aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/apache/arrow/cpp/src/parquet/column_writer.cc
blob: 446fe25e64460e4fa7a3f6dbedb0049aa04f8c1a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

#include "parquet/column_writer.h"

#include <algorithm>
#include <cstdint>
#include <cstring>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>

#include "arrow/array.h"
#include "arrow/buffer_builder.h"
#include "arrow/compute/api.h"
#include "arrow/io/memory.h"
#include "arrow/status.h"
#include "arrow/type.h"
#include "arrow/type_traits.h"
#include "arrow/util/bit_stream_utils.h"
#include "arrow/util/bit_util.h"
#include "arrow/util/bitmap_ops.h"
#include "arrow/util/checked_cast.h"
#include "arrow/util/compression.h"
#include "arrow/util/endian.h"
#include "arrow/util/logging.h"
#include "arrow/util/rle_encoding.h"
#include "arrow/visitor_inline.h"
#include "parquet/column_page.h"
#include "parquet/encoding.h"
#include "parquet/encryption/encryption_internal.h"
#include "parquet/encryption/internal_file_encryptor.h"
#include "parquet/level_conversion.h"
#include "parquet/metadata.h"
#include "parquet/platform.h"
#include "parquet/properties.h"
#include "parquet/schema.h"
#include "parquet/statistics.h"
#include "parquet/thrift_internal.h"
#include "parquet/types.h"

using arrow::Array;
using arrow::ArrayData;
using arrow::Datum;
using arrow::Result;
using arrow::Status;
using arrow::BitUtil::BitWriter;
using arrow::internal::checked_cast;
using arrow::internal::checked_pointer_cast;
using arrow::util::RleEncoder;

namespace BitUtil = arrow::BitUtil;

namespace parquet {

namespace {

// Visitor that exracts the value buffer from a FlatArray at a given offset.
struct ValueBufferSlicer {
  template <typename T>
  ::arrow::enable_if_base_binary<typename T::TypeClass, Status> Visit(const T& array) {
    auto data = array.data();
    buffer_ =
        SliceBuffer(data->buffers[1], data->offset * sizeof(typename T::offset_type),
                    data->length * sizeof(typename T::offset_type));
    return Status::OK();
  }

  template <typename T>
  ::arrow::enable_if_fixed_size_binary<typename T::TypeClass, Status> Visit(
      const T& array) {
    auto data = array.data();
    buffer_ = SliceBuffer(data->buffers[1], data->offset * array.byte_width(),
                          data->length * array.byte_width());
    return Status::OK();
  }

  template <typename T>
  ::arrow::enable_if_t<::arrow::has_c_type<typename T::TypeClass>::value &&
                           !std::is_same<BooleanType, typename T::TypeClass>::value,
                       Status>
  Visit(const T& array) {
    auto data = array.data();
    buffer_ = SliceBuffer(
        data->buffers[1],
        ::arrow::TypeTraits<typename T::TypeClass>::bytes_required(data->offset),
        ::arrow::TypeTraits<typename T::TypeClass>::bytes_required(data->length));
    return Status::OK();
  }

  Status Visit(const ::arrow::BooleanArray& array) {
    auto data = array.data();
    if (BitUtil::IsMultipleOf8(data->offset)) {
      buffer_ = SliceBuffer(data->buffers[1], BitUtil::BytesForBits(data->offset),
                            BitUtil::BytesForBits(data->length));
      return Status::OK();
    }
    PARQUET_ASSIGN_OR_THROW(buffer_,
                            ::arrow::internal::CopyBitmap(pool_, data->buffers[1]->data(),
                                                          data->offset, data->length));
    return Status::OK();
  }
#define NOT_IMPLEMENTED_VISIT(ArrowTypePrefix)                                      \
  Status Visit(const ::arrow::ArrowTypePrefix##Array& array) {                      \
    return Status::NotImplemented("Slicing not implemented for " #ArrowTypePrefix); \
  }

  NOT_IMPLEMENTED_VISIT(Null);
  NOT_IMPLEMENTED_VISIT(Union);
  NOT_IMPLEMENTED_VISIT(List);
  NOT_IMPLEMENTED_VISIT(LargeList);
  NOT_IMPLEMENTED_VISIT(Struct);
  NOT_IMPLEMENTED_VISIT(FixedSizeList);
  NOT_IMPLEMENTED_VISIT(Dictionary);
  NOT_IMPLEMENTED_VISIT(Extension);

#undef NOT_IMPLEMENTED_VISIT

  MemoryPool* pool_;
  std::shared_ptr<Buffer> buffer_;
};

internal::LevelInfo ComputeLevelInfo(const ColumnDescriptor* descr) {
  internal::LevelInfo level_info;
  level_info.def_level = descr->max_definition_level();
  level_info.rep_level = descr->max_repetition_level();

  int16_t min_spaced_def_level = descr->max_definition_level();
  const ::parquet::schema::Node* node = descr->schema_node().get();
  while (node != nullptr && !node->is_repeated()) {
    if (node->is_optional()) {
      min_spaced_def_level--;
    }
    node = node->parent();
  }
  level_info.repeated_ancestor_def_level = min_spaced_def_level;
  return level_info;
}

template <class T>
inline const T* AddIfNotNull(const T* base, int64_t offset) {
  if (base != nullptr) {
    return base + offset;
  }
  return nullptr;
}

}  // namespace

LevelEncoder::LevelEncoder() {}
LevelEncoder::~LevelEncoder() {}

void LevelEncoder::Init(Encoding::type encoding, int16_t max_level,
                        int num_buffered_values, uint8_t* data, int data_size) {
  bit_width_ = BitUtil::Log2(max_level + 1);
  encoding_ = encoding;
  switch (encoding) {
    case Encoding::RLE: {
      rle_encoder_.reset(new RleEncoder(data, data_size, bit_width_));
      break;
    }
    case Encoding::BIT_PACKED: {
      int num_bytes =
          static_cast<int>(BitUtil::BytesForBits(num_buffered_values * bit_width_));
      bit_packed_encoder_.reset(new BitWriter(data, num_bytes));
      break;
    }
    default:
      throw ParquetException("Unknown encoding type for levels.");
  }
}

int LevelEncoder::MaxBufferSize(Encoding::type encoding, int16_t max_level,
                                int num_buffered_values) {
  int bit_width = BitUtil::Log2(max_level + 1);
  int num_bytes = 0;
  switch (encoding) {
    case Encoding::RLE: {
      // TODO: Due to the way we currently check if the buffer is full enough,
      // we need to have MinBufferSize as head room.
      num_bytes = RleEncoder::MaxBufferSize(bit_width, num_buffered_values) +
                  RleEncoder::MinBufferSize(bit_width);
      break;
    }
    case Encoding::BIT_PACKED: {
      num_bytes =
          static_cast<int>(BitUtil::BytesForBits(num_buffered_values * bit_width));
      break;
    }
    default:
      throw ParquetException("Unknown encoding type for levels.");
  }
  return num_bytes;
}

int LevelEncoder::Encode(int batch_size, const int16_t* levels) {
  int num_encoded = 0;
  if (!rle_encoder_ && !bit_packed_encoder_) {
    throw ParquetException("Level encoders are not initialized.");
  }

  if (encoding_ == Encoding::RLE) {
    for (int i = 0; i < batch_size; ++i) {
      if (!rle_encoder_->Put(*(levels + i))) {
        break;
      }
      ++num_encoded;
    }
    rle_encoder_->Flush();
    rle_length_ = rle_encoder_->len();
  } else {
    for (int i = 0; i < batch_size; ++i) {
      if (!bit_packed_encoder_->PutValue(*(levels + i), bit_width_)) {
        break;
      }
      ++num_encoded;
    }
    bit_packed_encoder_->Flush();
  }
  return num_encoded;
}

// ----------------------------------------------------------------------
// PageWriter implementation

// This subclass delimits pages appearing in a serialized stream, each preceded
// by a serialized Thrift format::PageHeader indicating the type of each page
// and the page metadata.
class SerializedPageWriter : public PageWriter {
 public:
  SerializedPageWriter(std::shared_ptr<ArrowOutputStream> sink, Compression::type codec,
                       int compression_level, ColumnChunkMetaDataBuilder* metadata,
                       int16_t row_group_ordinal, int16_t column_chunk_ordinal,
                       MemoryPool* pool = ::arrow::default_memory_pool(),
                       std::shared_ptr<Encryptor> meta_encryptor = nullptr,
                       std::shared_ptr<Encryptor> data_encryptor = nullptr)
      : sink_(std::move(sink)),
        metadata_(metadata),
        pool_(pool),
        num_values_(0),
        dictionary_page_offset_(0),
        data_page_offset_(0),
        total_uncompressed_size_(0),
        total_compressed_size_(0),
        page_ordinal_(0),
        row_group_ordinal_(row_group_ordinal),
        column_ordinal_(column_chunk_ordinal),
        meta_encryptor_(std::move(meta_encryptor)),
        data_encryptor_(std::move(data_encryptor)),
        encryption_buffer_(AllocateBuffer(pool, 0)) {
    if (data_encryptor_ != nullptr || meta_encryptor_ != nullptr) {
      InitEncryption();
    }
    compressor_ = GetCodec(codec, compression_level);
    thrift_serializer_.reset(new ThriftSerializer);
  }

  int64_t WriteDictionaryPage(const DictionaryPage& page) override {
    int64_t uncompressed_size = page.size();
    std::shared_ptr<Buffer> compressed_data;
    if (has_compressor()) {
      auto buffer = std::static_pointer_cast<ResizableBuffer>(
          AllocateBuffer(pool_, uncompressed_size));
      Compress(*(page.buffer().get()), buffer.get());
      compressed_data = std::static_pointer_cast<Buffer>(buffer);
    } else {
      compressed_data = page.buffer();
    }

    format::DictionaryPageHeader dict_page_header;
    dict_page_header.__set_num_values(page.num_values());
    dict_page_header.__set_encoding(ToThrift(page.encoding()));
    dict_page_header.__set_is_sorted(page.is_sorted());

    const uint8_t* output_data_buffer = compressed_data->data();
    int32_t output_data_len = static_cast<int32_t>(compressed_data->size());

    if (data_encryptor_.get()) {
      UpdateEncryption(encryption::kDictionaryPage);
      PARQUET_THROW_NOT_OK(encryption_buffer_->Resize(
          data_encryptor_->CiphertextSizeDelta() + output_data_len, false));
      output_data_len = data_encryptor_->Encrypt(compressed_data->data(), output_data_len,
                                                 encryption_buffer_->mutable_data());
      output_data_buffer = encryption_buffer_->data();
    }

    format::PageHeader page_header;
    page_header.__set_type(format::PageType::DICTIONARY_PAGE);
    page_header.__set_uncompressed_page_size(static_cast<int32_t>(uncompressed_size));
    page_header.__set_compressed_page_size(static_cast<int32_t>(output_data_len));
    page_header.__set_dictionary_page_header(dict_page_header);
    // TODO(PARQUET-594) crc checksum

