1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <cstdint>
#include <cstring>
#include <memory>
#include <vector>
#include "arrow/util/spaced.h"
#include "parquet/exception.h"
#include "parquet/platform.h"
#include "parquet/types.h"
namespace arrow {
class Array;
class ArrayBuilder;
class BinaryArray;
class BinaryBuilder;
class BooleanBuilder;
class Int32Type;
class Int64Type;
class FloatType;
class DoubleType;
class FixedSizeBinaryType;
template <typename T>
class NumericBuilder;
class FixedSizeBinaryBuilder;
template <typename T>
class Dictionary32Builder;
} // namespace arrow
namespace parquet {
template <typename DType>
class TypedEncoder;
using BooleanEncoder = TypedEncoder<BooleanType>;
using Int32Encoder = TypedEncoder<Int32Type>;
using Int64Encoder = TypedEncoder<Int64Type>;
using Int96Encoder = TypedEncoder<Int96Type>;
using FloatEncoder = TypedEncoder<FloatType>;
using DoubleEncoder = TypedEncoder<DoubleType>;
using ByteArrayEncoder = TypedEncoder<ByteArrayType>;
using FLBAEncoder = TypedEncoder<FLBAType>;
template <typename DType>
class TypedDecoder;
class BooleanDecoder;
using Int32Decoder = TypedDecoder<Int32Type>;
using Int64Decoder = TypedDecoder<Int64Type>;
using Int96Decoder = TypedDecoder<Int96Type>;
using FloatDecoder = TypedDecoder<FloatType>;
using DoubleDecoder = TypedDecoder<DoubleType>;
using ByteArrayDecoder = TypedDecoder<ByteArrayType>;
class FLBADecoder;
template <typename T>
struct EncodingTraits;
template <>
struct EncodingTraits<BooleanType> {
using Encoder = BooleanEncoder;
using Decoder = BooleanDecoder;
using ArrowType = ::arrow::BooleanType;
using Accumulator = ::arrow::BooleanBuilder;
struct DictAccumulator {};
};
template <>
struct EncodingTraits<Int32Type> {
using Encoder = Int32Encoder;
using Decoder = Int32Decoder;
using ArrowType = ::arrow::Int32Type;
using Accumulator = ::arrow::NumericBuilder<::arrow::Int32Type>;
using DictAccumulator = ::arrow::Dictionary32Builder<::arrow::Int32Type>;
};
template <>
struct EncodingTraits<Int64Type> {
using Encoder = Int64Encoder;
using Decoder = Int64Decoder;
using ArrowType = ::arrow::Int64Type;
using Accumulator = ::arrow::NumericBuilder<::arrow::Int64Type>;
using DictAccumulator = ::arrow::Dictionary32Builder<::arrow::Int64Type>;
};
template <>
struct EncodingTraits<Int96Type> {
using Encoder = Int96Encoder;
using Decoder = Int96Decoder;
struct Accumulator {};
struct DictAccumulator {};
};
template <>
struct EncodingTraits<FloatType> {
using Encoder = FloatEncoder;
using Decoder = FloatDecoder;
using ArrowType = ::arrow::FloatType;
using Accumulator = ::arrow::NumericBuilder<::arrow::FloatType>;
using DictAccumulator = ::arrow::Dictionary32Builder<::arrow::FloatType>;
};
template <>
struct EncodingTraits<DoubleType> {
using Encoder = DoubleEncoder;
using Decoder = DoubleDecoder;
using ArrowType = ::arrow::DoubleType;
using Accumulator = ::arrow::NumericBuilder<::arrow::DoubleType>;
using DictAccumulator = ::arrow::Dictionary32Builder<::arrow::DoubleType>;
};
template <>
struct EncodingTraits<ByteArrayType> {
using Encoder = ByteArrayEncoder;
using Decoder = ByteArrayDecoder;
/// \brief Internal helper class for decoding BYTE_ARRAY data where we can
/// overflow the capacity of a single arrow::BinaryArray
struct Accumulator {
std::unique_ptr<::arrow::BinaryBuilder> builder;
std::vector<std::shared_ptr<::arrow::Array>> chunks;
};
using ArrowType = ::arrow::BinaryType;
using DictAccumulator = ::arrow::Dictionary32Builder<::arrow::BinaryType>;
};
template <>
struct EncodingTraits<FLBAType> {
using Encoder = FLBAEncoder;
using Decoder = FLBADecoder;
using ArrowType = ::arrow::FixedSizeBinaryType;
using Accumulator = ::arrow::FixedSizeBinaryBuilder;
