1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "arrow/util/basic_decimal.h"
#include <algorithm>
#include <array>
#include <climits>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <limits>
#include <string>
#include "arrow/util/bit_util.h"
#include "arrow/util/endian.h"
#include "arrow/util/int128_internal.h"
#include "arrow/util/int_util_internal.h"
#include "arrow/util/logging.h"
#include "arrow/util/macros.h"
namespace arrow {
using internal::SafeLeftShift;
using internal::SafeSignedAdd;
static const BasicDecimal128 ScaleMultipliers[] = {
BasicDecimal128(1LL),
BasicDecimal128(10LL),
BasicDecimal128(100LL),
BasicDecimal128(1000LL),
BasicDecimal128(10000LL),
BasicDecimal128(100000LL),
BasicDecimal128(1000000LL),
BasicDecimal128(10000000LL),
BasicDecimal128(100000000LL),
BasicDecimal128(1000000000LL),
BasicDecimal128(10000000000LL),
BasicDecimal128(100000000000LL),
BasicDecimal128(1000000000000LL),
BasicDecimal128(10000000000000LL),
BasicDecimal128(100000000000000LL),
BasicDecimal128(1000000000000000LL),
BasicDecimal128(10000000000000000LL),
BasicDecimal128(100000000000000000LL),
BasicDecimal128(1000000000000000000LL),
BasicDecimal128(0LL, 10000000000000000000ULL),
BasicDecimal128(5LL, 7766279631452241920ULL),
BasicDecimal128(54LL, 3875820019684212736ULL),
BasicDecimal128(542LL, 1864712049423024128ULL),
BasicDecimal128(5421LL, 200376420520689664ULL),
BasicDecimal128(54210LL, 2003764205206896640ULL),
BasicDecimal128(542101LL, 1590897978359414784ULL),
BasicDecimal128(5421010LL, 15908979783594147840ULL),
BasicDecimal128(54210108LL, 11515845246265065472ULL),
BasicDecimal128(542101086LL, 4477988020393345024ULL),
BasicDecimal128(5421010862LL, 7886392056514347008ULL),
BasicDecimal128(54210108624LL, 5076944270305263616ULL),
BasicDecimal128(542101086242LL, 13875954555633532928ULL),
BasicDecimal128(5421010862427LL, 9632337040368467968ULL),
BasicDecimal128(54210108624275LL, 4089650035136921600ULL),
BasicDecimal128(542101086242752LL, 4003012203950112768ULL),
BasicDecimal128(5421010862427522LL, 3136633892082024448ULL),
BasicDecimal128(54210108624275221LL, 12919594847110692864ULL),
BasicDecimal128(542101086242752217LL, 68739955140067328ULL),
BasicDecimal128(5421010862427522170LL, 687399551400673280ULL)};
static const BasicDecimal128 ScaleMultipliersHalf[] = {
BasicDecimal128(0ULL),
BasicDecimal128(5ULL),
BasicDecimal128(50ULL),
BasicDecimal128(500ULL),
BasicDecimal128(5000ULL),
BasicDecimal128(50000ULL),
BasicDecimal128(500000ULL),
BasicDecimal128(5000000ULL),
BasicDecimal128(50000000ULL),
BasicDecimal128(500000000ULL),
BasicDecimal128(5000000000ULL),
BasicDecimal128(50000000000ULL),
BasicDecimal128(500000000000ULL),
BasicDecimal128(5000000000000ULL),
BasicDecimal128(50000000000000ULL),
BasicDecimal128(500000000000000ULL),
BasicDecimal128(5000000000000000ULL),
BasicDecimal128(50000000000000000ULL),
BasicDecimal128(500000000000000000ULL),
BasicDecimal128(5000000000000000000ULL),
BasicDecimal128(2LL, 13106511852580896768ULL),
BasicDecimal128(27LL, 1937910009842106368ULL),
BasicDecimal128(271LL, 932356024711512064ULL),
BasicDecimal128(2710LL, 9323560247115120640ULL),
BasicDecimal128(27105LL, 1001882102603448320ULL),
BasicDecimal128(271050LL, 10018821026034483200ULL),
BasicDecimal128(2710505LL, 7954489891797073920ULL),
BasicDecimal128(27105054LL, 5757922623132532736ULL),
BasicDecimal128(271050543LL, 2238994010196672512ULL),
BasicDecimal128(2710505431LL, 3943196028257173504ULL),
BasicDecimal128(27105054312LL, 2538472135152631808ULL),
BasicDecimal128(271050543121LL, 6937977277816766464ULL),
BasicDecimal128(2710505431213LL, 14039540557039009792ULL),
BasicDecimal128(27105054312137LL, 11268197054423236608ULL),
BasicDecimal128(271050543121376LL, 2001506101975056384ULL),
BasicDecimal128(2710505431213761LL, 1568316946041012224ULL),
BasicDecimal128(27105054312137610LL, 15683169460410122240ULL),
BasicDecimal128(271050543121376108LL, 9257742014424809472ULL),
BasicDecimal128(2710505431213761085LL, 343699775700336640ULL)};
static const BasicDecimal256 ScaleMultipliersDecimal256[] = {
BasicDecimal256({1ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({10ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({100ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({1000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({10000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({100000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({1000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({10000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({100000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({1000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({10000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({100000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({1000000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({10000000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({100000000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({1000000000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({10000000000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({100000000000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({1000000000000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({10000000000000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({7766279631452241920ULL, 5ULL, 0ULL, 0ULL}),
BasicDecimal256({3875820019684212736ULL, 54ULL, 0ULL, 0ULL}),
BasicDecimal256({1864712049423024128ULL, 542ULL, 0ULL, 0ULL}),
BasicDecimal256({200376420520689664ULL, 5421ULL, 0ULL, 0ULL}),
BasicDecimal256({2003764205206896640ULL, 54210ULL, 0ULL, 0ULL}),
BasicDecimal256({1590897978359414784ULL, 542101ULL, 0ULL, 0ULL}),
BasicDecimal256({15908979783594147840ULL, 5421010ULL, 0ULL, 0ULL}),