    PARQUET_ASSIGN_OR_THROW(int64_t start_pos, sink_->Tell());
    if (dictionary_page_offset_ == 0) {
      dictionary_page_offset_ = start_pos;
    }

    if (meta_encryptor_) {
      UpdateEncryption(encryption::kDictionaryPageHeader);
    }
    const int64_t header_size =
        thrift_serializer_->Serialize(&page_header, sink_.get(), meta_encryptor_);

    PARQUET_THROW_NOT_OK(sink_->Write(output_data_buffer, output_data_len));

    total_uncompressed_size_ += uncompressed_size + header_size;
    total_compressed_size_ += output_data_len + header_size;
    ++dict_encoding_stats_[page.encoding()];
    return uncompressed_size + header_size;
  }

  void Close(bool has_dictionary, bool fallback) override {
    if (meta_encryptor_ != nullptr) {
      UpdateEncryption(encryption::kColumnMetaData);
    }
    // index_page_offset = -1 since they are not supported
    metadata_->Finish(num_values_, dictionary_page_offset_, -1, data_page_offset_,
                      total_compressed_size_, total_uncompressed_size_, has_dictionary,
                      fallback, dict_encoding_stats_, data_encoding_stats_,
                      meta_encryptor_);
    // Write metadata at end of column chunk
    metadata_->WriteTo(sink_.get());
  }

  /**
   * Compress a buffer.
   */
  void Compress(const Buffer& src_buffer, ResizableBuffer* dest_buffer) override {
    DCHECK(compressor_ != nullptr);

    // Compress the data
    int64_t max_compressed_size =
        compressor_->MaxCompressedLen(src_buffer.size(), src_buffer.data());

    // Use Arrow::Buffer::shrink_to_fit = false
    // underlying buffer only keeps growing. Resize to a smaller size does not reallocate.
    PARQUET_THROW_NOT_OK(dest_buffer->Resize(max_compressed_size, false));

    PARQUET_ASSIGN_OR_THROW(
        int64_t compressed_size,
        compressor_->Compress(src_buffer.size(), src_buffer.data(), max_compressed_size,
                              dest_buffer->mutable_data()));
    PARQUET_THROW_NOT_OK(dest_buffer->Resize(compressed_size, false));
  }

  int64_t WriteDataPage(const DataPage& page) override {
    const int64_t uncompressed_size = page.uncompressed_size();
    std::shared_ptr<Buffer> compressed_data = page.buffer();
    const uint8_t* output_data_buffer = compressed_data->data();
    int32_t output_data_len = static_cast<int32_t>(compressed_data->size());

    if (data_encryptor_.get()) {
      PARQUET_THROW_NOT_OK(encryption_buffer_->Resize(
          data_encryptor_->CiphertextSizeDelta() + output_data_len, false));
      UpdateEncryption(encryption::kDataPage);
      output_data_len = data_encryptor_->Encrypt(compressed_data->data(), output_data_len,
                                                 encryption_buffer_->mutable_data());
      output_data_buffer = encryption_buffer_->data();
    }

    format::PageHeader page_header;
    page_header.__set_uncompressed_page_size(static_cast<int32_t>(uncompressed_size));
    page_header.__set_compressed_page_size(static_cast<int32_t>(output_data_len));
    // TODO(PARQUET-594) crc checksum

    if (page.type() == PageType::DATA_PAGE) {
      const DataPageV1& v1_page = checked_cast<const DataPageV1&>(page);
      SetDataPageHeader(page_header, v1_page);
    } else if (page.type() == PageType::DATA_PAGE_V2) {
      const DataPageV2& v2_page = checked_cast<const DataPageV2&>(page);
      SetDataPageV2Header(page_header, v2_page);
    } else {
      throw ParquetException("Unexpected page type");
    }

    PARQUET_ASSIGN_OR_THROW(int64_t start_pos, sink_->Tell());
    if (page_ordinal_ == 0) {
      data_page_offset_ = start_pos;
    }

    if (meta_encryptor_) {
      UpdateEncryption(encryption::kDataPageHeader);
    }
    const int64_t header_size =
        thrift_serializer_->Serialize(&page_header, sink_.get(), meta_encryptor_);
    PARQUET_THROW_NOT_OK(sink_->Write(output_data_buffer, output_data_len));

    total_uncompressed_size_ += uncompressed_size + header_size;
    total_compressed_size_ += output_data_len + header_size;
    num_values_ += page.num_values();
    ++data_encoding_stats_[page.encoding()];
    ++page_ordinal_;
    return uncompressed_size + header_size;
  }

  void SetDataPageHeader(format::PageHeader& page_header, const DataPageV1& page) {
    format::DataPageHeader data_page_header;
    data_page_header.__set_num_values(page.num_values());
    data_page_header.__set_encoding(ToThrift(page.encoding()));
    data_page_header.__set_definition_level_encoding(
        ToThrift(page.definition_level_encoding()));
    data_page_header.__set_repetition_level_encoding(
        ToThrift(page.repetition_level_encoding()));
    data_page_header.__set_statistics(ToThrift(page.statistics()));

    page_header.__set_type(format::PageType::DATA_PAGE);
    page_header.__set_data_page_header(data_page_header);
  }

  void SetDataPageV2Header(format::PageHeader& page_header, const DataPageV2 page) {
    format::DataPageHeaderV2 data_page_header;
    data_page_header.__set_num_values(page.num_values());
    data_page_header.__set_num_nulls(page.num_nulls());
    data_page_header.__set_num_rows(page.num_rows());
    data_page_header.__set_encoding(ToThrift(page.encoding()));

    data_page_header.__set_definition_levels_byte_length(
        page.definition_levels_byte_length());
    data_page_header.__set_repetition_levels_byte_length(
        page.repetition_levels_byte_length());

    data_page_header.__set_is_compressed(page.is_compressed());
    data_page_header.__set_statistics(ToThrift(page.statistics()));

    page_header.__set_type(format::PageType::DATA_PAGE_V2);
    page_header.__set_data_page_header_v2(data_page_header);
  }

  bool has_compressor() override { return (compressor_ != nullptr); }

  int64_t num_values() { return num_values_; }

  int64_t dictionary_page_offset() { return dictionary_page_offset_; }

  int64_t data_page_offset() { return data_page_offset_; }

  int64_t total_compressed_size() { return total_compressed_size_; }

  int64_t total_uncompressed_size() { return total_uncompressed_size_; }

 private:
  // To allow UpdateEncryption on Close
  friend class BufferedPageWriter;

  void InitEncryption() {
    // Prepare the AAD for quick update later.
    if (data_encryptor_ != nullptr) {
      data_page_aad_ = encryption::CreateModuleAad(
          data_encryptor_->file_aad(), encryption::kDataPage, row_group_ordinal_,
          column_ordinal_, kNonPageOrdinal);
    }
    if (meta_encryptor_ != nullptr) {
      data_page_header_aad_ = encryption::CreateModuleAad(
          meta_encryptor_->file_aad(), encryption::kDataPageHeader, row_group_ordinal_,
          column_ordinal_, kNonPageOrdinal);
    }
  }

  void UpdateEncryption(int8_t module_type) {
    switch (module_type) {
      case encryption::kColumnMetaData: {
        meta_encryptor_->UpdateAad(encryption::CreateModuleAad(
            meta_encryptor_->file_aad(), module_type, row_group_ordinal_, column_ordinal_,
            kNonPageOrdinal));
        break;
      }
      case encryption::kDataPage: {
        encryption::QuickUpdatePageAad(data_page_aad_, page_ordinal_);
        data_encryptor_->UpdateAad(data_page_aad_);
        break;
      }
      case encryption::kDataPageHeader: {
        encryption::QuickUpdatePageAad(data_page_header_aad_, page_ordinal_);
        meta_encryptor_->UpdateAad(data_page_header_aad_);
        break;
      }
      case encryption::kDictionaryPageHeader: {
        meta_encryptor_->UpdateAad(encryption::CreateModuleAad(
            meta_encryptor_->file_aad(), module_type, row_group_ordinal_, column_ordinal_,
            kNonPageOrdinal));
        break;
      }
      case encryption::kDictionaryPage: {
        data_encryptor_->UpdateAad(encryption::CreateModuleAad(
            data_encryptor_->file_aad(), module_type, row_group_ordinal_, column_ordinal_,
            kNonPageOrdinal));
        break;
      }
      default:
        throw ParquetException("Unknown module type in UpdateEncryption");
    }
  }

  std::shared_ptr<ArrowOutputStream> sink_;
  ColumnChunkMetaDataBuilder* metadata_;
  MemoryPool* pool_;
  int64_t num_values_;
  int64_t dictionary_page_offset_;
  int64_t data_page_offset_;
  int64_t total_uncompressed_size_;
  int64_t total_compressed_size_;
  int16_t page_ordinal_;
  int16_t row_group_ordinal_;
  int16_t column_ordinal_;

  std::unique_ptr<ThriftSerializer> thrift_serializer_;

  // Compression codec to use.
  std::unique_ptr<::arrow::util::Codec> compressor_;

  std::string data_page_aad_;
  std::string data_page_header_aad_;

  std::shared_ptr<Encryptor> meta_encryptor_;
  std::shared_ptr<Encryptor> data_encryptor_;

  std::shared_ptr<ResizableBuffer> encryption_buffer_;

  std::map<Encoding::type, int32_t> dict_encoding_stats_;
  std::map<Encoding::type, int32_t> data_encoding_stats_;
};

// This implementation of the PageWriter writes to the final sink on Close .
class BufferedPageWriter : public PageWriter {
 public:
  BufferedPageWriter(std::shared_ptr<ArrowOutputStream> sink, Compression::type codec,
                     int compression_level, ColumnChunkMetaDataBuilder* metadata,
                     int16_t row_group_ordinal, int16_t current_column_ordinal,
                     MemoryPool* pool = ::arrow::default_memory_pool(),
                     std::shared_ptr<Encryptor> meta_encryptor = nullptr,
                     std::shared_ptr<Encryptor> data_encryptor = nullptr)
      : final_sink_(std::move(sink)), metadata_(metadata), has_dictionary_pages_(false) {
    in_memory_sink_ = CreateOutputStream(pool);
    pager_ = std::unique_ptr<SerializedPageWriter>(
        new SerializedPageWriter(in_memory_sink_, codec, compression_level, metadata,
                                 row_group_ordinal, current_column_ordinal, pool,
                                 std::move(meta_encryptor), std::move(data_encryptor)));
  }

  int64_t WriteDictionaryPage(const DictionaryPage& page) override {
    has_dictionary_pages_ = true;
    return pager_->WriteDictionaryPage(page);
  }

  void Close(bool has_dictionary, bool fallback) override {
    if (pager_->meta_encryptor_ != nullptr) {
      pager_->UpdateEncryption(encryption::kColumnMetaData);
    }
    // index_page_offset = -1 since they are not supported
    PARQUET_ASSIGN_OR_THROW(int64_t final_position, final_sink_->Tell());
    // dictionary page offset should be 0 iff there are no dictionary pages
    auto dictionary_page_offset =
        has_dictionary_pages_ ? pager_->dictionary_page_offset() + final_position : 0;
    metadata_->Finish(pager_->num_values(), dictionary_page_offset, -1,
                      pager_->data_page_offset() + final_position,
                      pager_->total_compressed_size(), pager_->total_uncompressed_size(),
                      has_dictionary, fallback, pager_->dict_encoding_stats_,
                      pager_->data_encoding_stats_, pager_->meta_encryptor_);