using DictAccumulator = ::arrow::Dictionary32Builder<::arrow::FixedSizeBinaryType>;
};
class ColumnDescriptor;
// Untyped base for all encoders
class Encoder {
public:
virtual ~Encoder() = default;
virtual int64_t EstimatedDataEncodedSize() = 0;
virtual std::shared_ptr<Buffer> FlushValues() = 0;
virtual Encoding::type encoding() const = 0;
virtual void Put(const ::arrow::Array& values) = 0;
virtual MemoryPool* memory_pool() const = 0;
};
// Base class for value encoders. Since encoders may or not have state (e.g.,
// dictionary encoding) we use a class instance to maintain any state.
//
// Encode interfaces are internal, subject to change without deprecation.
template <typename DType>
class TypedEncoder : virtual public Encoder {
public:
typedef typename DType::c_type T;
using Encoder::Put;
virtual void Put(const T* src, int num_values) = 0;
virtual void Put(const std::vector<T>& src, int num_values = -1);
virtual void PutSpaced(const T* src, int num_values, const uint8_t* valid_bits,
int64_t valid_bits_offset) = 0;
};
template <typename DType>
void TypedEncoder<DType>::Put(const std::vector<T>& src, int num_values) {
if (num_values == -1) {
num_values = static_cast<int>(src.size());
}
Put(src.data(), num_values);
}
template <>
inline void TypedEncoder<BooleanType>::Put(const std::vector<bool>& src, int num_values) {
// NOTE(wesm): This stub is here only to satisfy the compiler; it is
// overridden later with the actual implementation
}
// Base class for dictionary encoders
template <typename DType>
class DictEncoder : virtual public TypedEncoder<DType> {
public:
/// Writes out any buffered indices to buffer preceded by the bit width of this data.
/// Returns the number of bytes written.
/// If the supplied buffer is not big enough, returns -1.
/// buffer must be preallocated with buffer_len bytes. Use EstimatedDataEncodedSize()
/// to size buffer.
virtual int WriteIndices(uint8_t* buffer, int buffer_len) = 0;
virtual int dict_encoded_size() = 0;
// virtual int dict_encoded_size() { return dict_encoded_size_; }
virtual int bit_width() const = 0;
/// Writes out the encoded dictionary to buffer. buffer must be preallocated to
/// dict_encoded_size() bytes.
virtual void WriteDict(uint8_t* buffer) = 0;
virtual int num_entries() const = 0;
/// \brief EXPERIMENTAL: Append dictionary indices into the encoder. It is
/// assumed (without any boundschecking) that the indices reference
/// pre-existing dictionary values
/// \param[in] indices the dictionary index values. Only Int32Array currently
/// supported
virtual void PutIndices(const ::arrow::Array& indices) = 0;
/// \brief EXPERIMENTAL: Append dictionary into encoder, inserting indices
/// separately. Currently throws exception if the current dictionary memo is
/// non-empty
/// \param[in] values the dictionary values. Only valid for certain
/// Parquet/Arrow type combinations, like BYTE_ARRAY/BinaryArray
virtual void PutDictionary(const ::arrow::Array& values) = 0;
};
// ----------------------------------------------------------------------
// Value decoding
class Decoder {
public:
virtual ~Decoder() = default;
// Sets the data for a new page. This will be called multiple times on the same
// decoder and should reset all internal state.
virtual void SetData(int num_values, const uint8_t* data, int len) = 0;
// Returns the number of values left (for the last call to SetData()). This is
// the number of values left in this page.
virtual int values_left() const = 0;
virtual Encoding::type encoding() const = 0;
};
template <typename DType>
class TypedDecoder : virtual public Decoder {
public:
using T = typename DType::c_type;
/// \brief Decode values into a buffer
///
/// Subclasses may override the more specialized Decode methods below.