BasicDecimal256({11515845246265065472ULL, 54210108ULL, 0ULL, 0ULL}),
BasicDecimal256({4477988020393345024ULL, 542101086ULL, 0ULL, 0ULL}),
BasicDecimal256({7886392056514347008ULL, 5421010862ULL, 0ULL, 0ULL}),
BasicDecimal256({5076944270305263616ULL, 54210108624ULL, 0ULL, 0ULL}),
BasicDecimal256({13875954555633532928ULL, 542101086242ULL, 0ULL, 0ULL}),
BasicDecimal256({9632337040368467968ULL, 5421010862427ULL, 0ULL, 0ULL}),
BasicDecimal256({4089650035136921600ULL, 54210108624275ULL, 0ULL, 0ULL}),
BasicDecimal256({4003012203950112768ULL, 542101086242752ULL, 0ULL, 0ULL}),
BasicDecimal256({3136633892082024448ULL, 5421010862427522ULL, 0ULL, 0ULL}),
BasicDecimal256({12919594847110692864ULL, 54210108624275221ULL, 0ULL, 0ULL}),
BasicDecimal256({68739955140067328ULL, 542101086242752217ULL, 0ULL, 0ULL}),
BasicDecimal256({687399551400673280ULL, 5421010862427522170ULL, 0ULL, 0ULL}),
BasicDecimal256({6873995514006732800ULL, 17316620476856118468ULL, 2ULL, 0ULL}),
BasicDecimal256({13399722918938673152ULL, 7145508105175220139ULL, 29ULL, 0ULL}),
BasicDecimal256({4870020673419870208ULL, 16114848830623546549ULL, 293ULL, 0ULL}),
BasicDecimal256({11806718586779598848ULL, 13574535716559052564ULL, 2938ULL, 0ULL}),
BasicDecimal256({7386721425538678784ULL, 6618148649623664334ULL, 29387ULL, 0ULL}),
BasicDecimal256({80237960548581376ULL, 10841254275107988496ULL, 293873ULL, 0ULL}),
BasicDecimal256({802379605485813760ULL, 16178822382532126880ULL, 2938735ULL, 0ULL}),
BasicDecimal256({8023796054858137600ULL, 14214271235644855872ULL, 29387358ULL, 0ULL}),
BasicDecimal256(
{6450984253743169536ULL, 13015503840481697412ULL, 293873587ULL, 0ULL}),
BasicDecimal256(
{9169610316303040512ULL, 1027829888850112811ULL, 2938735877ULL, 0ULL}),
BasicDecimal256(
{17909126868192198656ULL, 10278298888501128114ULL, 29387358770ULL, 0ULL}),
BasicDecimal256(
{13070572018536022016ULL, 10549268516463523069ULL, 293873587705ULL, 0ULL}),
BasicDecimal256(
{1578511669393358848ULL, 13258964796087472617ULL, 2938735877055ULL, 0ULL}),
BasicDecimal256(
{15785116693933588480ULL, 3462439444907864858ULL, 29387358770557ULL, 0ULL}),
BasicDecimal256(
{10277214349659471872ULL, 16177650375369096972ULL, 293873587705571ULL, 0ULL}),
BasicDecimal256(
{10538423128046960640ULL, 14202551164014556797ULL, 2938735877055718ULL, 0ULL}),
BasicDecimal256(
{13150510911921848320ULL, 12898303124178706663ULL, 29387358770557187ULL, 0ULL}),
BasicDecimal256(
{2377900603251621888ULL, 18302566799529756941ULL, 293873587705571876ULL, 0ULL}),
BasicDecimal256(
{5332261958806667264ULL, 17004971331911604867ULL, 2938735877055718769ULL, 0ULL}),
BasicDecimal256(
{16429131440647569408ULL, 4029016655730084128ULL, 10940614696847636083ULL, 1ULL}),
BasicDecimal256({16717361816799281152ULL, 3396678409881738056ULL,
17172426599928602752ULL, 15ULL}),
BasicDecimal256({1152921504606846976ULL, 15520040025107828953ULL,
5703569335900062977ULL, 159ULL}),
BasicDecimal256({11529215046068469760ULL, 7626447661401876602ULL,
1695461137871974930ULL, 1593ULL}),
BasicDecimal256({4611686018427387904ULL, 2477500319180559562ULL,
16954611378719749304ULL, 15930ULL}),
BasicDecimal256({9223372036854775808ULL, 6328259118096044006ULL,
3525417123811528497ULL, 159309ULL}),
BasicDecimal256({0ULL, 7942358959831785217ULL, 16807427164405733357ULL, 1593091ULL}),
BasicDecimal256({0ULL, 5636613303479645706ULL, 2053574980671369030ULL, 15930919ULL}),
BasicDecimal256({0ULL, 1025900813667802212ULL, 2089005733004138687ULL, 159309191ULL}),
BasicDecimal256(
{0ULL, 10259008136678022120ULL, 2443313256331835254ULL, 1593091911ULL}),
BasicDecimal256(
{0ULL, 10356360998232463120ULL, 5986388489608800929ULL, 15930919111ULL}),
BasicDecimal256(
{0ULL, 11329889613776873120ULL, 4523652674959354447ULL, 159309191113ULL}),
BasicDecimal256(
{0ULL, 2618431695511421504ULL, 8343038602174441244ULL, 1593091911132ULL}),
BasicDecimal256(
{0ULL, 7737572881404663424ULL, 9643409726906205977ULL, 15930919111324ULL}),
BasicDecimal256(
{0ULL, 3588752519208427776ULL, 4200376900514301694ULL, 159309191113245ULL}),
BasicDecimal256(
{0ULL, 17440781118374726144ULL, 5110280857723913709ULL, 1593091911132452ULL}),
BasicDecimal256(
{0ULL, 8387114520361296896ULL, 14209320429820033867ULL, 15930919111324522ULL}),
BasicDecimal256(
{0ULL, 10084168908774762496ULL, 12965995782233477362ULL, 159309191113245227ULL}),
BasicDecimal256(
{0ULL, 8607968719199866880ULL, 532749306367912313ULL, 1593091911132452277ULL})};
static const BasicDecimal256 ScaleMultipliersHalfDecimal256[] = {
BasicDecimal256({0ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({5ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({50ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({500ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({5000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({50000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({500000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({5000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({50000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({500000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({5000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({50000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({500000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({5000000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({50000000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({500000000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({5000000000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({50000000000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({500000000000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({5000000000000000000ULL, 0ULL, 0ULL, 0ULL}),