    // Write metadata at end of column chunk
    metadata_->WriteTo(in_memory_sink_.get());

    // flush everything to the serialized sink
    PARQUET_ASSIGN_OR_THROW(auto buffer, in_memory_sink_->Finish());
    PARQUET_THROW_NOT_OK(final_sink_->Write(buffer));
  }

  int64_t WriteDataPage(const DataPage& page) override {
    return pager_->WriteDataPage(page);
  }

  void Compress(const Buffer& src_buffer, ResizableBuffer* dest_buffer) override {
    pager_->Compress(src_buffer, dest_buffer);
  }

  bool has_compressor() override { return pager_->has_compressor(); }

 private:
  std::shared_ptr<ArrowOutputStream> final_sink_;
  ColumnChunkMetaDataBuilder* metadata_;
  std::shared_ptr<::arrow::io::BufferOutputStream> in_memory_sink_;
  std::unique_ptr<SerializedPageWriter> pager_;
  bool has_dictionary_pages_;
};

std::unique_ptr<PageWriter> PageWriter::Open(
    std::shared_ptr<ArrowOutputStream> sink, Compression::type codec,
    int compression_level, ColumnChunkMetaDataBuilder* metadata,
    int16_t row_group_ordinal, int16_t column_chunk_ordinal, MemoryPool* pool,
    bool buffered_row_group, std::shared_ptr<Encryptor> meta_encryptor,
    std::shared_ptr<Encryptor> data_encryptor) {
  if (buffered_row_group) {
    return std::unique_ptr<PageWriter>(
        new BufferedPageWriter(std::move(sink), codec, compression_level, metadata,
                               row_group_ordinal, column_chunk_ordinal, pool,
                               std::move(meta_encryptor), std::move(data_encryptor)));
  } else {
    return std::unique_ptr<PageWriter>(
        new SerializedPageWriter(std::move(sink), codec, compression_level, metadata,
                                 row_group_ordinal, column_chunk_ordinal, pool,
                                 std::move(meta_encryptor), std::move(data_encryptor)));
  }
}

// ----------------------------------------------------------------------
// ColumnWriter

const std::shared_ptr<WriterProperties>& default_writer_properties() {
  static std::shared_ptr<WriterProperties> default_writer_properties =
      WriterProperties::Builder().build();
  return default_writer_properties;
}

class ColumnWriterImpl {
 public:
  ColumnWriterImpl(ColumnChunkMetaDataBuilder* metadata,
                   std::unique_ptr<PageWriter> pager, const bool use_dictionary,
                   Encoding::type encoding, const WriterProperties* properties)
      : metadata_(metadata),
        descr_(metadata->descr()),
        level_info_(ComputeLevelInfo(metadata->descr())),
        pager_(std::move(pager)),
        has_dictionary_(use_dictionary),
        encoding_(encoding),
        properties_(properties),
        allocator_(properties->memory_pool()),
        num_buffered_values_(0),
        num_buffered_encoded_values_(0),
        rows_written_(0),
        total_bytes_written_(0),
        total_compressed_bytes_(0),
        closed_(false),
        fallback_(false),
        definition_levels_sink_(allocator_),
        repetition_levels_sink_(allocator_) {
    definition_levels_rle_ =
        std::static_pointer_cast<ResizableBuffer>(AllocateBuffer(allocator_, 0));
    repetition_levels_rle_ =
        std::static_pointer_cast<ResizableBuffer>(AllocateBuffer(allocator_, 0));
    uncompressed_data_ =
        std::static_pointer_cast<ResizableBuffer>(AllocateBuffer(allocator_, 0));

    if (pager_->has_compressor()) {
      compressor_temp_buffer_ =
          std::static_pointer_cast<ResizableBuffer>(AllocateBuffer(allocator_, 0));
    }
  }

  virtual ~ColumnWriterImpl() = default;

  int64_t Close();

 protected:
  virtual std::shared_ptr<Buffer> GetValuesBuffer() = 0;

  // Serializes Dictionary Page if enabled
  virtual void WriteDictionaryPage() = 0;

  // Plain-encoded statistics of the current page
  virtual EncodedStatistics GetPageStatistics() = 0;

  // Plain-encoded statistics of the whole chunk
  virtual EncodedStatistics GetChunkStatistics() = 0;

  // Merges page statistics into chunk statistics, then resets the values
  virtual void ResetPageStatistics() = 0;

  // Adds Data Pages to an in memory buffer in dictionary encoding mode
  // Serializes the Data Pages in other encoding modes
  void AddDataPage();

  void BuildDataPageV1(int64_t definition_levels_rle_size,
                       int64_t repetition_levels_rle_size, int64_t uncompressed_size,
                       const std::shared_ptr<Buffer>& values);
  void BuildDataPageV2(int64_t definition_levels_rle_size,
                       int64_t repetition_levels_rle_size, int64_t uncompressed_size,
                       const std::shared_ptr<Buffer>& values);

  // Serializes Data Pages
  void WriteDataPage(const DataPage& page) {
    total_bytes_written_ += pager_->WriteDataPage(page);
  }

  // Write multiple definition levels
  void WriteDefinitionLevels(int64_t num_levels, const int16_t* levels) {
    DCHECK(!closed_);
    PARQUET_THROW_NOT_OK(
        definition_levels_sink_.Append(levels, sizeof(int16_t) * num_levels));
  }

  // Write multiple repetition levels
  void WriteRepetitionLevels(int64_t num_levels, const int16_t* levels) {
    DCHECK(!closed_);
    PARQUET_THROW_NOT_OK(
        repetition_levels_sink_.Append(levels, sizeof(int16_t) * num_levels));
  }

  // RLE encode the src_buffer into dest_buffer and return the encoded size
  int64_t RleEncodeLevels(const void* src_buffer, ResizableBuffer* dest_buffer,
                          int16_t max_level, bool include_length_prefix = true);

  // Serialize the buffered Data Pages
  void FlushBufferedDataPages();

  ColumnChunkMetaDataBuilder* metadata_;
  const ColumnDescriptor* descr_;
  // scratch buffer if validity bits need to be recalculated.
  std::shared_ptr<ResizableBuffer> bits_buffer_;
  const internal::LevelInfo level_info_;

  std::unique_ptr<PageWriter> pager_;

  bool has_dictionary_;
  Encoding::type encoding_;
  const WriterProperties* properties_;

  LevelEncoder level_encoder_;

  MemoryPool* allocator_;

  // The total number of values stored in the data page. This is the maximum of
  // the number of encoded definition levels or encoded values. For
  // non-repeated, required columns, this is equal to the number of encoded
  // values. For repeated or optional values, there may be fewer data values
  // than levels, and this tells you how many encoded levels there are in that
  // case.
  int64_t num_buffered_values_;

  // The total number of stored values. For repeated or optional values, this
  // number may be lower than num_buffered_values_.
  int64_t num_buffered_encoded_values_;

  // Total number of rows written with this ColumnWriter
  int rows_written_;

  // Records the total number of uncompressed bytes written by the serializer
  int64_t total_bytes_written_;

  // Records the current number of compressed bytes in a column
  int64_t total_compressed_bytes_;

  // Flag to check if the Writer has been closed
  bool closed_;

  // Flag to infer if dictionary encoding has fallen back to PLAIN
  bool fallback_;

  ::arrow::BufferBuilder definition_levels_sink_;
  ::arrow::BufferBuilder repetition_levels_sink_;

  std::shared_ptr<ResizableBuffer> definition_levels_rle_;
  std::shared_ptr<ResizableBuffer> repetition_levels_rle_;

  std::shared_ptr<ResizableBuffer> uncompressed_data_;
  std::shared_ptr<ResizableBuffer> compressor_temp_buffer_;

  std::vector<std::unique_ptr<DataPage>> data_pages_;

 private:
  void InitSinks() {
    definition_levels_sink_.Rewind(0);
    repetition_levels_sink_.Rewind(0);
  }

  // Concatenate the encoded levels and values into one buffer
  void ConcatenateBuffers(int64_t definition_levels_rle_size,
                          int64_t repetition_levels_rle_size,
                          const std::shared_ptr<Buffer>& values, uint8_t* combined) {
    memcpy(combined, repetition_levels_rle_->data(), repetition_levels_rle_size);
    combined += repetition_levels_rle_size;
    memcpy(combined, definition_levels_rle_->data(), definition_levels_rle_size);
    combined += definition_levels_rle_size;
    memcpy(combined, values->data(), values->size());
  }
};

// return the size of the encoded buffer
int64_t ColumnWriterImpl::RleEncodeLevels(const void* src_buffer,
                                          ResizableBuffer* dest_buffer, int16_t max_level,
                                          bool include_length_prefix) {
  // V1 DataPage includes the length of the RLE level as a prefix.
  int32_t prefix_size = include_length_prefix ? sizeof(int32_t) : 0;

  // TODO: This only works with due to some RLE specifics
  int64_t rle_size = LevelEncoder::MaxBufferSize(Encoding::RLE, max_level,
                                                 static_cast<int>(num_buffered_values_)) +
                     prefix_size;

  // Use Arrow::Buffer::shrink_to_fit = false
  // underlying buffer only keeps growing. Resize to a smaller size does not reallocate.
  PARQUET_THROW_NOT_OK(dest_buffer->Resize(rle_size, false));

  level_encoder_.Init(Encoding::RLE, max_level, static_cast<int>(num_buffered_values_),
                      dest_buffer->mutable_data() + prefix_size,
                      static_cast<int>(dest_buffer->size() - prefix_size));
  int encoded = level_encoder_.Encode(static_cast<int>(num_buffered_values_),
                                      reinterpret_cast<const int16_t*>(src_buffer));
  DCHECK_EQ(encoded, num_buffered_values_);

  if (include_length_prefix) {
    reinterpret_cast<int32_t*>(dest_buffer->mutable_data())[0] = level_encoder_.len();
  }

  return level_encoder_.len() + prefix_size;
}

void ColumnWriterImpl::AddDataPage() {
  int64_t definition_levels_rle_size = 0;
  int64_t repetition_levels_rle_size = 0;

  std::shared_ptr<Buffer> values = GetValuesBuffer();
  bool is_v1_data_page = properties_->data_page_version() == ParquetDataPageVersion::V1;

  if (descr_->max_definition_level() > 0) {
    definition_levels_rle_size = RleEncodeLevels(
        definition_levels_sink_.data(), definition_levels_rle_.get(),
        descr_->max_definition_level(), /*include_length_prefix=*/is_v1_data_page);
  }

  if (descr_->max_repetition_level() > 0) {
    repetition_levels_rle_size = RleEncodeLevels(
        repetition_levels_sink_.data(), repetition_levels_rle_.get(),
        descr_->max_repetition_level(), /*include_length_prefix=*/is_v1_data_page);
  }

  int64_t uncompressed_size =
      definition_levels_rle_size + repetition_levels_rle_size + values->size();

  if (is_v1_data_page) {
    BuildDataPageV1(definition_levels_rle_size, repetition_levels_rle_size,
                    uncompressed_size, values);
  } else {
    BuildDataPageV2(definition_levels_rle_size, repetition_levels_rle_size,
                    uncompressed_size, values);
  }