///
/// \param[in] buffer destination for decoded values
/// \param[in] max_values maximum number of values to decode
/// \return The number of values decoded. Should be identical to max_values except
/// at the end of the current data page.
virtual int Decode(T* buffer, int max_values) = 0;
/// \brief Decode the values in this data page but leave spaces for null entries.
///
/// \param[in] buffer destination for decoded values
/// \param[in] num_values size of the def_levels and buffer arrays including the number
/// of null slots
/// \param[in] null_count number of null slots
/// \param[in] valid_bits bitmap data indicating position of valid slots
/// \param[in] valid_bits_offset offset into valid_bits
/// \return The number of values decoded, including nulls.
virtual int DecodeSpaced(T* buffer, int num_values, int null_count,
const uint8_t* valid_bits, int64_t valid_bits_offset) {
if (null_count > 0) {
int values_to_read = num_values - null_count;
int values_read = Decode(buffer, values_to_read);
if (values_read != values_to_read) {
throw ParquetException("Number of values / definition_levels read did not match");
}
return ::arrow::util::internal::SpacedExpand<T>(buffer, num_values, null_count,
valid_bits, valid_bits_offset);
} else {
return Decode(buffer, num_values);
}
}
/// \brief Decode into an ArrayBuilder or other accumulator
///
/// This function assumes the definition levels were already decoded
/// as a validity bitmap in the given `valid_bits`. `null_count`
/// is the number of 0s in `valid_bits`.
/// As a space optimization, it is allowed for `valid_bits` to be null
/// if `null_count` is zero.
///
/// \return number of values decoded
virtual int DecodeArrow(int num_values, int null_count, const uint8_t* valid_bits,
int64_t valid_bits_offset,
typename EncodingTraits<DType>::Accumulator* out) = 0;
/// \brief Decode into an ArrayBuilder or other accumulator ignoring nulls
///
/// \return number of values decoded
int DecodeArrowNonNull(int num_values,
typename EncodingTraits<DType>::Accumulator* out) {
return DecodeArrow(num_values, 0, /*valid_bits=*/NULLPTR, 0, out);
}
/// \brief Decode into a DictionaryBuilder
///
/// This function assumes the definition levels were already decoded
/// as a validity bitmap in the given `valid_bits`. `null_count`
/// is the number of 0s in `valid_bits`.
/// As a space optimization, it is allowed for `valid_bits` to be null
/// if `null_count` is zero.
///
/// \return number of values decoded
virtual int DecodeArrow(int num_values, int null_count, const uint8_t* valid_bits,
int64_t valid_bits_offset,
typename EncodingTraits<DType>::DictAccumulator* builder) = 0;
/// \brief Decode into a DictionaryBuilder ignoring nulls
///
/// \return number of values decoded
int DecodeArrowNonNull(int num_values,
typename EncodingTraits<DType>::DictAccumulator* builder) {
return DecodeArrow(num_values, 0, /*valid_bits=*/NULLPTR, 0, builder);
}
};
template <typename DType>
class DictDecoder : virtual public TypedDecoder<DType> {
public:
using T = typename DType::c_type;
virtual void SetDict(TypedDecoder<DType>* dictionary) = 0;
/// \brief Insert dictionary values into the Arrow dictionary builder's memo,
/// but do not append any indices
virtual void InsertDictionary(::arrow::ArrayBuilder* builder) = 0;
/// \brief Decode only dictionary indices and append to dictionary
/// builder. The builder must have had the dictionary from this decoder
/// inserted already.