BasicDecimal256({13106511852580896768ULL, 2ULL, 0ULL, 0ULL}),
BasicDecimal256({1937910009842106368ULL, 27ULL, 0ULL, 0ULL}),
BasicDecimal256({932356024711512064ULL, 271ULL, 0ULL, 0ULL}),
BasicDecimal256({9323560247115120640ULL, 2710ULL, 0ULL, 0ULL}),
BasicDecimal256({1001882102603448320ULL, 27105ULL, 0ULL, 0ULL}),
BasicDecimal256({10018821026034483200ULL, 271050ULL, 0ULL, 0ULL}),
BasicDecimal256({7954489891797073920ULL, 2710505ULL, 0ULL, 0ULL}),
BasicDecimal256({5757922623132532736ULL, 27105054ULL, 0ULL, 0ULL}),
BasicDecimal256({2238994010196672512ULL, 271050543ULL, 0ULL, 0ULL}),
BasicDecimal256({3943196028257173504ULL, 2710505431ULL, 0ULL, 0ULL}),
BasicDecimal256({2538472135152631808ULL, 27105054312ULL, 0ULL, 0ULL}),
BasicDecimal256({6937977277816766464ULL, 271050543121ULL, 0ULL, 0ULL}),
BasicDecimal256({14039540557039009792ULL, 2710505431213ULL, 0ULL, 0ULL}),
BasicDecimal256({11268197054423236608ULL, 27105054312137ULL, 0ULL, 0ULL}),
BasicDecimal256({2001506101975056384ULL, 271050543121376ULL, 0ULL, 0ULL}),
BasicDecimal256({1568316946041012224ULL, 2710505431213761ULL, 0ULL, 0ULL}),
BasicDecimal256({15683169460410122240ULL, 27105054312137610ULL, 0ULL, 0ULL}),
BasicDecimal256({9257742014424809472ULL, 271050543121376108ULL, 0ULL, 0ULL}),
BasicDecimal256({343699775700336640ULL, 2710505431213761085ULL, 0ULL, 0ULL}),
BasicDecimal256({3436997757003366400ULL, 8658310238428059234ULL, 1ULL, 0ULL}),
BasicDecimal256({15923233496324112384ULL, 12796126089442385877ULL, 14ULL, 0ULL}),
BasicDecimal256({11658382373564710912ULL, 17280796452166549082ULL, 146ULL, 0ULL}),
BasicDecimal256({5903359293389799424ULL, 6787267858279526282ULL, 1469ULL, 0ULL}),
BasicDecimal256({3693360712769339392ULL, 12532446361666607975ULL, 14693ULL, 0ULL}),
BasicDecimal256({40118980274290688ULL, 14643999174408770056ULL, 146936ULL, 0ULL}),
BasicDecimal256({401189802742906880ULL, 17312783228120839248ULL, 1469367ULL, 0ULL}),
BasicDecimal256({4011898027429068800ULL, 7107135617822427936ULL, 14693679ULL, 0ULL}),
BasicDecimal256(
{3225492126871584768ULL, 15731123957095624514ULL, 146936793ULL, 0ULL}),
BasicDecimal256(
{13808177195006296064ULL, 9737286981279832213ULL, 1469367938ULL, 0ULL}),
BasicDecimal256(
{8954563434096099328ULL, 5139149444250564057ULL, 14693679385ULL, 0ULL}),
BasicDecimal256(
{15758658046122786816ULL, 14498006295086537342ULL, 146936793852ULL, 0ULL}),
BasicDecimal256(
{10012627871551455232ULL, 15852854434898512116ULL, 1469367938527ULL, 0ULL}),
BasicDecimal256(
{7892558346966794240ULL, 10954591759308708237ULL, 14693679385278ULL, 0ULL}),
BasicDecimal256(
{5138607174829735936ULL, 17312197224539324294ULL, 146936793852785ULL, 0ULL}),
BasicDecimal256(
{14492583600878256128ULL, 7101275582007278398ULL, 1469367938527859ULL, 0ULL}),
BasicDecimal256(
{15798627492815699968ULL, 15672523598944129139ULL, 14693679385278593ULL, 0ULL}),
BasicDecimal256(
{10412322338480586752ULL, 9151283399764878470ULL, 146936793852785938ULL, 0ULL}),
BasicDecimal256(
{11889503016258109440ULL, 17725857702810578241ULL, 1469367938527859384ULL, 0ULL}),
BasicDecimal256(
{8214565720323784704ULL, 11237880364719817872ULL, 14693679385278593849ULL, 0ULL}),
BasicDecimal256(
{8358680908399640576ULL, 1698339204940869028ULL, 17809585336819077184ULL, 7ULL}),
BasicDecimal256({9799832789158199296ULL, 16983392049408690284ULL,
12075156704804807296ULL, 79ULL}),
BasicDecimal256({5764607523034234880ULL, 3813223830700938301ULL,
10071102605790763273ULL, 796ULL}),
BasicDecimal256({2305843009213693952ULL, 1238750159590279781ULL,
8477305689359874652ULL, 7965ULL}),
BasicDecimal256({4611686018427387904ULL, 12387501595902797811ULL,
10986080598760540056ULL, 79654ULL}),
BasicDecimal256({9223372036854775808ULL, 13194551516770668416ULL,
17627085619057642486ULL, 796545ULL}),
BasicDecimal256({0ULL, 2818306651739822853ULL, 10250159527190460323ULL, 7965459ULL}),
BasicDecimal256({0ULL, 9736322443688676914ULL, 10267874903356845151ULL, 79654595ULL}),
BasicDecimal256(
{0ULL, 5129504068339011060ULL, 10445028665020693435ULL, 796545955ULL}),
BasicDecimal256(
{0ULL, 14401552535971007368ULL, 12216566281659176272ULL, 7965459555ULL}),
BasicDecimal256(
{0ULL, 14888316843743212368ULL, 11485198374334453031ULL, 79654595556ULL}),
BasicDecimal256(
{0ULL, 1309215847755710752ULL, 4171519301087220622ULL, 796545955566ULL}),
BasicDecimal256(
{0ULL, 13092158477557107520ULL, 4821704863453102988ULL, 7965459555662ULL}),
BasicDecimal256(
{0ULL, 1794376259604213888ULL, 11323560487111926655ULL, 79654595556622ULL}),
BasicDecimal256(
{0ULL, 17943762596042138880ULL, 2555140428861956854ULL, 796545955566226ULL}),
BasicDecimal256(
{0ULL, 13416929297035424256ULL, 7104660214910016933ULL, 7965459555662261ULL}),
BasicDecimal256(
{0ULL, 5042084454387381248ULL, 15706369927971514489ULL, 79654595556622613ULL}),
BasicDecimal256(
{0ULL, 13527356396454709248ULL, 9489746690038731964ULL, 796545955566226138ULL})};
#ifdef ARROW_USE_NATIVE_INT128
static constexpr uint64_t kInt64Mask = 0xFFFFFFFFFFFFFFFF;
#else
static constexpr uint64_t kInt32Mask = 0xFFFFFFFF;
#endif
// same as ScaleMultipliers[38] - 1
static constexpr BasicDecimal128 kMaxValue =
BasicDecimal128(5421010862427522170LL, 687399551400673280ULL - 1);
#if ARROW_LITTLE_ENDIAN
BasicDecimal128::BasicDecimal128(const uint8_t* bytes)
: BasicDecimal128(reinterpret_cast<const int64_t*>(bytes)[1],
reinterpret_cast<const uint64_t*>(bytes)[0]) {}
#else
BasicDecimal128::BasicDecimal128(const uint8_t* bytes)
: BasicDecimal128(reinterpret_cast<const int64_t*>(bytes)[0],
reinterpret_cast<const uint64_t*>(bytes)[1]) {}
#endif
std::array<uint8_t, 16> BasicDecimal128::ToBytes() const {
std::array<uint8_t, 16> out{{0}};
ToBytes(out.data());
return out;
}
void BasicDecimal128::ToBytes(uint8_t* out) const {