  // Re-initialize the sinks for next Page.
  InitSinks();
  num_buffered_values_ = 0;
  num_buffered_encoded_values_ = 0;
}

void ColumnWriterImpl::BuildDataPageV1(int64_t definition_levels_rle_size,
                                       int64_t repetition_levels_rle_size,
                                       int64_t uncompressed_size,
                                       const std::shared_ptr<Buffer>& values) {
  // Use Arrow::Buffer::shrink_to_fit = false
  // underlying buffer only keeps growing. Resize to a smaller size does not reallocate.
  PARQUET_THROW_NOT_OK(uncompressed_data_->Resize(uncompressed_size, false));
  ConcatenateBuffers(definition_levels_rle_size, repetition_levels_rle_size, values,
                     uncompressed_data_->mutable_data());

  EncodedStatistics page_stats = GetPageStatistics();
  page_stats.ApplyStatSizeLimits(properties_->max_statistics_size(descr_->path()));
  page_stats.set_is_signed(SortOrder::SIGNED == descr_->sort_order());
  ResetPageStatistics();

  std::shared_ptr<Buffer> compressed_data;
  if (pager_->has_compressor()) {
    pager_->Compress(*(uncompressed_data_.get()), compressor_temp_buffer_.get());
    compressed_data = compressor_temp_buffer_;
  } else {
    compressed_data = uncompressed_data_;
  }

  // Write the page to OutputStream eagerly if there is no dictionary or
  // if dictionary encoding has fallen back to PLAIN
  if (has_dictionary_ && !fallback_) {  // Save pages until end of dictionary encoding
    PARQUET_ASSIGN_OR_THROW(
        auto compressed_data_copy,
        compressed_data->CopySlice(0, compressed_data->size(), allocator_));
    std::unique_ptr<DataPage> page_ptr(new DataPageV1(
        compressed_data_copy, static_cast<int32_t>(num_buffered_values_), encoding_,
        Encoding::RLE, Encoding::RLE, uncompressed_size, page_stats));
    total_compressed_bytes_ += page_ptr->size() + sizeof(format::PageHeader);

    data_pages_.push_back(std::move(page_ptr));
  } else {  // Eagerly write pages
    DataPageV1 page(compressed_data, static_cast<int32_t>(num_buffered_values_),
                    encoding_, Encoding::RLE, Encoding::RLE, uncompressed_size,
                    page_stats);
    WriteDataPage(page);
  }
}

void ColumnWriterImpl::BuildDataPageV2(int64_t definition_levels_rle_size,
                                       int64_t repetition_levels_rle_size,
                                       int64_t uncompressed_size,
                                       const std::shared_ptr<Buffer>& values) {
  // Compress the values if needed. Repetition and definition levels are uncompressed in
  // V2.
  std::shared_ptr<Buffer> compressed_values;
  if (pager_->has_compressor()) {
    pager_->Compress(*values, compressor_temp_buffer_.get());
    compressed_values = compressor_temp_buffer_;
  } else {
    compressed_values = values;
  }

  // Concatenate uncompressed levels and the possibly compressed values
  int64_t combined_size =
      definition_levels_rle_size + repetition_levels_rle_size + compressed_values->size();
  std::shared_ptr<ResizableBuffer> combined = AllocateBuffer(allocator_, combined_size);

  ConcatenateBuffers(definition_levels_rle_size, repetition_levels_rle_size,
                     compressed_values, combined->mutable_data());

  EncodedStatistics page_stats = GetPageStatistics();
  page_stats.ApplyStatSizeLimits(properties_->max_statistics_size(descr_->path()));
  page_stats.set_is_signed(SortOrder::SIGNED == descr_->sort_order());
  ResetPageStatistics();

  int32_t num_values = static_cast<int32_t>(num_buffered_values_);
  int32_t null_count = static_cast<int32_t>(page_stats.null_count);
  int32_t def_levels_byte_length = static_cast<int32_t>(definition_levels_rle_size);
  int32_t rep_levels_byte_length = static_cast<int32_t>(repetition_levels_rle_size);

  // Write the page to OutputStream eagerly if there is no dictionary or
  // if dictionary encoding has fallen back to PLAIN
  if (has_dictionary_ && !fallback_) {  // Save pages until end of dictionary encoding
    PARQUET_ASSIGN_OR_THROW(auto data_copy,
                            combined->CopySlice(0, combined->size(), allocator_));
    std::unique_ptr<DataPage> page_ptr(new DataPageV2(
        combined, num_values, null_count, num_values, encoding_, def_levels_byte_length,
        rep_levels_byte_length, uncompressed_size, pager_->has_compressor()));
    total_compressed_bytes_ += page_ptr->size() + sizeof(format::PageHeader);
    data_pages_.push_back(std::move(page_ptr));
  } else {
    DataPageV2 page(combined, num_values, null_count, num_values, encoding_,
                    def_levels_byte_length, rep_levels_byte_length, uncompressed_size,
                    pager_->has_compressor());
    WriteDataPage(page);
  }
}

int64_t ColumnWriterImpl::Close() {
  if (!closed_) {
    closed_ = true;
    if (has_dictionary_ && !fallback_) {
      WriteDictionaryPage();
    }

    FlushBufferedDataPages();

    EncodedStatistics chunk_statistics = GetChunkStatistics();
    chunk_statistics.ApplyStatSizeLimits(
        properties_->max_statistics_size(descr_->path()));
    chunk_statistics.set_is_signed(SortOrder::SIGNED == descr_->sort_order());

    // Write stats only if the column has at least one row written
    if (rows_written_ > 0 && chunk_statistics.is_set()) {
      metadata_->SetStatistics(chunk_statistics);
    }
    pager_->Close(has_dictionary_, fallback_);
  }

  return total_bytes_written_;
}

void ColumnWriterImpl::FlushBufferedDataPages() {
  // Write all outstanding data to a new page
  if (num_buffered_values_ > 0) {
    AddDataPage();
  }
  for (const auto& page_ptr : data_pages_) {
    WriteDataPage(*page_ptr);
  }
  data_pages_.clear();
  total_compressed_bytes_ = 0;
}

// ----------------------------------------------------------------------
// TypedColumnWriter

template <typename Action>
inline void DoInBatches(int64_t total, int64_t batch_size, Action&& action) {
  int64_t num_batches = static_cast<int>(total / batch_size);
  for (int round = 0; round < num_batches; round++) {
    action(round * batch_size, batch_size);
  }
  // Write the remaining values
  if (total % batch_size > 0) {
    action(num_batches * batch_size, total % batch_size);
  }
}

bool DictionaryDirectWriteSupported(const ::arrow::Array& array) {
  DCHECK_EQ(array.type_id(), ::arrow::Type::DICTIONARY);
  const ::arrow::DictionaryType& dict_type =
      static_cast<const ::arrow::DictionaryType&>(*array.type());
  return ::arrow::is_base_binary_like(dict_type.value_type()->id());
}

Status ConvertDictionaryToDense(const ::arrow::Array& array, MemoryPool* pool,
                                std::shared_ptr<::arrow::Array>* out) {
  const ::arrow::DictionaryType& dict_type =
      static_cast<const ::arrow::DictionaryType&>(*array.type());

  ::arrow::compute::ExecContext ctx(pool);
  ARROW_ASSIGN_OR_RAISE(Datum cast_output,
                        ::arrow::compute::Cast(array.data(), dict_type.value_type(),
                                               ::arrow::compute::CastOptions(), &ctx));
  *out = cast_output.make_array();
  return Status::OK();
}

static inline bool IsDictionaryEncoding(Encoding::type encoding) {
  return encoding == Encoding::PLAIN_DICTIONARY;
}

template <typename DType>
class TypedColumnWriterImpl : public ColumnWriterImpl, public TypedColumnWriter<DType> {
 public:
  using T = typename DType::c_type;

  TypedColumnWriterImpl(ColumnChunkMetaDataBuilder* metadata,
                        std::unique_ptr<PageWriter> pager, const bool use_dictionary,
                        Encoding::type encoding, const WriterProperties* properties)
      : ColumnWriterImpl(metadata, std::move(pager), use_dictionary, encoding,
                         properties) {
    current_encoder_ = MakeEncoder(DType::type_num, encoding, use_dictionary, descr_,
                                   properties->memory_pool());

    if (properties->statistics_enabled(descr_->path()) &&
        (SortOrder::UNKNOWN != descr_->sort_order())) {
      page_statistics_ = MakeStatistics<DType>(descr_, allocator_);
      chunk_statistics_ = MakeStatistics<DType>(descr_, allocator_);
    }
  }

  int64_t Close() override { return ColumnWriterImpl::Close(); }

  int64_t WriteBatch(int64_t num_values, const int16_t* def_levels,
                     const int16_t* rep_levels, const T* values) override {
    // We check for DataPage limits only after we have inserted the values. If a user
    // writes a large number of values, the DataPage size can be much above the limit.
    // The purpose of this chunking is to bound this. Even if a user writes large number
    // of values, the chunking will ensure the AddDataPage() is called at a reasonable
    // pagesize limit
    int64_t value_offset = 0;

    auto WriteChunk = [&](int64_t offset, int64_t batch_size) {
      int64_t values_to_write = WriteLevels(batch_size, AddIfNotNull(def_levels, offset),
                                            AddIfNotNull(rep_levels, offset));

      // PARQUET-780
      if (values_to_write > 0) {
        DCHECK_NE(nullptr, values);
      }
      WriteValues(AddIfNotNull(values, value_offset), values_to_write,
                  batch_size - values_to_write);
      CommitWriteAndCheckPageLimit(batch_size, values_to_write);
      value_offset += values_to_write;

      // Dictionary size checked separately from data page size since we
      // circumvent this check when writing ::arrow::DictionaryArray directly
      CheckDictionarySizeLimit();
    };
    DoInBatches(num_values, properties_->write_batch_size(), WriteChunk);
    return value_offset;
  }

  void WriteBatchSpaced(int64_t num_values, const int16_t* def_levels,
                        const int16_t* rep_levels, const uint8_t* valid_bits,
                        int64_t valid_bits_offset, const T* values) override {
    // Like WriteBatch, but for spaced values
    int64_t value_offset = 0;
    auto WriteChunk = [&](int64_t offset, int64_t batch_size) {
      int64_t batch_num_values = 0;
      int64_t batch_num_spaced_values = 0;
      int64_t null_count;
      MaybeCalculateValidityBits(AddIfNotNull(def_levels, offset), batch_size,
                                 &batch_num_values, &batch_num_spaced_values,
                                 &null_count);

