aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/apache/arrow/cpp/src/parquet/column_reader.h
blob: 8c48e4d7843d79a4459bff1458e1ae87226d2055 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

#pragma once

#include <cstdint>
#include <memory>
#include <utility>
#include <vector>

#include "parquet/exception.h"
#include "parquet/level_conversion.h"
#include "parquet/platform.h"
#include "parquet/schema.h"
#include "parquet/types.h"

namespace arrow {

class Array;
class ChunkedArray;

namespace BitUtil {
class BitReader;
}  // namespace BitUtil

namespace util {
class RleDecoder;
}  // namespace util

}  // namespace arrow

namespace parquet {

class Decryptor;
class Page;

// 16 MB is the default maximum page header size
static constexpr uint32_t kDefaultMaxPageHeaderSize = 16 * 1024 * 1024;

// 16 KB is the default expected page header size
static constexpr uint32_t kDefaultPageHeaderSize = 16 * 1024;

class PARQUET_EXPORT LevelDecoder {
 public:
  LevelDecoder();
  ~LevelDecoder();

  // Initialize the LevelDecoder state with new data
  // and return the number of bytes consumed
  int SetData(Encoding::type encoding, int16_t max_level, int num_buffered_values,
              const uint8_t* data, int32_t data_size);

  void SetDataV2(int32_t num_bytes, int16_t max_level, int num_buffered_values,
                 const uint8_t* data);

  // Decodes a batch of levels into an array and returns the number of levels decoded
  int Decode(int batch_size, int16_t* levels);

 private:
  int bit_width_;
  int num_values_remaining_;
  Encoding::type encoding_;
  std::unique_ptr<::arrow::util::RleDecoder> rle_decoder_;
  std::unique_ptr<::arrow::BitUtil::BitReader> bit_packed_decoder_;
  int16_t max_level_;
};

struct CryptoContext {
  CryptoContext(bool start_with_dictionary_page, int16_t rg_ordinal, int16_t col_ordinal,
                std::shared_ptr<Decryptor> meta, std::shared_ptr<Decryptor> data)
      : start_decrypt_with_dictionary_page(start_with_dictionary_page),
        row_group_ordinal(rg_ordinal),
        column_ordinal(col_ordinal),
        meta_decryptor(std::move(meta)),
        data_decryptor(std::move(data)) {}
  CryptoContext() {}

  bool start_decrypt_with_dictionary_page = false;
  int16_t row_group_ordinal = -1;
  int16_t column_ordinal = -1;
  std::shared_ptr<Decryptor> meta_decryptor;
  std::shared_ptr<Decryptor> data_decryptor;
};

// Abstract page iterator interface. This way, we can feed column pages to the
// ColumnReader through whatever mechanism we choose
class PARQUET_EXPORT PageReader {
 public:
  virtual ~PageReader() = default;

  static std::unique_ptr<PageReader> Open(
      std::shared_ptr<ArrowInputStream> stream, int64_t total_num_rows,
      Compression::type codec, ::arrow::MemoryPool* pool = ::arrow::default_memory_pool(),
      const CryptoContext* ctx = NULLPTR);

  // @returns: shared_ptr<Page>(nullptr) on EOS, std::shared_ptr<Page>
  // containing new Page otherwise
  virtual std::shared_ptr<Page> NextPage() = 0;

  virtual void set_max_page_header_size(uint32_t size) = 0;
};

class PARQUET_EXPORT ColumnReader {
 public:
  virtual ~ColumnReader() = default;

  static std::shared_ptr<ColumnReader> Make(
      const ColumnDescriptor* descr, std::unique_ptr<PageReader> pager,
      ::arrow::MemoryPool* pool = ::arrow::default_memory_pool());

  // Returns true if there are still values in this column.
  virtual bool HasNext() = 0;

  virtual Type::type type() const = 0;

  virtual const ColumnDescriptor* descr() const = 0;

  // Get the encoding that can be exposed by this reader. If it returns
  // dictionary encoding, then ReadBatchWithDictionary can be used to read data.
  //
  // \note API EXPERIMENTAL
  virtual ExposedEncoding GetExposedEncoding() = 0;

 protected:
  friend class RowGroupReader;
  // Set the encoding that can be exposed by this reader.
  //
  // \note API EXPERIMENTAL
  virtual void SetExposedEncoding(ExposedEncoding encoding) = 0;
};

// API to read values from a single column. This is a main client facing API.
template <typename DType>
class TypedColumnReader : public ColumnReader {
 public:
  typedef typename DType::c_type T;