DCHECK_NE(out, nullptr);
#if ARROW_LITTLE_ENDIAN
reinterpret_cast<uint64_t*>(out)[0] = low_bits_;
reinterpret_cast<int64_t*>(out)[1] = high_bits_;
#else
reinterpret_cast<int64_t*>(out)[0] = high_bits_;
reinterpret_cast<uint64_t*>(out)[1] = low_bits_;
#endif
}
BasicDecimal128& BasicDecimal128::Negate() {
low_bits_ = ~low_bits_ + 1;
high_bits_ = ~high_bits_;
if (low_bits_ == 0) {
high_bits_ = SafeSignedAdd<int64_t>(high_bits_, 1);
}
return *this;
}
BasicDecimal128& BasicDecimal128::Abs() { return *this < 0 ? Negate() : *this; }
BasicDecimal128 BasicDecimal128::Abs(const BasicDecimal128& in) {
BasicDecimal128 result(in);
return result.Abs();
}
bool BasicDecimal128::FitsInPrecision(int32_t precision) const {
DCHECK_GT(precision, 0);
DCHECK_LE(precision, 38);
return BasicDecimal128::Abs(*this) < ScaleMultipliers[precision];
}
BasicDecimal128& BasicDecimal128::operator+=(const BasicDecimal128& right) {
const uint64_t sum = low_bits_ + right.low_bits_;
high_bits_ = SafeSignedAdd<int64_t>(high_bits_, right.high_bits_);
if (sum < low_bits_) {
high_bits_ = SafeSignedAdd<int64_t>(high_bits_, 1);
}
low_bits_ = sum;
return *this;
}
BasicDecimal128& BasicDecimal128::operator-=(const BasicDecimal128& right) {
const uint64_t diff = low_bits_ - right.low_bits_;
high_bits_ -= right.high_bits_;
if (diff > low_bits_) {
--high_bits_;
}
low_bits_ = diff;
return *this;
}
BasicDecimal128& BasicDecimal128::operator/=(const BasicDecimal128& right) {
BasicDecimal128 remainder;
auto s = Divide(right, this, &remainder);
DCHECK_EQ(s, DecimalStatus::kSuccess);
return *this;
}
BasicDecimal128& BasicDecimal128::operator|=(const BasicDecimal128& right) {
low_bits_ |= right.low_bits_;
high_bits_ |= right.high_bits_;
return *this;
}
BasicDecimal128& BasicDecimal128::operator&=(const BasicDecimal128& right) {
low_bits_ &= right.low_bits_;
high_bits_ &= right.high_bits_;
return *this;
}
BasicDecimal128& BasicDecimal128::operator<<=(uint32_t bits) {
if (bits != 0) {
if (bits < 64) {
high_bits_ = SafeLeftShift(high_bits_, bits);
high_bits_ |= (low_bits_ >> (64 - bits));
low_bits_ <<= bits;
} else if (bits < 128) {
high_bits_ = static_cast<int64_t>(low_bits_) << (bits - 64);
low_bits_ = 0;
} else {
high_bits_ = 0;
low_bits_ = 0;
}
}
return *this;
}
BasicDecimal128& BasicDecimal128::operator>>=(uint32_t bits) {
if (bits != 0) {
if (bits < 64) {
low_bits_ >>= bits;
low_bits_ |= static_cast<uint64_t>(high_bits_ << (64 - bits));
high_bits_ = static_cast<int64_t>(static_cast<uint64_t>(high_bits_) >> bits);
} else if (bits < 128) {
low_bits_ = static_cast<uint64_t>(high_bits_ >> (bits - 64));
high_bits_ = static_cast<int64_t>(high_bits_ >= 0L ? 0L : -1L);
} else {
high_bits_ = static_cast<int64_t>(high_bits_ >= 0L ? 0L : -1L);
low_bits_ = static_cast<uint64_t>(high_bits_);
}
}
return *this;
}
namespace {
// Convenience wrapper type over 128 bit unsigned integers. We opt not to
// replace the uint128_t type in int128_internal.h because it would require
// significantly more implementation work to be done. This class merely
// provides the minimum necessary set of functions to perform 128+ bit
// multiplication operations when there may or may not be native support.
#ifdef ARROW_USE_NATIVE_INT128
struct uint128_t {
uint128_t() {}
uint128_t(uint64_t hi, uint64_t lo) : val_((static_cast<__uint128_t>(hi) << 64) | lo) {}
explicit uint128_t(const BasicDecimal128& decimal) {
val_ = (static_cast<__uint128_t>(decimal.high_bits()) << 64) | decimal.low_bits();
}
explicit uint128_t(uint64_t value) : val_(value) {}
uint64_t hi() { return val_ >> 64; }
uint64_t lo() { return val_ & kInt64Mask; }
uint128_t& operator+=(const uint128_t& other) {
val_ += other.val_;
return *this;
}
uint128_t& operator*=(const uint128_t& other) {
val_ *= other.val_;
return *this;
}
__uint128_t val_;
};
#else
// Multiply two 64 bit word components into a 128 bit result, with high bits
// stored in hi and low bits in lo.
inline void ExtendAndMultiply(uint64_t x, uint64_t y, uint64_t* hi, uint64_t* lo) {
// Perform multiplication on two 64 bit words x and y into a 128 bit result
// by splitting up x and y into 32 bit high/low bit components,
// allowing us to represent the multiplication as
// x * y = x_lo * y_lo + x_hi * y_lo * 2^32 + y_hi * x_lo * 2^32
// + x_hi * y_hi * 2^64
//
// Now, consider the final output as lo_lo || lo_hi || hi_lo || hi_hi
// Therefore,
// lo_lo is (x_lo * y_lo)_lo,
// lo_hi is ((x_lo * y_lo)_hi + (x_hi * y_lo)_lo + (x_lo * y_hi)_lo)_lo,
// hi_lo is ((x_hi * y_hi)_lo + (x_hi * y_lo)_hi + (x_lo * y_hi)_hi)_hi,
// hi_hi is (x_hi * y_hi)_hi
const uint64_t x_lo = x & kInt32Mask;
const uint64_t y_lo = y & kInt32Mask;
const uint64_t x_hi = x >> 32;
const uint64_t y_hi = y >> 32;
const uint64_t t = x_lo * y_lo;
const uint64_t t_lo = t & kInt32Mask;
const uint64_t t_hi = t >> 32;
const uint64_t u = x_hi * y_lo + t_hi;
const uint64_t u_lo = u & kInt32Mask;
const uint64_t u_hi = u >> 32;
const uint64_t v = x_lo * y_hi + u_lo;
const uint64_t v_hi = v >> 32;
*hi = x_hi * y_hi + u_hi + v_hi;
*lo = (v << 32) + t_lo;
}
struct uint128_t {
uint128_t() {}
uint128_t(uint64_t hi, uint64_t lo) : hi_(hi), lo_(lo) {}
explicit uint128_t(const BasicDecimal128& decimal) {
hi_ = decimal.high_bits();
lo_ = decimal.low_bits();
}
uint64_t hi() const { return hi_; }
uint64_t lo() const { return lo_; }
uint128_t& operator+=(const uint128_t& other) {
// To deduce the carry bit, we perform "65 bit" addition on the low bits and
// seeing if the resulting high bit is 1. This is accomplished by shifting the
// low bits to the right by 1 (chopping off the lowest bit), then adding 1 if the
// result of adding the two chopped bits would have produced a carry.