///
/// \warning Remember to reset the builder each time the dict decoder is initialized
/// with a new dictionary page
virtual int DecodeIndicesSpaced(int num_values, int null_count,
const uint8_t* valid_bits, int64_t valid_bits_offset,
::arrow::ArrayBuilder* builder) = 0;
/// \brief Decode only dictionary indices (no nulls)
///
/// \warning Remember to reset the builder each time the dict decoder is initialized
/// with a new dictionary page
virtual int DecodeIndices(int num_values, ::arrow::ArrayBuilder* builder) = 0;
/// \brief Decode only dictionary indices (no nulls). Same as above
/// DecodeIndices but target is an array instead of a builder.
///
/// \note API EXPERIMENTAL
virtual int DecodeIndices(int num_values, int32_t* indices) = 0;
/// \brief Get dictionary. The reader will call this API when it encounters a
/// new dictionary.
///
/// @param[out] dictionary The pointer to dictionary values. Dictionary is owned by
/// the decoder and is destroyed when the decoder is destroyed.
/// @param[out] dictionary_length The dictionary length.
///
/// \note API EXPERIMENTAL
virtual void GetDictionary(const T** dictionary, int32_t* dictionary_length) = 0;
};
// ----------------------------------------------------------------------
// TypedEncoder specializations, traits, and factory functions
class BooleanDecoder : virtual public TypedDecoder<BooleanType> {
public:
using TypedDecoder<BooleanType>::Decode;
virtual int Decode(uint8_t* buffer, int max_values) = 0;
};
class FLBADecoder : virtual public TypedDecoder<FLBAType> {
public:
using TypedDecoder<FLBAType>::DecodeSpaced;
// TODO(wesm): As possible follow-up to PARQUET-1508, we should examine if
// there is value in adding specialized read methods for
// FIXED_LEN_BYTE_ARRAY. If only Decimal data can occur with this data type
// then perhaps not
};
PARQUET_EXPORT
std::unique_ptr<Encoder> MakeEncoder(
Type::type type_num, Encoding::type encoding, bool use_dictionary = false,
const ColumnDescriptor* descr = NULLPTR,
::arrow::MemoryPool* pool = ::arrow::default_memory_pool());
template <typename DType>
std::unique_ptr<typename EncodingTraits<DType>::Encoder> MakeTypedEncoder(
Encoding::type encoding, bool use_dictionary = false,
const ColumnDescriptor* descr = NULLPTR,
::arrow::MemoryPool* pool = ::arrow::default_memory_pool()) {
using OutType = typename EncodingTraits<DType>::Encoder;
std::unique_ptr<Encoder> base =
MakeEncoder(DType::type_num, encoding, use_dictionary, descr, pool);
return std::unique_ptr<OutType>(dynamic_cast<OutType*>(base.release()));
}
PARQUET_EXPORT
std::unique_ptr<Decoder> MakeDecoder(Type::type type_num, Encoding::type encoding,
const ColumnDescriptor* descr = NULLPTR);
namespace detail {
PARQUET_EXPORT
std::unique_ptr<Decoder> MakeDictDecoder(Type::type type_num,
const ColumnDescriptor* descr,
::arrow::MemoryPool* pool);
} // namespace detail
template <typename DType>
std::unique_ptr<DictDecoder<DType>> MakeDictDecoder(
const ColumnDescriptor* descr = NULLPTR,
::arrow::MemoryPool* pool = ::arrow::default_memory_pool()) {
using OutType = DictDecoder<DType>;
auto decoder = detail::MakeDictDecoder(DType::type_num, descr, pool);
return std::unique_ptr<OutType>(dynamic_cast<OutType*>(decoder.release()));
}
template <typename DType>
std::unique_ptr<typename EncodingTraits<DType>::Decoder> MakeTypedDecoder(
Encoding::type encoding, const ColumnDescriptor* descr = NULLPTR) {
using OutType = typename EncodingTraits<DType>::Decoder;
std::unique_ptr<Decoder> base = MakeDecoder(DType::type_num, encoding, descr);
return std::unique_ptr<OutType>(dynamic_cast<OutType*>(base.release()));
}
} // namespace parquet
|