      WriteLevelsSpaced(batch_size, AddIfNotNull(def_levels, offset),
                        AddIfNotNull(rep_levels, offset));
      if (bits_buffer_ != nullptr) {
        WriteValuesSpaced(AddIfNotNull(values, value_offset), batch_num_values,
                          batch_num_spaced_values, bits_buffer_->data(), /*offset=*/0);
      } else {
        WriteValuesSpaced(AddIfNotNull(values, value_offset), batch_num_values,
                          batch_num_spaced_values, valid_bits,
                          valid_bits_offset + value_offset);
      }
      CommitWriteAndCheckPageLimit(batch_size, batch_num_spaced_values);
      value_offset += batch_num_spaced_values;

      // Dictionary size checked separately from data page size since we
      // circumvent this check when writing ::arrow::DictionaryArray directly
      CheckDictionarySizeLimit();
    };
    DoInBatches(num_values, properties_->write_batch_size(), WriteChunk);
  }

  Status WriteArrow(const int16_t* def_levels, const int16_t* rep_levels,
                    int64_t num_levels, const ::arrow::Array& leaf_array,
                    ArrowWriteContext* ctx, bool leaf_field_nullable) override {
    BEGIN_PARQUET_CATCH_EXCEPTIONS
    // Leaf nulls are canonical when there is only a single null element after a list
    // and it is at the leaf.
    bool single_nullable_element =
        (level_info_.def_level == level_info_.repeated_ancestor_def_level + 1) &&
        leaf_field_nullable;
    bool maybe_parent_nulls = level_info_.HasNullableValues() && !single_nullable_element;
    if (maybe_parent_nulls) {
      ARROW_ASSIGN_OR_RAISE(
          bits_buffer_,
          ::arrow::AllocateResizableBuffer(
              BitUtil::BytesForBits(properties_->write_batch_size()), ctx->memory_pool));
      bits_buffer_->ZeroPadding();
    }

    if (leaf_array.type()->id() == ::arrow::Type::DICTIONARY) {
      return WriteArrowDictionary(def_levels, rep_levels, num_levels, leaf_array, ctx,
                                  maybe_parent_nulls);
    } else {
      return WriteArrowDense(def_levels, rep_levels, num_levels, leaf_array, ctx,
                             maybe_parent_nulls);
    }
    END_PARQUET_CATCH_EXCEPTIONS
  }

  int64_t EstimatedBufferedValueBytes() const override {
    return current_encoder_->EstimatedDataEncodedSize();
  }

 protected:
  std::shared_ptr<Buffer> GetValuesBuffer() override {
    return current_encoder_->FlushValues();
  }

  // Internal function to handle direct writing of ::arrow::DictionaryArray,
  // since the standard logic concerning dictionary size limits and fallback to
  // plain encoding is circumvented
  Status WriteArrowDictionary(const int16_t* def_levels, const int16_t* rep_levels,
                              int64_t num_levels, const ::arrow::Array& array,
                              ArrowWriteContext* context, bool maybe_parent_nulls);

  Status WriteArrowDense(const int16_t* def_levels, const int16_t* rep_levels,
                         int64_t num_levels, const ::arrow::Array& array,
                         ArrowWriteContext* context, bool maybe_parent_nulls);

  void WriteDictionaryPage() override {
    // We have to dynamic cast here because of TypedEncoder<Type> as
    // some compilers don't want to cast through virtual inheritance
    auto dict_encoder = dynamic_cast<DictEncoder<DType>*>(current_encoder_.get());
    DCHECK(dict_encoder);
    std::shared_ptr<ResizableBuffer> buffer =
        AllocateBuffer(properties_->memory_pool(), dict_encoder->dict_encoded_size());
    dict_encoder->WriteDict(buffer->mutable_data());

    DictionaryPage page(buffer, dict_encoder->num_entries(),
                        properties_->dictionary_page_encoding());
    total_bytes_written_ += pager_->WriteDictionaryPage(page);
  }

  EncodedStatistics GetPageStatistics() override {
    EncodedStatistics result;
    if (page_statistics_) result = page_statistics_->Encode();
    return result;
  }

  EncodedStatistics GetChunkStatistics() override {
    EncodedStatistics result;
    if (chunk_statistics_) result = chunk_statistics_->Encode();
    return result;
  }

  void ResetPageStatistics() override {
    if (chunk_statistics_ != nullptr) {
      chunk_statistics_->Merge(*page_statistics_);
      page_statistics_->Reset();
    }
  }

  Type::type type() const override { return descr_->physical_type(); }

  const ColumnDescriptor* descr() const override { return descr_; }

  int64_t rows_written() const override { return rows_written_; }

  int64_t total_compressed_bytes() const override { return total_compressed_bytes_; }

  int64_t total_bytes_written() const override { return total_bytes_written_; }

  const WriterProperties* properties() override { return properties_; }

 private:
  using ValueEncoderType = typename EncodingTraits<DType>::Encoder;
  using TypedStats = TypedStatistics<DType>;
  std::unique_ptr<Encoder> current_encoder_;
  std::shared_ptr<TypedStats> page_statistics_;
  std::shared_ptr<TypedStats> chunk_statistics_;

  // If writing a sequence of ::arrow::DictionaryArray to the writer, we keep the
  // dictionary passed to DictEncoder<T>::PutDictionary so we can check
  // subsequent array chunks to see either if materialization is required (in
  // which case we call back to the dense write path)
  std::shared_ptr<::arrow::Array> preserved_dictionary_;

  int64_t WriteLevels(int64_t num_values, const int16_t* def_levels,
                      const int16_t* rep_levels) {
    int64_t values_to_write = 0;
    // If the field is required and non-repeated, there are no definition levels
    if (descr_->max_definition_level() > 0) {
      for (int64_t i = 0; i < num_values; ++i) {
        if (def_levels[i] == descr_->max_definition_level()) {
          ++values_to_write;
        }
      }

      WriteDefinitionLevels(num_values, def_levels);
    } else {
      // Required field, write all values
      values_to_write = num_values;
    }

    // Not present for non-repeated fields
    if (descr_->max_repetition_level() > 0) {
      // A row could include more than one value
      // Count the occasions where we start a new row
      for (int64_t i = 0; i < num_values; ++i) {
        if (rep_levels[i] == 0) {
          rows_written_++;
        }
      }

      WriteRepetitionLevels(num_values, rep_levels);
    } else {
      // Each value is exactly one row
      rows_written_ += static_cast<int>(num_values);
    }
    return values_to_write;
  }

  // This method will always update the three output parameters,
  // out_values_to_write, out_spaced_values_to_write and null_count.  Additionally
  // it will update the validity bitmap if required (i.e. if at least one level
  // of nullable structs directly precede the leaf node).
  void MaybeCalculateValidityBits(const int16_t* def_levels, int64_t batch_size,
                                  int64_t* out_values_to_write,
                                  int64_t* out_spaced_values_to_write,
                                  int64_t* null_count) {
    if (bits_buffer_ == nullptr) {
      if (level_info_.def_level == 0) {
        // In this case def levels should be null and we only
        // need to output counts which will always be equal to
        // the batch size passed in (max def_level == 0 indicates
        // there cannot be repeated or null fields).
        DCHECK_EQ(def_levels, nullptr);
        *out_values_to_write = batch_size;
        *out_spaced_values_to_write = batch_size;
        *null_count = 0;
      } else {
        for (int x = 0; x < batch_size; x++) {
          *out_values_to_write += def_levels[x] == level_info_.def_level ? 1 : 0;
          *out_spaced_values_to_write +=
              def_levels[x] >= level_info_.repeated_ancestor_def_level ? 1 : 0;
        }
        *null_count = *out_values_to_write - *out_spaced_values_to_write;
      }
      return;
    }
    // Shrink to fit possible causes another allocation, and would only be necessary
    // on the last batch.
    int64_t new_bitmap_size = BitUtil::BytesForBits(batch_size);
    if (new_bitmap_size != bits_buffer_->size()) {
      PARQUET_THROW_NOT_OK(
          bits_buffer_->Resize(new_bitmap_size, /*shrink_to_fit=*/false));
      bits_buffer_->ZeroPadding();
    }
    internal::ValidityBitmapInputOutput io;
    io.valid_bits = bits_buffer_->mutable_data();
    io.values_read_upper_bound = batch_size;
    internal::DefLevelsToBitmap(def_levels, batch_size, level_info_, &io);
    *out_values_to_write = io.values_read - io.null_count;
    *out_spaced_values_to_write = io.values_read;
    *null_count = io.null_count;
  }

  Result<std::shared_ptr<Array>> MaybeReplaceValidity(std::shared_ptr<Array> array,
                                                      int64_t new_null_count,
                                                      ::arrow::MemoryPool* memory_pool) {
    if (bits_buffer_ == nullptr) {
      return array;
    }
    std::vector<std::shared_ptr<Buffer>> buffers = array->data()->buffers;
    if (buffers.empty()) {
      return array;
    }
    buffers[0] = bits_buffer_;
    // Should be a leaf array.
    DCHECK_GT(buffers.size(), 1);
    ValueBufferSlicer slicer{memory_pool, /*buffer=*/nullptr};
    if (array->data()->offset > 0) {
      RETURN_NOT_OK(::arrow::VisitArrayInline(*array, &slicer));
      buffers[1] = slicer.buffer_;
    }
    return ::arrow::MakeArray(std::make_shared<ArrayData>(
        array->type(), array->length(), std::move(buffers), new_null_count));
  }

  void WriteLevelsSpaced(int64_t num_levels, const int16_t* def_levels,
                         const int16_t* rep_levels) {
    // If the field is required and non-repeated, there are no definition levels
    if (descr_->max_definition_level() > 0) {
      WriteDefinitionLevels(num_levels, def_levels);
    }
    // Not present for non-repeated fields
    if (descr_->max_repetition_level() > 0) {
      // A row could include more than one value
      // Count the occasions where we start a new row
      for (int64_t i = 0; i < num_levels; ++i) {
        if (rep_levels[i] == 0) {
          rows_written_++;
        }
      }
      WriteRepetitionLevels(num_levels, rep_levels);
    } else {
      // Each value is exactly one row
      rows_written_ += static_cast<int>(num_levels);
    }
  }

  void CommitWriteAndCheckPageLimit(int64_t num_levels, int64_t num_values) {
    num_buffered_values_ += num_levels;
    num_buffered_encoded_values_ += num_values;

    if (current_encoder_->EstimatedDataEncodedSize() >= properties_->data_pagesize()) {
      AddDataPage();
    }
  }

  void FallbackToPlainEncoding() {
    if (IsDictionaryEncoding(current_encoder_->encoding())) {
      WriteDictionaryPage();
      // Serialize the buffered Dictionary Indices
      FlushBufferedDataPages();
      fallback_ = true;
      // Only PLAIN encoding is supported for fallback in V1
      current_encoder_ = MakeEncoder(DType::type_num, Encoding::PLAIN, false, descr_,
                                     properties_->memory_pool());
      encoding_ = Encoding::PLAIN;
    }
  }