uint64_t carry = (((lo_ & other.lo_) & 1) + (lo_ >> 1) + (other.lo_ >> 1)) >> 63;
hi_ += other.hi_ + carry;
lo_ += other.lo_;
return *this;
}
uint128_t& operator*=(const uint128_t& other) {
uint128_t r;
ExtendAndMultiply(lo_, other.lo_, &r.hi_, &r.lo_);
r.hi_ += (hi_ * other.lo_) + (lo_ * other.hi_);
*this = r;
return *this;
}
uint64_t hi_;
uint64_t lo_;
};
#endif
// Multiplies two N * 64 bit unsigned integer types, represented by a uint64_t
// array into a same sized output. Elements in the array should be in
// little endian order, and output will be the same. Overflow in multiplication
// will result in the lower N * 64 bits of the result being set.
template <int N>
inline void MultiplyUnsignedArray(const std::array<uint64_t, N>& lh,
const std::array<uint64_t, N>& rh,
std::array<uint64_t, N>* result) {
for (int j = 0; j < N; ++j) {
uint64_t carry = 0;
for (int i = 0; i < N - j; ++i) {
uint128_t tmp(lh[i]);
tmp *= uint128_t(rh[j]);
tmp += uint128_t((*result)[i + j]);
tmp += uint128_t(carry);
(*result)[i + j] = tmp.lo();
carry = tmp.hi();
}
}
}
} // namespace
BasicDecimal128& BasicDecimal128::operator*=(const BasicDecimal128& right) {
// Since the max value of BasicDecimal128 is supposed to be 1e38 - 1 and the
// min the negation taking the absolute values here should always be safe.
const bool negate = Sign() != right.Sign();
BasicDecimal128 x = BasicDecimal128::Abs(*this);
BasicDecimal128 y = BasicDecimal128::Abs(right);
uint128_t r(x);
r *= uint128_t{y};
high_bits_ = r.hi();
low_bits_ = r.lo();
if (negate) {
Negate();
}
return *this;
}
/// Expands the given little endian array of uint64_t into a big endian array of
/// uint32_t. The value of input array is expected to be non-negative. The result_array
/// will remove leading zeros from the input array.
/// \param value_array a little endian array to represent the value
/// \param result_array a big endian array of length N*2 to set with the value
/// \result the output length of the array
template <size_t N>
static int64_t FillInArray(const std::array<uint64_t, N>& value_array,
uint32_t* result_array) {
int64_t next_index = 0;
// 1st loop to find out 1st non-negative value in input
int64_t i = N - 1;
for (; i >= 0; i--) {
if (value_array[i] != 0) {
if (value_array[i] <= std::numeric_limits<uint32_t>::max()) {
result_array[next_index++] = static_cast<uint32_t>(value_array[i]);
i--;
}
break;
}
}
// 2nd loop to fill in the rest of the array.
for (int64_t j = i; j >= 0; j--) {
result_array[next_index++] = static_cast<uint32_t>(value_array[j] >> 32);
result_array[next_index++] = static_cast<uint32_t>(value_array[j]);
}
return next_index;
}
/// Expands the given value into a big endian array of ints so that we can work on
/// it. The array will be converted to an absolute value and the was_negative
/// flag will be set appropriately. The array will remove leading zeros from
/// the value.
/// \param array a big endian array of length 4 to set with the value
/// \param was_negative a flag for whether the value was original negative
/// \result the output length of the array
static int64_t FillInArray(const BasicDecimal128& value, uint32_t* array,
bool& was_negative) {
BasicDecimal128 abs_value = BasicDecimal128::Abs(value);
was_negative = value.high_bits() < 0;
uint64_t high = static_cast<uint64_t>(abs_value.high_bits());
uint64_t low = abs_value.low_bits();
// FillInArray(std::array<uint64_t, N>& value_array, uint32_t* result_array) is not
// called here as the following code has better performance, to avoid regression on
// BasicDecimal128 Division.
if (high != 0) {
if (high > std::numeric_limits<uint32_t>::max()) {
array[0] = static_cast<uint32_t>(high >> 32);
array[1] = static_cast<uint32_t>(high);
array[2] = static_cast<uint32_t>(low >> 32);
array[3] = static_cast<uint32_t>(low);
return 4;
}
array[0] = static_cast<uint32_t>(high);
array[1] = static_cast<uint32_t>(low >> 32);
array[2] = static_cast<uint32_t>(low);
return 3;
}
if (low > std::numeric_limits<uint32_t>::max()) {
array[0] = static_cast<uint32_t>(low >> 32);
array[1] = static_cast<uint32_t>(low);
return 2;
}
if (low == 0) {
return 0;
}
array[0] = static_cast<uint32_t>(low);
return 1;
}
/// Expands the given value into a big endian array of ints so that we can work on
/// it. The array will be converted to an absolute value and the was_negative
/// flag will be set appropriately. The array will remove leading zeros from
/// the value.
/// \param array a big endian array of length 8 to set with the value
/// \param was_negative a flag for whether the value was original negative
/// \result the output length of the array
static int64_t FillInArray(const BasicDecimal256& value, uint32_t* array,
bool& was_negative) {
BasicDecimal256 positive_value = value;
was_negative = false;
if (positive_value.IsNegative()) {
positive_value.Negate();
was_negative = true;
}
return FillInArray<4>(positive_value.little_endian_array(), array);
}
/// Shift the number in the array left by bits positions.
/// \param array the number to shift, must have length elements
/// \param length the number of entries in the array
/// \param bits the number of bits to shift (0 <= bits < 32)
static void ShiftArrayLeft(uint32_t* array, int64_t length, int64_t bits) {
if (length > 0 && bits != 0) {
for (int64_t i = 0; i < length - 1; ++i) {
array[i] = (array[i] << bits) | (array[i + 1] >> (32 - bits));
}
array[length - 1] <<= bits;
}
}
/// Shift the number in the array right by bits positions.
/// \param array the number to shift, must have length elements
/// \param length the number of entries in the array
/// \param bits the number of bits to shift (0 <= bits < 32)
static inline void ShiftArrayRight(uint32_t* array, int64_t length, int64_t bits) {
if (length > 0 && bits != 0) {
for (int64_t i = length - 1; i > 0; --i) {
array[i] = (array[i] >> bits) | (array[i - 1] << (32 - bits));
}
array[0] >>= bits;
}
}
/// \brief Fix the signs of the result and remainder at the end of the division based on
/// the signs of the dividend and divisor.
template <class DecimalClass>
static inline void FixDivisionSigns(DecimalClass* result, DecimalClass* remainder,
bool dividend_was_negative,
bool divisor_was_negative) {
if (dividend_was_negative != divisor_was_negative) {
result->Negate();
}
if (dividend_was_negative) {
remainder->Negate();
}
}
/// \brief Build a little endian array of uint64_t from a big endian array of uint32_t.
template <size_t N>
static DecimalStatus BuildFromArray(std::array<uint64_t, N>* result_array,
const uint32_t* array, int64_t length) {
for (int64_t i = length - 2 * N - 1; i >= 0; i--) {
if (array[i] != 0) {
return DecimalStatus::kOverflow;
}
}
int64_t next_index = length - 1;
size_t i = 0;
for (; i < N && next_index >= 0; i++) {
uint64_t lower_bits = array[next_index--];
(*result_array)[i] =
(next_index < 0)
? lower_bits
: ((static_cast<uint64_t>(array[next_index--]) << 32) + lower_bits);
}
for (; i < N; i++) {
(*result_array)[i] = 0;
}
return DecimalStatus::kSuccess;
}
/// \brief Build a BasicDecimal128 from a big endian array of uint32_t.
