buffer_.get());
Copy(comparator_->Compare(max_, max) ? max : max_, &max_, max_buffer_.get());
}
}
};
template <>
inline bool TypedStatisticsImpl<FLBAType>::MinMaxEqual(
const TypedStatisticsImpl<FLBAType>& other) const {
uint32_t len = descr_->type_length();
return std::memcmp(min_.ptr, other.min_.ptr, len) == 0 &&
std::memcmp(max_.ptr, other.max_.ptr, len) == 0;
}
template <typename DType>
bool TypedStatisticsImpl<DType>::MinMaxEqual(
const TypedStatisticsImpl<DType>& other) const {
return min_ != other.min_ && max_ != other.max_;
}
template <>
inline void TypedStatisticsImpl<FLBAType>::Copy(const FLBA& src, FLBA* dst,
ResizableBuffer* buffer) {
if (dst->ptr == src.ptr) return;
uint32_t len = descr_->type_length();
PARQUET_THROW_NOT_OK(buffer->Resize(len, false));
std::memcpy(buffer->mutable_data(), src.ptr, len);
*dst = FLBA(buffer->data());
}
template <>
inline void TypedStatisticsImpl<ByteArrayType>::Copy(const ByteArray& src, ByteArray* dst,
ResizableBuffer* buffer) {
if (dst->ptr == src.ptr) return;
PARQUET_THROW_NOT_OK(buffer->Resize(src.len, false));
std::memcpy(buffer->mutable_data(), src.ptr, src.len);
*dst = ByteArray(src.len, buffer->data());
}
template <typename DType>
void TypedStatisticsImpl<DType>::Update(const T* values, int64_t num_not_null,
int64_t num_null) {
DCHECK_GE(num_not_null, 0);
DCHECK_GE(num_null, 0);
IncrementNullCount(num_null);
IncrementNumValues(num_not_null);
if (num_not_null == 0) return;
SetMinMaxPair(comparator_->GetMinMax(values, num_not_null));
}
template <typename DType>
void TypedStatisticsImpl<DType>::UpdateSpaced(const T* values, const uint8_t* valid_bits,
int64_t valid_bits_offset,
int64_t num_not_null, int64_t num_null) {
DCHECK_GE(num_not_null, 0);
DCHECK_GE(num_null, 0);
IncrementNullCount(num_null);
IncrementNumValues(num_not_null);
if (num_not_null == 0) return;
int64_t length = num_null + num_not_null;
SetMinMaxPair(
comparator_->GetMinMaxSpaced(values, length, valid_bits, valid_bits_offset));
}
template <typename DType>
void TypedStatisticsImpl<DType>::PlainEncode(const T& src, std::string* dst) const {
auto encoder = MakeTypedEncoder<DType>(Encoding::PLAIN, false, descr_, pool_);
encoder->Put(&src, 1);
auto buffer = encoder->FlushValues();
auto ptr = reinterpret_cast<const char*>(buffer->data());
dst->assign(ptr, buffer->size());
}
template <typename DType>
void TypedStatisticsImpl<DType>::PlainDecode(const std::string& src, T* dst) const {
auto decoder = MakeTypedDecoder<DType>(Encoding::PLAIN, descr_);
decoder->SetData(1, reinterpret_cast<const uint8_t*>(src.c_str()),
static_cast<int>(src.size()));
decoder->Decode(dst, 1);
}
template <>
void TypedStatisticsImpl<ByteArrayType>::PlainEncode(const T& src,
std::string* dst) const {
dst->assign(reinterpret_cast<const char*>(src.ptr), src.len);
}
template <>
void TypedStatisticsImpl<ByteArrayType>::PlainDecode(const std::string& src,
T* dst) const {
dst->len = static_cast<uint32_t>(src.size());
dst->ptr = reinterpret_cast<const uint8_t*>(src.c_str());
}
} // namespace
// ----------------------------------------------------------------------
// Public factory functions
std::shared_ptr<Comparator> Comparator::Make(Type::type physical_type,
SortOrder::type sort_order,
int type_length) {
if (SortOrder::SIGNED == sort_order) {
switch (physical_type) {
case Type::BOOLEAN:
return std::make_shared<TypedComparatorImpl<true, BooleanType>>();
case Type::INT32:
return std::make_shared<TypedComparatorImpl<true, Int32Type>>();
case Type::INT64:
return std::make_shared<TypedComparatorImpl<true, Int64Type>>();
case Type::INT96:
return std::make_shared<TypedComparatorImpl<true, Int96Type>>();
case Type::FLOAT:
return std::make_shared<TypedComparatorImpl<true, FloatType>>();
case Type::DOUBLE:
return std::make_shared<TypedComparatorImpl<true, DoubleType>>();
case Type::BYTE_ARRAY:
return std::make_shared<TypedComparatorImpl<true, ByteArrayType>>();
case Type::FIXED_LEN_BYTE_ARRAY:
return std::make_shared<TypedComparatorImpl<true, FLBAType>>(type_length);
default:
ParquetException::NYI("Signed Compare not implemented");
}
} else if (SortOrder::UNSIGNED == sort_order) {
switch (physical_type) {
case Type::INT32:
return std::make_shared<TypedComparatorImpl<false, Int32Type>>();
case Type::INT64:
return std::make_shared<TypedComparatorImpl<false, Int64Type>>();
case Type::INT96:
return std::make_shared<TypedComparatorImpl<false, Int96Type>>();
case Type::BYTE_ARRAY:
return std::make_shared<TypedComparatorImpl<false, ByteArrayType>>();
case Type::FIXED_LEN_BYTE_ARRAY:
return std::make_shared<TypedComparatorImpl<false, FLBAType>>(type_length);
default:
ParquetException::NYI("Unsigned Compare not implemented");
}
} else {
throw ParquetException("UNKNOWN Sort Order");
}
return nullptr;
}
std::shared_ptr<Comparator> Comparator::Make(const ColumnDescriptor* descr) {
return Make(descr->physical_type(), descr->sort_order(), descr->type_length());
}
std::shared_ptr<Statistics> Statistics::Make(const ColumnDescriptor* descr,
::arrow::MemoryPool* pool) {
switch (descr->physical_type()) {
case Type::BOOLEAN:
return std::make_shared<TypedStatisticsImpl<BooleanType>>(descr, pool);
case Type::INT32:
return std::make_shared<TypedStatisticsImpl<Int32Type>>(descr, pool);
case Type::INT64:
return std::make_shared<TypedStatisticsImpl<Int64Type>>(descr, pool);
case Type::FLOAT:
return std::make_shared<TypedStatisticsImpl<FloatType>>(descr, pool);
case Type::DOUBLE:
return std::make_shared<TypedStatisticsImpl<DoubleType>>(descr, pool);
case Type::BYTE_ARRAY:
return std::make_shared<TypedStatisticsImpl<ByteArrayType>>(descr, pool);
case Type::FIXED_LEN_BYTE_ARRAY:
return std::make_shared<TypedStatisticsImpl<FLBAType>>(descr, pool);
default:
ParquetException::NYI("Statistics not implemented");
}
}
std::shared_ptr<Statistics> Statistics::Make(Type::type physical_type, const void* min,
const void* max, int64_t num_values,
int64_t null_count, int64_t distinct_count) {
#define MAKE_STATS(CAP_TYPE, KLASS) \
case Type::CAP_TYPE: \
return std::make_shared<TypedStatisticsImpl<KLASS>>( \
*reinterpret_cast<const typename KLASS::c_type*>(min), \
*reinterpret_cast<const typename KLASS::c_type*>(max), num_values, null_count, \
distinct_count)
switch (physical_type) {
MAKE_STATS(BOOLEAN, BooleanType);
MAKE_STATS(INT32, Int32Type);
MAKE_STATS(INT64, Int64Type);
MAKE_STATS(FLOAT, FloatType);
MAKE_STATS(DOUBLE, DoubleType);
MAKE_STATS(BYTE_ARRAY, ByteArrayType);
MAKE_STATS(FIXED_LEN_BYTE_ARRAY, FLBAType);
default:
break;
}
#undef MAKE_STATS
DCHECK(false) << "Cannot reach here";
return nullptr;
}
std::shared_ptr<Statistics> Statistics::Make(const ColumnDescriptor* descr,
const std::string& encoded_min,
const std::string& encoded_max,
int64_t num_values, int64_t null_count,
int64_t distinct_count, bool has_min_max,
bool has_null_count, bool has_distinct_count,
::arrow::MemoryPool* pool) {
#define MAKE_STATS(CAP_TYPE, KLASS) \
case Type::CAP_TYPE: \
return std::make_shared<TypedStatisticsImpl<KLASS>>( \
descr, encoded_min, encoded_max, num_values, null_count, distinct_count, \
has_min_max, has_null_count, has_distinct_count, pool)
switch (descr->physical_type()) {
MAKE_STATS(BOOLEAN, BooleanType);
MAKE_STATS(INT32, Int32Type);
MAKE_STATS(INT64, Int64Type);
MAKE_STATS(FLOAT, FloatType);
MAKE_STATS(DOUBLE, DoubleType);
MAKE_STATS(BYTE_ARRAY, ByteArrayType);
MAKE_STATS(FIXED_LEN_BYTE_ARRAY, FLBAType);
default:
break;
}
#undef MAKE_STATS
DCHECK(false) << "Cannot reach here";
return nullptr;
}
} // namespace parquet
|