  // Checks if the Dictionary Page size limit is reached
  // If the limit is reached, the Dictionary and Data Pages are serialized
  // The encoding is switched to PLAIN
  //
  // Only one Dictionary Page is written.
  // Fallback to PLAIN if dictionary page limit is reached.
  void CheckDictionarySizeLimit() {
    if (!has_dictionary_ || fallback_) {
      // Either not using dictionary encoding, or we have already fallen back
      // to PLAIN encoding because the size threshold was reached
      return;
    }

    // We have to dynamic cast here because TypedEncoder<Type> as some compilers
    // don't want to cast through virtual inheritance
    auto dict_encoder = dynamic_cast<DictEncoder<DType>*>(current_encoder_.get());
    if (dict_encoder->dict_encoded_size() >= properties_->dictionary_pagesize_limit()) {
      FallbackToPlainEncoding();
    }
  }

  void WriteValues(const T* values, int64_t num_values, int64_t num_nulls) {
    dynamic_cast<ValueEncoderType*>(current_encoder_.get())
        ->Put(values, static_cast<int>(num_values));
    if (page_statistics_ != nullptr) {
      page_statistics_->Update(values, num_values, num_nulls);
    }
  }

  void WriteValuesSpaced(const T* values, int64_t num_values, int64_t num_spaced_values,
                         const uint8_t* valid_bits, int64_t valid_bits_offset) {
    if (num_values != num_spaced_values) {
      dynamic_cast<ValueEncoderType*>(current_encoder_.get())
          ->PutSpaced(values, static_cast<int>(num_spaced_values), valid_bits,
                      valid_bits_offset);
    } else {
      dynamic_cast<ValueEncoderType*>(current_encoder_.get())
          ->Put(values, static_cast<int>(num_values));
    }
    if (page_statistics_ != nullptr) {
      const int64_t num_nulls = num_spaced_values - num_values;
      page_statistics_->UpdateSpaced(values, valid_bits, valid_bits_offset, num_values,
                                     num_nulls);
    }
  }
};

template <typename DType>
Status TypedColumnWriterImpl<DType>::WriteArrowDictionary(
    const int16_t* def_levels, const int16_t* rep_levels, int64_t num_levels,
    const ::arrow::Array& array, ArrowWriteContext* ctx, bool maybe_parent_nulls) {
  // If this is the first time writing a DictionaryArray, then there's
  // a few possible paths to take:
  //
  // - If dictionary encoding is not enabled, convert to densely
  //   encoded and call WriteArrow
  // - Dictionary encoding enabled
  //   - If this is the first time this is called, then we call
  //     PutDictionary into the encoder and then PutIndices on each
  //     chunk. We store the dictionary that was written in
  //     preserved_dictionary_ so that subsequent calls to this method
  //     can make sure the dictionary has not changed
  //   - On subsequent calls, we have to check whether the dictionary
  //     has changed. If it has, then we trigger the varying
  //     dictionary path and materialize each chunk and then call
  //     WriteArrow with that
  auto WriteDense = [&] {
    std::shared_ptr<::arrow::Array> dense_array;
    RETURN_NOT_OK(
        ConvertDictionaryToDense(array, properties_->memory_pool(), &dense_array));
    return WriteArrowDense(def_levels, rep_levels, num_levels, *dense_array, ctx,
                           maybe_parent_nulls);
  };

  if (!IsDictionaryEncoding(current_encoder_->encoding()) ||
      !DictionaryDirectWriteSupported(array)) {
    // No longer dictionary-encoding for whatever reason, maybe we never were
    // or we decided to stop. Note that WriteArrow can be invoked multiple
    // times with both dense and dictionary-encoded versions of the same data
    // without a problem. Any dense data will be hashed to indices until the
    // dictionary page limit is reached, at which everything (dictionary and
    // dense) will fall back to plain encoding
    return WriteDense();
  }

  auto dict_encoder = dynamic_cast<DictEncoder<DType>*>(current_encoder_.get());
  const auto& data = checked_cast<const ::arrow::DictionaryArray&>(array);
  std::shared_ptr<::arrow::Array> dictionary = data.dictionary();
  std::shared_ptr<::arrow::Array> indices = data.indices();

  int64_t value_offset = 0;
  auto WriteIndicesChunk = [&](int64_t offset, int64_t batch_size) {
    int64_t batch_num_values = 0;
    int64_t batch_num_spaced_values = 0;
    int64_t null_count = ::arrow::kUnknownNullCount;
    // Bits is not null for nullable values.  At this point in the code we can't determine
    // if the leaf array has the same null values as any parents it might have had so we
    // need to recompute it from def levels.
    MaybeCalculateValidityBits(AddIfNotNull(def_levels, offset), batch_size,
                               &batch_num_values, &batch_num_spaced_values, &null_count);
    WriteLevelsSpaced(batch_size, AddIfNotNull(def_levels, offset),
                      AddIfNotNull(rep_levels, offset));
    std::shared_ptr<Array> writeable_indices =
        indices->Slice(value_offset, batch_num_spaced_values);
    PARQUET_ASSIGN_OR_THROW(
        writeable_indices,
        MaybeReplaceValidity(writeable_indices, null_count, ctx->memory_pool));
    dict_encoder->PutIndices(*writeable_indices);
    CommitWriteAndCheckPageLimit(batch_size, batch_num_values);
    value_offset += batch_num_spaced_values;
  };

  // Handle seeing dictionary for the first time
  if (!preserved_dictionary_) {
    // It's a new dictionary. Call PutDictionary and keep track of it
    PARQUET_CATCH_NOT_OK(dict_encoder->PutDictionary(*dictionary));

    // If there were duplicate value in the dictionary, the encoder's memo table
    // will be out of sync with the indices in the Arrow array.
    // The easiest solution for this uncommon case is to fallback to plain encoding.
    if (dict_encoder->num_entries() != dictionary->length()) {
      PARQUET_CATCH_NOT_OK(FallbackToPlainEncoding());
      return WriteDense();
    }

    // TODO(wesm): If some dictionary values are unobserved, then the
    // statistics will be inaccurate. Do we care enough to fix it?
    if (page_statistics_ != nullptr) {
      PARQUET_CATCH_NOT_OK(page_statistics_->Update(*dictionary));
    }
    preserved_dictionary_ = dictionary;
  } else if (!dictionary->Equals(*preserved_dictionary_)) {
    // Dictionary has changed
    PARQUET_CATCH_NOT_OK(FallbackToPlainEncoding());
    return WriteDense();
  }

  PARQUET_CATCH_NOT_OK(
      DoInBatches(num_levels, properties_->write_batch_size(), WriteIndicesChunk));
  return Status::OK();
}

// ----------------------------------------------------------------------
// Direct Arrow write path

template <typename ParquetType, typename ArrowType, typename Enable = void>
struct SerializeFunctor {
  using ArrowCType = typename ArrowType::c_type;
  using ArrayType = typename ::arrow::TypeTraits<ArrowType>::ArrayType;
  using ParquetCType = typename ParquetType::c_type;
  Status Serialize(const ArrayType& array, ArrowWriteContext*, ParquetCType* out) {
    const ArrowCType* input = array.raw_values();
    if (array.null_count() > 0) {
      for (int i = 0; i < array.length(); i++) {
        out[i] = static_cast<ParquetCType>(input[i]);
      }
    } else {
      std::copy(input, input + array.length(), out);
    }
    return Status::OK();
  }
};

template <typename ParquetType, typename ArrowType>
Status WriteArrowSerialize(const ::arrow::Array& array, int64_t num_levels,
                           const int16_t* def_levels, const int16_t* rep_levels,
                           ArrowWriteContext* ctx, TypedColumnWriter<ParquetType>* writer,
                           bool maybe_parent_nulls) {
  using ParquetCType = typename ParquetType::c_type;
  using ArrayType = typename ::arrow::TypeTraits<ArrowType>::ArrayType;

  ParquetCType* buffer = nullptr;
  PARQUET_THROW_NOT_OK(ctx->GetScratchData<ParquetCType>(array.length(), &buffer));

  SerializeFunctor<ParquetType, ArrowType> functor;
  RETURN_NOT_OK(functor.Serialize(checked_cast<const ArrayType&>(array), ctx, buffer));
  bool no_nulls =
      writer->descr()->schema_node()->is_required() || (array.null_count() == 0);
  if (!maybe_parent_nulls && no_nulls) {
    PARQUET_CATCH_NOT_OK(writer->WriteBatch(num_levels, def_levels, rep_levels, buffer));
  } else {
    PARQUET_CATCH_NOT_OK(writer->WriteBatchSpaced(num_levels, def_levels, rep_levels,
                                                  array.null_bitmap_data(),
                                                  array.offset(), buffer));
  }
  return Status::OK();
}

template <typename ParquetType>
Status WriteArrowZeroCopy(const ::arrow::Array& array, int64_t num_levels,
                          const int16_t* def_levels, const int16_t* rep_levels,
                          ArrowWriteContext* ctx, TypedColumnWriter<ParquetType>* writer,
                          bool maybe_parent_nulls) {
  using T = typename ParquetType::c_type;
  const auto& data = static_cast<const ::arrow::PrimitiveArray&>(array);
  const T* values = nullptr;
  // The values buffer may be null if the array is empty (ARROW-2744)
  if (data.values() != nullptr) {
    values = reinterpret_cast<const T*>(data.values()->data()) + data.offset();
  } else {
    DCHECK_EQ(data.length(), 0);
  }
  bool no_nulls =
      writer->descr()->schema_node()->is_required() || (array.null_count() == 0);

  if (!maybe_parent_nulls && no_nulls) {
    PARQUET_CATCH_NOT_OK(writer->WriteBatch(num_levels, def_levels, rep_levels, values));
  } else {
    PARQUET_CATCH_NOT_OK(writer->WriteBatchSpaced(num_levels, def_levels, rep_levels,
                                                  data.null_bitmap_data(), data.offset(),
                                                  values));
  }
  return Status::OK();
}

#define WRITE_SERIALIZE_CASE(ArrowEnum, ArrowType, ParquetType)  \
  case ::arrow::Type::ArrowEnum:                                 \
    return WriteArrowSerialize<ParquetType, ::arrow::ArrowType>( \
        array, num_levels, def_levels, rep_levels, ctx, this, maybe_parent_nulls);