static DecimalStatus BuildFromArray(BasicDecimal128* value, const uint32_t* array,
int64_t length) {
std::array<uint64_t, 2> result_array;
auto status = BuildFromArray(&result_array, array, length);
if (status != DecimalStatus::kSuccess) {
return status;
}
*value = {static_cast<int64_t>(result_array[1]), result_array[0]};
return DecimalStatus::kSuccess;
}
/// \brief Build a BasicDecimal256 from a big endian array of uint32_t.
static DecimalStatus BuildFromArray(BasicDecimal256* value, const uint32_t* array,
int64_t length) {
std::array<uint64_t, 4> result_array;
auto status = BuildFromArray(&result_array, array, length);
if (status != DecimalStatus::kSuccess) {
return status;
}
*value = result_array;
return DecimalStatus::kSuccess;
}
/// \brief Do a division where the divisor fits into a single 32 bit value.
template <class DecimalClass>
static inline DecimalStatus SingleDivide(const uint32_t* dividend,
int64_t dividend_length, uint32_t divisor,
DecimalClass* remainder,
bool dividend_was_negative,
bool divisor_was_negative,
DecimalClass* result) {
uint64_t r = 0;
constexpr int64_t kDecimalArrayLength = DecimalClass::bit_width / sizeof(uint32_t) + 1;
uint32_t result_array[kDecimalArrayLength];
for (int64_t j = 0; j < dividend_length; j++) {
r <<= 32;
r += dividend[j];
result_array[j] = static_cast<uint32_t>(r / divisor);
r %= divisor;
}
auto status = BuildFromArray(result, result_array, dividend_length);
if (status != DecimalStatus::kSuccess) {
return status;
}
*remainder = static_cast<int64_t>(r);
FixDivisionSigns(result, remainder, dividend_was_negative, divisor_was_negative);
return DecimalStatus::kSuccess;
}
/// \brief Do a decimal division with remainder.
template <class DecimalClass>
static inline DecimalStatus DecimalDivide(const DecimalClass& dividend,
const DecimalClass& divisor,
DecimalClass* result, DecimalClass* remainder) {
constexpr int64_t kDecimalArrayLength = DecimalClass::bit_width / sizeof(uint32_t);
// Split the dividend and divisor into integer pieces so that we can
// work on them.
uint32_t dividend_array[kDecimalArrayLength + 1];
uint32_t divisor_array[kDecimalArrayLength];
bool dividend_was_negative;
bool divisor_was_negative;
// leave an extra zero before the dividend
dividend_array[0] = 0;
int64_t dividend_length =
FillInArray(dividend, dividend_array + 1, dividend_was_negative) + 1;
int64_t divisor_length = FillInArray(divisor, divisor_array, divisor_was_negative);
// Handle some of the easy cases.
if (dividend_length <= divisor_length) {
*remainder = dividend;
*result = 0;
return DecimalStatus::kSuccess;
}
if (divisor_length == 0) {
return DecimalStatus::kDivideByZero;
}
if (divisor_length == 1) {
return SingleDivide(dividend_array, dividend_length, divisor_array[0], remainder,
dividend_was_negative, divisor_was_negative, result);
}
int64_t result_length = dividend_length - divisor_length;
uint32_t result_array[kDecimalArrayLength];
DCHECK_LE(result_length, kDecimalArrayLength);
// Normalize by shifting both by a multiple of 2 so that
// the digit guessing is better. The requirement is that
// divisor_array[0] is greater than 2**31.
int64_t normalize_bits = BitUtil::CountLeadingZeros(divisor_array[0]);
ShiftArrayLeft(divisor_array, divisor_length, normalize_bits);
ShiftArrayLeft(dividend_array, dividend_length, normalize_bits);
// compute each digit in the result
for (int64_t j = 0; j < result_length; ++j) {
// Guess the next digit. At worst it is two too large
uint32_t guess = std::numeric_limits<uint32_t>::max();
const auto high_dividend =
static_cast<uint64_t>(dividend_array[j]) << 32 | dividend_array[j + 1];
if (dividend_array[j] != divisor_array[0]) {
guess = static_cast<uint32_t>(high_dividend / divisor_array[0]);
}
// catch all of the cases where guess is two too large and most of the
// cases where it is one too large
auto rhat = static_cast<uint32_t>(high_dividend -
guess * static_cast<uint64_t>(divisor_array[0]));
while (static_cast<uint64_t>(divisor_array[1]) * guess >
(static_cast<uint64_t>(rhat) << 32) + dividend_array[j + 2]) {
--guess;
rhat += divisor_array[0];
if (static_cast<uint64_t>(rhat) < divisor_array[0]) {
break;
}
}
// subtract off the guess * divisor from the dividend
uint64_t mult = 0;
for (int64_t i = divisor_length - 1; i >= 0; --i) {
mult += static_cast<uint64_t>(guess) * divisor_array[i];
uint32_t prev = dividend_array[j + i + 1];
dividend_array[j + i + 1] -= static_cast<uint32_t>(mult);
mult >>= 32;
if (dividend_array[j + i + 1] > prev) {
++mult;
}
}
uint32_t prev = dividend_array[j];
dividend_array[j] -= static_cast<uint32_t>(mult);
// if guess was too big, we add back divisor
if (dividend_array[j] > prev) {
--guess;
uint32_t carry = 0;
for (int64_t i = divisor_length - 1; i >= 0; --i) {
const auto sum =
static_cast<uint64_t>(divisor_array[i]) + dividend_array[j + i + 1] + carry;
dividend_array[j + i + 1] = static_cast<uint32_t>(sum);
carry = static_cast<uint32_t>(sum >> 32);
}
dividend_array[j] += carry;
}
result_array[j] = guess;
}
// denormalize the remainder
ShiftArrayRight(dividend_array, dividend_length, normalize_bits);
// return result and remainder
auto status = BuildFromArray(result, result_array, result_length);
if (status != DecimalStatus::kSuccess) {
return status;
}
status = BuildFromArray(remainder, dividend_array, dividend_length);
if (status != DecimalStatus::kSuccess) {
return status;
}
FixDivisionSigns(result, remainder, dividend_was_negative, divisor_was_negative);
return DecimalStatus::kSuccess;
}
DecimalStatus BasicDecimal128::Divide(const BasicDecimal128& divisor,
BasicDecimal128* result,
BasicDecimal128* remainder) const {
return DecimalDivide(*this, divisor, result, remainder);
}
bool operator==(const BasicDecimal128& left, const BasicDecimal128& right) {