  // Read a batch of repetition levels, definition levels, and values from the
  // column.
  //
  // Since null values are not stored in the values, the number of values read
  // may be less than the number of repetition and definition levels. With
  // nested data this is almost certainly true.
  //
  // Set def_levels or rep_levels to nullptr if you want to skip reading them.
  // This is only safe if you know through some other source that there are no
  // undefined values.
  //
  // To fully exhaust a row group, you must read batches until the number of
  // values read reaches the number of stored values according to the metadata.
  //
  // This API is the same for both V1 and V2 of the DataPage
  //
  // @returns: actual number of levels read (see values_read for number of values read)
  virtual int64_t ReadBatch(int64_t batch_size, int16_t* def_levels, int16_t* rep_levels,
                            T* values, int64_t* values_read) = 0;

  /// Read a batch of repetition levels, definition levels, and values from the
  /// column and leave spaces for null entries on the lowest level in the values
  /// buffer.
  ///
  /// In comparison to ReadBatch the length of repetition and definition levels
  /// is the same as of the number of values read for max_definition_level == 1.
  /// In the case of max_definition_level > 1, the repetition and definition
  /// levels are larger than the values but the values include the null entries
  /// with definition_level == (max_definition_level - 1).
  ///
  /// To fully exhaust a row group, you must read batches until the number of
  /// values read reaches the number of stored values according to the metadata.
  ///
  /// @param batch_size the number of levels to read
  /// @param[out] def_levels The Parquet definition levels, output has
  ///   the length levels_read.
  /// @param[out] rep_levels The Parquet repetition levels, output has
  ///   the length levels_read.
  /// @param[out] values The values in the lowest nested level including
  ///   spacing for nulls on the lowest levels; output has the length
  ///   values_read.
  /// @param[out] valid_bits Memory allocated for a bitmap that indicates if
  ///   the row is null or on the maximum definition level. For performance
  ///   reasons the underlying buffer should be able to store 1 bit more than
  ///   required. If this requires an additional byte, this byte is only read
  ///   but never written to.
  /// @param valid_bits_offset The offset in bits of the valid_bits where the
  ///   first relevant bit resides.
  /// @param[out] levels_read The number of repetition/definition levels that were read.
  /// @param[out] values_read The number of values read, this includes all
  ///   non-null entries as well as all null-entries on the lowest level
  ///   (i.e. definition_level == max_definition_level - 1)
  /// @param[out] null_count The number of nulls on the lowest levels.
  ///   (i.e. (values_read - null_count) is total number of non-null entries)
  ///
  /// \deprecated Since 4.0.0
  ARROW_DEPRECATED("Doesn't handle nesting correctly and unused outside of unit tests.")
  virtual int64_t ReadBatchSpaced(int64_t batch_size, int16_t* def_levels,
                                  int16_t* rep_levels, T* values, uint8_t* valid_bits,
                                  int64_t valid_bits_offset, int64_t* levels_read,
                                  int64_t* values_read, int64_t* null_count) = 0;

  // Skip reading levels
  // Returns the number of levels skipped
  virtual int64_t Skip(int64_t num_rows_to_skip) = 0;

  // Read a batch of repetition levels, definition levels, and indices from the
  // column. And read the dictionary if a dictionary page is encountered during
  // reading pages. This API is similar to ReadBatch(), with ability to read
  // dictionary and indices. It is only valid to call this method  when the reader can
  // expose dictionary encoding. (i.e., the reader's GetExposedEncoding() returns
  // DICTIONARY).
  //
  // The dictionary is read along with the data page. When there's no data page,
  // the dictionary won't be returned.
  //
  // @param batch_size The batch size to read
  // @param[out] def_levels The Parquet definition levels.
  // @param[out] rep_levels The Parquet repetition levels.
  // @param[out] indices The dictionary indices.
  // @param[out] indices_read The number of indices read.
  // @param[out] dict The pointer to dictionary values. It will return nullptr if
  // there's no data page. Each column chunk only has one dictionary page. The dictionary
  // is owned by the reader, so the caller is responsible for copying the dictionary
  // values before the reader gets destroyed.
  // @param[out] dict_len The dictionary length. It will return 0 if there's no data
  // page.
  // @returns: actual number of levels read (see indices_read for number of
  // indices read
  //
  // \note API EXPERIMENTAL
  virtual int64_t ReadBatchWithDictionary(int64_t batch_size, int16_t* def_levels,
                                          int16_t* rep_levels, int32_t* indices,
                                          int64_t* indices_read, const T** dict,
                                          int32_t* dict_len) = 0;
};

namespace internal {

/// \brief Stateful column reader that delimits semantic records for both flat
/// and nested columns
///
/// \note API EXPERIMENTAL
/// \since 1.3.0
class RecordReader {
 public:
  static std::shared_ptr<RecordReader> Make(
      const ColumnDescriptor* descr, LevelInfo leaf_info,
      ::arrow::MemoryPool* pool = ::arrow::default_memory_pool(),
      const bool read_dictionary = false);

  virtual ~RecordReader() = default;