#define WRITE_ZERO_COPY_CASE(ArrowEnum, ArrowType, ParquetType)                       \
  case ::arrow::Type::ArrowEnum:                                                      \
    return WriteArrowZeroCopy<ParquetType>(array, num_levels, def_levels, rep_levels, \
                                           ctx, this, maybe_parent_nulls);

#define ARROW_UNSUPPORTED()                                          \
  std::stringstream ss;                                              \
  ss << "Arrow type " << array.type()->ToString()                    \
     << " cannot be written to Parquet type " << descr_->ToString(); \
  return Status::Invalid(ss.str());

// ----------------------------------------------------------------------
// Write Arrow to BooleanType

template <>
struct SerializeFunctor<BooleanType, ::arrow::BooleanType> {
  Status Serialize(const ::arrow::BooleanArray& data, ArrowWriteContext*, bool* out) {
    for (int i = 0; i < data.length(); i++) {
      *out++ = data.Value(i);
    }
    return Status::OK();
  }
};

template <>
Status TypedColumnWriterImpl<BooleanType>::WriteArrowDense(
    const int16_t* def_levels, const int16_t* rep_levels, int64_t num_levels,
    const ::arrow::Array& array, ArrowWriteContext* ctx, bool maybe_parent_nulls) {
  if (array.type_id() != ::arrow::Type::BOOL) {
    ARROW_UNSUPPORTED();
  }
  return WriteArrowSerialize<BooleanType, ::arrow::BooleanType>(
      array, num_levels, def_levels, rep_levels, ctx, this, maybe_parent_nulls);
}

// ----------------------------------------------------------------------
// Write Arrow types to INT32

template <>
struct SerializeFunctor<Int32Type, ::arrow::Date64Type> {
  Status Serialize(const ::arrow::Date64Array& array, ArrowWriteContext*, int32_t* out) {
    const int64_t* input = array.raw_values();
    for (int i = 0; i < array.length(); i++) {
      *out++ = static_cast<int32_t>(*input++ / 86400000);
    }
    return Status::OK();
  }
};

template <>
struct SerializeFunctor<Int32Type, ::arrow::Time32Type> {
  Status Serialize(const ::arrow::Time32Array& array, ArrowWriteContext*, int32_t* out) {
    const int32_t* input = array.raw_values();
    const auto& type = static_cast<const ::arrow::Time32Type&>(*array.type());
    if (type.unit() == ::arrow::TimeUnit::SECOND) {
      for (int i = 0; i < array.length(); i++) {
        out[i] = input[i] * 1000;
      }
    } else {
      std::copy(input, input + array.length(), out);
    }
    return Status::OK();
  }
};

template <>
Status TypedColumnWriterImpl<Int32Type>::WriteArrowDense(
    const int16_t* def_levels, const int16_t* rep_levels, int64_t num_levels,
    const ::arrow::Array& array, ArrowWriteContext* ctx, bool maybe_parent_nulls) {
  switch (array.type()->id()) {
    case ::arrow::Type::NA: {
      PARQUET_CATCH_NOT_OK(WriteBatch(num_levels, def_levels, rep_levels, nullptr));
    } break;
      WRITE_SERIALIZE_CASE(INT8, Int8Type, Int32Type)
      WRITE_SERIALIZE_CASE(UINT8, UInt8Type, Int32Type)
      WRITE_SERIALIZE_CASE(INT16, Int16Type, Int32Type)
      WRITE_SERIALIZE_CASE(UINT16, UInt16Type, Int32Type)
      WRITE_SERIALIZE_CASE(UINT32, UInt32Type, Int32Type)
      WRITE_ZERO_COPY_CASE(INT32, Int32Type, Int32Type)
      WRITE_ZERO_COPY_CASE(DATE32, Date32Type, Int32Type)
      WRITE_SERIALIZE_CASE(DATE64, Date64Type, Int32Type)
      WRITE_SERIALIZE_CASE(TIME32, Time32Type, Int32Type)
    default:
      ARROW_UNSUPPORTED()
  }
  return Status::OK();
}

// ----------------------------------------------------------------------
// Write Arrow to Int64 and Int96

#define INT96_CONVERT_LOOP(ConversionFunction) \
  for (int64_t i = 0; i < array.length(); i++) ConversionFunction(input[i], &out[i]);

template <>
struct SerializeFunctor<Int96Type, ::arrow::TimestampType> {
  Status Serialize(const ::arrow::TimestampArray& array, ArrowWriteContext*, Int96* out) {
    const int64_t* input = array.raw_values();
    const auto& type = static_cast<const ::arrow::TimestampType&>(*array.type());
    switch (type.unit()) {
      case ::arrow::TimeUnit::NANO:
        INT96_CONVERT_LOOP(internal::NanosecondsToImpalaTimestamp);
        break;
      case ::arrow::TimeUnit::MICRO:
        INT96_CONVERT_LOOP(internal::MicrosecondsToImpalaTimestamp);
        break;
      case ::arrow::TimeUnit::MILLI:
        INT96_CONVERT_LOOP(internal::MillisecondsToImpalaTimestamp);
        break;
      case ::arrow::TimeUnit::SECOND:
        INT96_CONVERT_LOOP(internal::SecondsToImpalaTimestamp);
        break;
    }
    return Status::OK();
  }
};

#define COERCE_DIVIDE -1
#define COERCE_INVALID 0
#define COERCE_MULTIPLY +1

static std::pair<int, int64_t> kTimestampCoercionFactors[4][4] = {
    // from seconds ...
    {{COERCE_INVALID, 0},                      // ... to seconds
     {COERCE_MULTIPLY, 1000},                  // ... to millis
     {COERCE_MULTIPLY, 1000000},               // ... to micros
     {COERCE_MULTIPLY, INT64_C(1000000000)}},  // ... to nanos
    // from millis ...
    {{COERCE_INVALID, 0},
     {COERCE_MULTIPLY, 1},
     {COERCE_MULTIPLY, 1000},
     {COERCE_MULTIPLY, 1000000}},
    // from micros ...
    {{COERCE_INVALID, 0},
     {COERCE_DIVIDE, 1000},
     {COERCE_MULTIPLY, 1},
     {COERCE_MULTIPLY, 1000}},
    // from nanos ...
    {{COERCE_INVALID, 0},
     {COERCE_DIVIDE, 1000000},
     {COERCE_DIVIDE, 1000},
     {COERCE_MULTIPLY, 1}}};

template <>
struct SerializeFunctor<Int64Type, ::arrow::TimestampType> {
  Status Serialize(const ::arrow::TimestampArray& array, ArrowWriteContext* ctx,
                   int64_t* out) {
    const auto& source_type = static_cast<const ::arrow::TimestampType&>(*array.type());
    auto source_unit = source_type.unit();
    const int64_t* values = array.raw_values();

    ::arrow::TimeUnit::type target_unit = ctx->properties->coerce_timestamps_unit();
    auto target_type = ::arrow::timestamp(target_unit);
    bool truncation_allowed = ctx->properties->truncated_timestamps_allowed();

    auto DivideBy = [&](const int64_t factor) {
      for (int64_t i = 0; i < array.length(); i++) {
        if (!truncation_allowed && array.IsValid(i) && (values[i] % factor != 0)) {
          return Status::Invalid("Casting from ", source_type.ToString(), " to ",
                                 target_type->ToString(),
                                 " would lose data: ", values[i]);
        }
        out[i] = values[i] / factor;
      }
      return Status::OK();
    };

    auto MultiplyBy = [&](const int64_t factor) {
      for (int64_t i = 0; i < array.length(); i++) {
        out[i] = values[i] * factor;
      }
      return Status::OK();
    };

    const auto& coercion = kTimestampCoercionFactors[static_cast<int>(source_unit)]
                                                    [static_cast<int>(target_unit)];

    // .first -> coercion operation; .second -> scale factor
    DCHECK_NE(coercion.first, COERCE_INVALID);
    return coercion.first == COERCE_DIVIDE ? DivideBy(coercion.second)
                                           : MultiplyBy(coercion.second);
  }
};

#undef COERCE_DIVIDE
#undef COERCE_INVALID
#undef COERCE_MULTIPLY

Status WriteTimestamps(const ::arrow::Array& values, int64_t num_levels,
                       const int16_t* def_levels, const int16_t* rep_levels,
                       ArrowWriteContext* ctx, TypedColumnWriter<Int64Type>* writer,
                       bool maybe_parent_nulls) {
  const auto& source_type = static_cast<const ::arrow::TimestampType&>(*values.type());

  auto WriteCoerce = [&](const ArrowWriterProperties* properties) {
    ArrowWriteContext temp_ctx = *ctx;
    temp_ctx.properties = properties;
    return WriteArrowSerialize<Int64Type, ::arrow::TimestampType>(
        values, num_levels, def_levels, rep_levels, &temp_ctx, writer,
        maybe_parent_nulls);
  };

  if (ctx->properties->coerce_timestamps_enabled()) {
    // User explicitly requested coercion to specific unit
    if (source_type.unit() == ctx->properties->coerce_timestamps_unit()) {
      // No data conversion necessary
      return WriteArrowZeroCopy<Int64Type>(values, num_levels, def_levels, rep_levels,
                                           ctx, writer, maybe_parent_nulls);
    } else {
      return WriteCoerce(ctx->properties);
    }
  } else if (writer->properties()->version() == ParquetVersion::PARQUET_1_0 &&
             source_type.unit() == ::arrow::TimeUnit::NANO) {
    // Absent superseding user instructions, when writing Parquet version 1.0 files,
    // timestamps in nanoseconds are coerced to microseconds
    std::shared_ptr<ArrowWriterProperties> properties =
        (ArrowWriterProperties::Builder())
            .coerce_timestamps(::arrow::TimeUnit::MICRO)
            ->disallow_truncated_timestamps()
            ->build();
    return WriteCoerce(properties.get());
  } else if (source_type.unit() == ::arrow::TimeUnit::SECOND) {
    // Absent superseding user instructions, timestamps in seconds are coerced to
    // milliseconds
    std::shared_ptr<ArrowWriterProperties> properties =
        (ArrowWriterProperties::Builder())
            .coerce_timestamps(::arrow::TimeUnit::MILLI)
            ->build();
    return WriteCoerce(properties.get());
  } else {
    // No data conversion necessary
    return WriteArrowZeroCopy<Int64Type>(values, num_levels, def_levels, rep_levels, ctx,
                                         writer, maybe_parent_nulls);
  }
}

template <>
Status TypedColumnWriterImpl<Int64Type>::WriteArrowDense(
    const int16_t* def_levels, const int16_t* rep_levels, int64_t num_levels,
    const ::arrow::Array& array, ArrowWriteContext* ctx, bool maybe_parent_nulls) {
  switch (array.type()->id()) {
    case ::arrow::Type::TIMESTAMP:
      return WriteTimestamps(array, num_levels, def_levels, rep_levels, ctx, this,
                             maybe_parent_nulls);
      WRITE_ZERO_COPY_CASE(INT64, Int64Type, Int64Type)
      WRITE_SERIALIZE_CASE(UINT32, UInt32Type, Int64Type)
      WRITE_SERIALIZE_CASE(UINT64, UInt64Type, Int64Type)
      WRITE_ZERO_COPY_CASE(TIME64, Time64Type, Int64Type)
    default:
      ARROW_UNSUPPORTED();
  }
}

template <>
Status TypedColumnWriterImpl<Int96Type>::WriteArrowDense(
    const int16_t* def_levels, const int16_t* rep_levels, int64_t num_levels,
    const ::arrow::Array& array, ArrowWriteContext* ctx, bool maybe_parent_nulls) {
  if (array.type_id() != ::arrow::Type::TIMESTAMP) {
    ARROW_UNSUPPORTED();
  }
  return WriteArrowSerialize<Int96Type, ::arrow::TimestampType>(
      array, num_levels, def_levels, rep_levels, ctx, this, maybe_parent_nulls);
}