return left.high_bits() == right.high_bits() && left.low_bits() == right.low_bits();
}
bool operator!=(const BasicDecimal128& left, const BasicDecimal128& right) {
return !operator==(left, right);
}
bool operator<(const BasicDecimal128& left, const BasicDecimal128& right) {
return left.high_bits() < right.high_bits() ||
(left.high_bits() == right.high_bits() && left.low_bits() < right.low_bits());
}
bool operator<=(const BasicDecimal128& left, const BasicDecimal128& right) {
return !operator>(left, right);
}
bool operator>(const BasicDecimal128& left, const BasicDecimal128& right) {
return operator<(right, left);
}
bool operator>=(const BasicDecimal128& left, const BasicDecimal128& right) {
return !operator<(left, right);
}
BasicDecimal128 operator-(const BasicDecimal128& operand) {
BasicDecimal128 result(operand.high_bits(), operand.low_bits());
return result.Negate();
}
BasicDecimal128 operator~(const BasicDecimal128& operand) {
BasicDecimal128 result(~operand.high_bits(), ~operand.low_bits());
return result;
}
BasicDecimal128 operator+(const BasicDecimal128& left, const BasicDecimal128& right) {
BasicDecimal128 result(left.high_bits(), left.low_bits());
result += right;
return result;
}
BasicDecimal128 operator-(const BasicDecimal128& left, const BasicDecimal128& right) {
BasicDecimal128 result(left.high_bits(), left.low_bits());
result -= right;
return result;
}
BasicDecimal128 operator*(const BasicDecimal128& left, const BasicDecimal128& right) {
BasicDecimal128 result(left.high_bits(), left.low_bits());
result *= right;
return result;
}
BasicDecimal128 operator/(const BasicDecimal128& left, const BasicDecimal128& right) {
BasicDecimal128 remainder;
BasicDecimal128 result;
auto s = left.Divide(right, &result, &remainder);
DCHECK_EQ(s, DecimalStatus::kSuccess);
return result;
}
BasicDecimal128 operator%(const BasicDecimal128& left, const BasicDecimal128& right) {
BasicDecimal128 remainder;
BasicDecimal128 result;
auto s = left.Divide(right, &result, &remainder);
DCHECK_EQ(s, DecimalStatus::kSuccess);
return remainder;
}
template <class DecimalClass>
static bool RescaleWouldCauseDataLoss(const DecimalClass& value, int32_t delta_scale,
const DecimalClass& multiplier,
DecimalClass* result) {
if (delta_scale < 0) {
DCHECK_NE(multiplier, 0);
DecimalClass remainder;
auto status = value.Divide(multiplier, result, &remainder);
DCHECK_EQ(status, DecimalStatus::kSuccess);
return remainder != 0;
}
*result = value * multiplier;
return (value < 0) ? *result > value : *result < value;
}
template <class DecimalClass>
DecimalStatus DecimalRescale(const DecimalClass& value, int32_t original_scale,
int32_t new_scale, DecimalClass* out) {
DCHECK_NE(out, nullptr);
if (original_scale == new_scale) {
*out = value;
return DecimalStatus::kSuccess;
}
const int32_t delta_scale = new_scale - original_scale;
const int32_t abs_delta_scale = std::abs(delta_scale);
DecimalClass multiplier = DecimalClass::GetScaleMultiplier(abs_delta_scale);
const bool rescale_would_cause_data_loss =
RescaleWouldCauseDataLoss(value, delta_scale, multiplier, out);
// Fail if we overflow or truncate
if (ARROW_PREDICT_FALSE(rescale_would_cause_data_loss)) {
return DecimalStatus::kRescaleDataLoss;
}
return DecimalStatus::kSuccess;
}
DecimalStatus BasicDecimal128::Rescale(int32_t original_scale, int32_t new_scale,
BasicDecimal128* out) const {
return DecimalRescale(*this, original_scale, new_scale, out);
}
void BasicDecimal128::GetWholeAndFraction(int scale, BasicDecimal128* whole,
BasicDecimal128* fraction) const {
DCHECK_GE(scale, 0);
DCHECK_LE(scale, 38);
BasicDecimal128 multiplier(ScaleMultipliers[scale]);
auto s = Divide(multiplier, whole, fraction);
DCHECK_EQ(s, DecimalStatus::kSuccess);
}
const BasicDecimal128& BasicDecimal128::GetScaleMultiplier(int32_t scale) {
DCHECK_GE(scale, 0);
DCHECK_LE(scale, 38);
return ScaleMultipliers[scale];
}
const BasicDecimal128& BasicDecimal128::GetMaxValue() { return kMaxValue; }
BasicDecimal128 BasicDecimal128::IncreaseScaleBy(int32_t increase_by) const {
DCHECK_GE(increase_by, 0);
DCHECK_LE(increase_by, 38);
return (*this) * ScaleMultipliers[increase_by];
}
BasicDecimal128 BasicDecimal128::ReduceScaleBy(int32_t reduce_by, bool round) const {
DCHECK_GE(reduce_by, 0);
DCHECK_LE(reduce_by, 38);
if (reduce_by == 0) {
return *this;
}
BasicDecimal128 divisor(ScaleMultipliers[reduce_by]);
BasicDecimal128 result;
BasicDecimal128 remainder;
auto s = Divide(divisor, &result, &remainder);
DCHECK_EQ(s, DecimalStatus::kSuccess);
if (round) {
auto divisor_half = ScaleMultipliersHalf[reduce_by];
if (remainder.Abs() >= divisor_half) {
if (result > 0) {
result += 1;
} else {
result -= 1;
}
}
}
return result;
}
int32_t BasicDecimal128::CountLeadingBinaryZeros() const {
DCHECK_GE(*this, BasicDecimal128(0));
if (high_bits_ == 0) {
return BitUtil::CountLeadingZeros(low_bits_) + 64;
} else {
return BitUtil::CountLeadingZeros(static_cast<uint64_t>(high_bits_));
}
}
#if ARROW_LITTLE_ENDIAN
BasicDecimal256::BasicDecimal256(const uint8_t* bytes)
: little_endian_array_(
std::array<uint64_t, 4>({reinterpret_cast<const uint64_t*>(bytes)[0],
reinterpret_cast<const uint64_t*>(bytes)[1],
reinterpret_cast<const uint64_t*>(bytes)[2],
reinterpret_cast<const uint64_t*>(bytes)[3]})) {}
#else
BasicDecimal256::BasicDecimal256(const uint8_t* bytes)
: little_endian_array_(
std::array<uint64_t, 4>({reinterpret_cast<const uint64_t*>(bytes)[3],
reinterpret_cast<const uint64_t*>(bytes)[2],
reinterpret_cast<const uint64_t*>(bytes)[1],
reinterpret_cast<const uint64_t*>(bytes)[0]})) {}
#endif
BasicDecimal256& BasicDecimal256::Negate() {
uint64_t carry = 1;
for (uint64_t& elem : little_endian_array_) {
elem = ~elem + carry;
carry &= (elem == 0);
}
return *this;
}
BasicDecimal256& BasicDecimal256::Abs() { return *this < 0 ? Negate() : *this; }