  /// \brief Attempt to read indicated number of records from column chunk
  /// \return number of records read
  virtual int64_t ReadRecords(int64_t num_records) = 0;

  /// \brief Pre-allocate space for data. Results in better flat read performance
  virtual void Reserve(int64_t num_values) = 0;

  /// \brief Clear consumed values and repetition/definition levels as the
  /// result of calling ReadRecords
  virtual void Reset() = 0;

  /// \brief Transfer filled values buffer to caller. A new one will be
  /// allocated in subsequent ReadRecords calls
  virtual std::shared_ptr<ResizableBuffer> ReleaseValues() = 0;

  /// \brief Transfer filled validity bitmap buffer to caller. A new one will
  /// be allocated in subsequent ReadRecords calls
  virtual std::shared_ptr<ResizableBuffer> ReleaseIsValid() = 0;

  /// \brief Return true if the record reader has more internal data yet to
  /// process
  virtual bool HasMoreData() const = 0;

  /// \brief Advance record reader to the next row group
  /// \param[in] reader obtained from RowGroupReader::GetColumnPageReader
  virtual void SetPageReader(std::unique_ptr<PageReader> reader) = 0;

  virtual void DebugPrintState() = 0;

  /// \brief Decoded definition levels
  int16_t* def_levels() const {
    return reinterpret_cast<int16_t*>(def_levels_->mutable_data());
  }

  /// \brief Decoded repetition levels
  int16_t* rep_levels() const {
    return reinterpret_cast<int16_t*>(rep_levels_->mutable_data());
  }

  /// \brief Decoded values, including nulls, if any
  uint8_t* values() const { return values_->mutable_data(); }

  /// \brief Number of values written including nulls (if any)
  int64_t values_written() const { return values_written_; }

  /// \brief Number of definition / repetition levels (from those that have
  /// been decoded) that have been consumed inside the reader.
  int64_t levels_position() const { return levels_position_; }

  /// \brief Number of definition / repetition levels that have been written
  /// internally in the reader
  int64_t levels_written() const { return levels_written_; }

  /// \brief Number of nulls in the leaf
  int64_t null_count() const { return null_count_; }

  /// \brief True if the leaf values are nullable
  bool nullable_values() const { return nullable_values_; }

  /// \brief True if reading directly as Arrow dictionary-encoded
  bool read_dictionary() const { return read_dictionary_; }

 protected:
  bool nullable_values_;

  bool at_record_start_;
  int64_t records_read_;

  int64_t values_written_;
  int64_t values_capacity_;
  int64_t null_count_;

  int64_t levels_written_;
  int64_t levels_position_;
  int64_t levels_capacity_;

  std::shared_ptr<::arrow::ResizableBuffer> values_;
  // In the case of false, don't allocate the values buffer (when we directly read into
  // builder classes).
  bool uses_values_;

  std::shared_ptr<::arrow::ResizableBuffer> valid_bits_;
  std::shared_ptr<::arrow::ResizableBuffer> def_levels_;
  std::shared_ptr<::arrow::ResizableBuffer> rep_levels_;

  bool read_dictionary_ = false;
};

class BinaryRecordReader : virtual public RecordReader {
 public:
  virtual std::vector<std::shared_ptr<::arrow::Array>> GetBuilderChunks() = 0;
};

/// \brief Read records directly to dictionary-encoded Arrow form (int32
/// indices). Only valid for BYTE_ARRAY columns
class DictionaryRecordReader : virtual public RecordReader {
 public:
  virtual std::shared_ptr<::arrow::ChunkedArray> GetResult() = 0;
};

}  // namespace internal

using BoolReader = TypedColumnReader<BooleanType>;
using Int32Reader = TypedColumnReader<Int32Type>;
using Int64Reader = TypedColumnReader<Int64Type>;
using Int96Reader = TypedColumnReader<Int96Type>;
using FloatReader = TypedColumnReader<FloatType>;
using DoubleReader = TypedColumnReader<DoubleType>;
using ByteArrayReader = TypedColumnReader<ByteArrayType>;
using FixedLenByteArrayReader = TypedColumnReader<FLBAType>;

}  // namespace parquet