// ----------------------------------------------------------------------
// Floating point types

template <>
Status TypedColumnWriterImpl<FloatType>::WriteArrowDense(
    const int16_t* def_levels, const int16_t* rep_levels, int64_t num_levels,
    const ::arrow::Array& array, ArrowWriteContext* ctx, bool maybe_parent_nulls) {
  if (array.type_id() != ::arrow::Type::FLOAT) {
    ARROW_UNSUPPORTED();
  }
  return WriteArrowZeroCopy<FloatType>(array, num_levels, def_levels, rep_levels, ctx,
                                       this, maybe_parent_nulls);
}

template <>
Status TypedColumnWriterImpl<DoubleType>::WriteArrowDense(
    const int16_t* def_levels, const int16_t* rep_levels, int64_t num_levels,
    const ::arrow::Array& array, ArrowWriteContext* ctx, bool maybe_parent_nulls) {
  if (array.type_id() != ::arrow::Type::DOUBLE) {
    ARROW_UNSUPPORTED();
  }
  return WriteArrowZeroCopy<DoubleType>(array, num_levels, def_levels, rep_levels, ctx,
                                        this, maybe_parent_nulls);
}

// ----------------------------------------------------------------------
// Write Arrow to BYTE_ARRAY

template <>
Status TypedColumnWriterImpl<ByteArrayType>::WriteArrowDense(
    const int16_t* def_levels, const int16_t* rep_levels, int64_t num_levels,
    const ::arrow::Array& array, ArrowWriteContext* ctx, bool maybe_parent_nulls) {
  if (!::arrow::is_base_binary_like(array.type()->id())) {
    ARROW_UNSUPPORTED();
  }

  int64_t value_offset = 0;
  auto WriteChunk = [&](int64_t offset, int64_t batch_size) {
    int64_t batch_num_values = 0;
    int64_t batch_num_spaced_values = 0;
    int64_t null_count = 0;

    MaybeCalculateValidityBits(AddIfNotNull(def_levels, offset), batch_size,
                               &batch_num_values, &batch_num_spaced_values, &null_count);
    WriteLevelsSpaced(batch_size, AddIfNotNull(def_levels, offset),
                      AddIfNotNull(rep_levels, offset));
    std::shared_ptr<Array> data_slice =
        array.Slice(value_offset, batch_num_spaced_values);
    PARQUET_ASSIGN_OR_THROW(
        data_slice, MaybeReplaceValidity(data_slice, null_count, ctx->memory_pool));

    current_encoder_->Put(*data_slice);
    if (page_statistics_ != nullptr) {
      page_statistics_->Update(*data_slice);
    }
    CommitWriteAndCheckPageLimit(batch_size, batch_num_values);
    CheckDictionarySizeLimit();
    value_offset += batch_num_spaced_values;
  };

  PARQUET_CATCH_NOT_OK(
      DoInBatches(num_levels, properties_->write_batch_size(), WriteChunk));
  return Status::OK();
}

// ----------------------------------------------------------------------
// Write Arrow to FIXED_LEN_BYTE_ARRAY

template <typename ParquetType, typename ArrowType>
struct SerializeFunctor<
    ParquetType, ArrowType,
    ::arrow::enable_if_t<::arrow::is_fixed_size_binary_type<ArrowType>::value &&
                         !::arrow::is_decimal_type<ArrowType>::value>> {
  Status Serialize(const ::arrow::FixedSizeBinaryArray& array, ArrowWriteContext*,
                   FLBA* out) {
    if (array.null_count() == 0) {
      // no nulls, just dump the data
      // todo(advancedxy): use a writeBatch to avoid this step
      for (int64_t i = 0; i < array.length(); i++) {
        out[i] = FixedLenByteArray(array.GetValue(i));
      }
    } else {
      for (int64_t i = 0; i < array.length(); i++) {
        if (array.IsValid(i)) {
          out[i] = FixedLenByteArray(array.GetValue(i));
        }
      }
    }
    return Status::OK();
  }
};

// ----------------------------------------------------------------------
// Write Arrow to Decimal128

// Requires a custom serializer because decimal in parquet are in big-endian
// format. Thus, a temporary local buffer is required.
template <typename ParquetType, typename ArrowType>
struct SerializeFunctor<ParquetType, ArrowType, ::arrow::enable_if_decimal<ArrowType>> {
  Status Serialize(const typename ::arrow::TypeTraits<ArrowType>::ArrayType& array,
                   ArrowWriteContext* ctx, FLBA* out) {
    AllocateScratch(array, ctx);
    auto offset = Offset(array);

    if (array.null_count() == 0) {
      for (int64_t i = 0; i < array.length(); i++) {
        out[i] = FixDecimalEndianess<ArrowType::kByteWidth>(array.GetValue(i), offset);
      }
    } else {
      for (int64_t i = 0; i < array.length(); i++) {
        out[i] = array.IsValid(i) ? FixDecimalEndianess<ArrowType::kByteWidth>(
                                        array.GetValue(i), offset)
                                  : FixedLenByteArray();
      }
    }

    return Status::OK();
  }

  // Parquet's Decimal are stored with FixedLength values where the length is
  // proportional to the precision. Arrow's Decimal are always stored with 16/32
  // bytes. Thus the internal FLBA pointer must be adjusted by the offset calculated
  // here.
  int32_t Offset(const Array& array) {
    auto decimal_type = checked_pointer_cast<::arrow::DecimalType>(array.type());
    return decimal_type->byte_width() -
           ::arrow::DecimalType::DecimalSize(decimal_type->precision());
  }

  void AllocateScratch(const typename ::arrow::TypeTraits<ArrowType>::ArrayType& array,
                       ArrowWriteContext* ctx) {
    int64_t non_null_count = array.length() - array.null_count();
    int64_t size = non_null_count * ArrowType::kByteWidth;
    scratch_buffer = AllocateBuffer(ctx->memory_pool, size);
    scratch = reinterpret_cast<int64_t*>(scratch_buffer->mutable_data());
  }

  template <int byte_width>
  FixedLenByteArray FixDecimalEndianess(const uint8_t* in, int64_t offset) {
    const auto* u64_in = reinterpret_cast<const int64_t*>(in);
    auto out = reinterpret_cast<const uint8_t*>(scratch) + offset;
    static_assert(byte_width == 16 || byte_width == 32,
                  "only 16 and 32 byte Decimals supported");
    if (byte_width == 32) {
      *scratch++ = ::arrow::BitUtil::ToBigEndian(u64_in[3]);
      *scratch++ = ::arrow::BitUtil::ToBigEndian(u64_in[2]);
      *scratch++ = ::arrow::BitUtil::ToBigEndian(u64_in[1]);
      *scratch++ = ::arrow::BitUtil::ToBigEndian(u64_in[0]);
    } else {
      *scratch++ = ::arrow::BitUtil::ToBigEndian(u64_in[1]);
      *scratch++ = ::arrow::BitUtil::ToBigEndian(u64_in[0]);
    }
    return FixedLenByteArray(out);
  }

  std::shared_ptr<ResizableBuffer> scratch_buffer;
  int64_t* scratch;
};

template <>
Status TypedColumnWriterImpl<FLBAType>::WriteArrowDense(
    const int16_t* def_levels, const int16_t* rep_levels, int64_t num_levels,
    const ::arrow::Array& array, ArrowWriteContext* ctx, bool maybe_parent_nulls) {
  switch (array.type()->id()) {
    WRITE_SERIALIZE_CASE(FIXED_SIZE_BINARY, FixedSizeBinaryType, FLBAType)
    WRITE_SERIALIZE_CASE(DECIMAL128, Decimal128Type, FLBAType)
    WRITE_SERIALIZE_CASE(DECIMAL256, Decimal256Type, FLBAType)
    default:
      break;
  }
  return Status::OK();
}

// ----------------------------------------------------------------------
// Dynamic column writer constructor

std::shared_ptr<ColumnWriter> ColumnWriter::Make(ColumnChunkMetaDataBuilder* metadata,
                                                 std::unique_ptr<PageWriter> pager,
                                                 const WriterProperties* properties) {
  const ColumnDescriptor* descr = metadata->descr();
  const bool use_dictionary = properties->dictionary_enabled(descr->path()) &&
                              descr->physical_type() != Type::BOOLEAN;
  Encoding::type encoding = properties->encoding(descr->path());
  if (use_dictionary) {
    encoding = properties->dictionary_index_encoding();
  }
  switch (descr->physical_type()) {
    case Type::BOOLEAN:
      return std::make_shared<TypedColumnWriterImpl<BooleanType>>(
          metadata, std::move(pager), use_dictionary, encoding, properties);
    case Type::INT32:
      return std::make_shared<TypedColumnWriterImpl<Int32Type>>(
          metadata, std::move(pager), use_dictionary, encoding, properties);
    case Type::INT64:
      return std::make_shared<TypedColumnWriterImpl<Int64Type>>(
          metadata, std::move(pager), use_dictionary, encoding, properties);
    case Type::INT96:
      return std::make_shared<TypedColumnWriterImpl<Int96Type>>(
          metadata, std::move(pager), use_dictionary, encoding, properties);
    case Type::FLOAT:
      return std::make_shared<TypedColumnWriterImpl<FloatType>>(
          metadata, std::move(pager), use_dictionary, encoding, properties);
    case Type::DOUBLE:
      return std::make_shared<TypedColumnWriterImpl<DoubleType>>(
          metadata, std::move(pager), use_dictionary, encoding, properties);
    case Type::BYTE_ARRAY:
      return std::make_shared<TypedColumnWriterImpl<ByteArrayType>>(
          metadata, std::move(pager), use_dictionary, encoding, properties);
    case Type::FIXED_LEN_BYTE_ARRAY:
      return std::make_shared<TypedColumnWriterImpl<FLBAType>>(
          metadata, std::move(pager), use_dictionary, encoding, properties);
    default:
      ParquetException::NYI("type reader not implemented");
  }
  // Unreachable code, but suppress compiler warning
  return std::shared_ptr<ColumnWriter>(nullptr);
}

}  // namespace parquet