BasicDecimal256 BasicDecimal256::Abs(const BasicDecimal256& in) {
BasicDecimal256 result(in);
return result.Abs();
}
BasicDecimal256& BasicDecimal256::operator+=(const BasicDecimal256& right) {
uint64_t carry = 0;
for (size_t i = 0; i < little_endian_array_.size(); i++) {
const uint64_t right_value = right.little_endian_array_[i];
uint64_t sum = right_value + carry;
carry = 0;
if (sum < right_value) {
carry += 1;
}
sum += little_endian_array_[i];
if (sum < little_endian_array_[i]) {
carry += 1;
}
little_endian_array_[i] = sum;
}
return *this;
}
BasicDecimal256& BasicDecimal256::operator-=(const BasicDecimal256& right) {
*this += -right;
return *this;
}
BasicDecimal256& BasicDecimal256::operator<<=(uint32_t bits) {
if (bits == 0) {
return *this;
}
int cross_word_shift = bits / 64;
if (static_cast<size_t>(cross_word_shift) >= little_endian_array_.size()) {
little_endian_array_ = {0, 0, 0, 0};
return *this;
}
uint32_t in_word_shift = bits % 64;
for (int i = static_cast<int>(little_endian_array_.size() - 1); i >= cross_word_shift;
i--) {
// Account for shifts larger then 64 bits
little_endian_array_[i] = little_endian_array_[i - cross_word_shift];
little_endian_array_[i] <<= in_word_shift;
if (in_word_shift != 0 && i >= cross_word_shift + 1) {
little_endian_array_[i] |=
little_endian_array_[i - (cross_word_shift + 1)] >> (64 - in_word_shift);
}
}
for (int i = cross_word_shift - 1; i >= 0; i--) {
little_endian_array_[i] = 0;
}
return *this;
}
std::array<uint8_t, 32> BasicDecimal256::ToBytes() const {
std::array<uint8_t, 32> out{{0}};
ToBytes(out.data());
return out;
}
void BasicDecimal256::ToBytes(uint8_t* out) const {
DCHECK_NE(out, nullptr);
#if ARROW_LITTLE_ENDIAN
reinterpret_cast<int64_t*>(out)[0] = little_endian_array_[0];
reinterpret_cast<int64_t*>(out)[1] = little_endian_array_[1];
reinterpret_cast<int64_t*>(out)[2] = little_endian_array_[2];
reinterpret_cast<int64_t*>(out)[3] = little_endian_array_[3];
#else
reinterpret_cast<int64_t*>(out)[0] = little_endian_array_[3];
reinterpret_cast<int64_t*>(out)[1] = little_endian_array_[2];
reinterpret_cast<int64_t*>(out)[2] = little_endian_array_[1];
reinterpret_cast<int64_t*>(out)[3] = little_endian_array_[0];
#endif
}
BasicDecimal256& BasicDecimal256::operator*=(const BasicDecimal256& right) {
// Since the max value of BasicDecimal256 is supposed to be 1e76 - 1 and the
// min the negation taking the absolute values here should always be safe.
const bool negate = Sign() != right.Sign();
BasicDecimal256 x = BasicDecimal256::Abs(*this);
BasicDecimal256 y = BasicDecimal256::Abs(right);
uint128_t r_hi;
uint128_t r_lo;
std::array<uint64_t, 4> res{0, 0, 0, 0};
MultiplyUnsignedArray<4>(x.little_endian_array_, y.little_endian_array_, &res);
little_endian_array_ = res;
if (negate) {
Negate();
}
return *this;
}
DecimalStatus BasicDecimal256::Divide(const BasicDecimal256& divisor,
BasicDecimal256* result,
BasicDecimal256* remainder) const {
return DecimalDivide(*this, divisor, result, remainder);
}
DecimalStatus BasicDecimal256::Rescale(int32_t original_scale, int32_t new_scale,
BasicDecimal256* out) const {
return DecimalRescale(*this, original_scale, new_scale, out);
}
BasicDecimal256 BasicDecimal256::IncreaseScaleBy(int32_t increase_by) const {
DCHECK_GE(increase_by, 0);
DCHECK_LE(increase_by, 76);
return (*this) * ScaleMultipliersDecimal256[increase_by];
}
BasicDecimal256 BasicDecimal256::ReduceScaleBy(int32_t reduce_by, bool round) const {
DCHECK_GE(reduce_by, 0);
DCHECK_LE(reduce_by, 76);
if (reduce_by == 0) {
return *this;
}
BasicDecimal256 divisor(ScaleMultipliersDecimal256[reduce_by]);
BasicDecimal256 result;
BasicDecimal256 remainder;
auto s = Divide(divisor, &result, &remainder);
DCHECK_EQ(s, DecimalStatus::kSuccess);
if (round) {
auto divisor_half = ScaleMultipliersHalfDecimal256[reduce_by];
if (remainder.Abs() >= divisor_half) {
if (result > 0) {
result += 1;
} else {
result -= 1;
}
}
}
return result;
}
bool BasicDecimal256::FitsInPrecision(int32_t precision) const {
DCHECK_GT(precision, 0);
DCHECK_LE(precision, 76);
return BasicDecimal256::Abs(*this) < ScaleMultipliersDecimal256[precision];
}
const BasicDecimal256& BasicDecimal256::GetScaleMultiplier(int32_t scale) {
DCHECK_GE(scale, 0);
DCHECK_LE(scale, 76);
return ScaleMultipliersDecimal256[scale];
}
BasicDecimal256 operator*(const BasicDecimal256& left, const BasicDecimal256& right) {
BasicDecimal256 result = left;
result *= right;
return result;
}
bool operator<(const BasicDecimal256& left, const BasicDecimal256& right) {
const std::array<uint64_t, 4>& lhs = left.little_endian_array();
const std::array<uint64_t, 4>& rhs = right.little_endian_array();
return lhs[3] != rhs[3]
? static_cast<int64_t>(lhs[3]) < static_cast<int64_t>(rhs[3])
: lhs[2] != rhs[2] ? lhs[2] < rhs[2]
: lhs[1] != rhs[1] ? lhs[1] < rhs[1] : lhs[0] < rhs[0];
}
BasicDecimal256 operator-(const BasicDecimal256& operand) {
BasicDecimal256 result(operand);
return result.Negate();
}
BasicDecimal256 operator~(const BasicDecimal256& operand) {
const std::array<uint64_t, 4>& arr = operand.little_endian_array();
BasicDecimal256 result({~arr[0], ~arr[1], ~arr[2], ~arr[3]});
return result;
}
BasicDecimal256& BasicDecimal256::operator/=(const BasicDecimal256& right) {
BasicDecimal256 remainder;
auto s = Divide(right, this, &remainder);
DCHECK_EQ(s, DecimalStatus::kSuccess);
return *this;
}
BasicDecimal256 operator+(const BasicDecimal256& left, const BasicDecimal256& right) {
BasicDecimal256 sum = left;
sum += right;
return sum;
}
BasicDecimal256 operator/(const BasicDecimal256& left, const BasicDecimal256& right) {
BasicDecimal256 remainder;
BasicDecimal256 result;
auto s = left.Divide(right, &result, &remainder);
DCHECK_EQ(s, DecimalStatus::kSuccess);
return result;
}
} // namespace arrow
|