1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
|
/* Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
* Use of this file is governed by the BSD 3-clause license that
* can be found in the LICENSE.txt file in the project root.
*/
#include "dfa/DFA.h"
#include "NoViableAltException.h"
#include "atn/DecisionState.h"
#include "ParserRuleContext.h"
#include "misc/IntervalSet.h"
#include "Parser.h"
#include "CommonTokenStream.h"
#include "atn/NotSetTransition.h"
#include "atn/AtomTransition.h"
#include "atn/RuleTransition.h"
#include "atn/PredicateTransition.h"
#include "atn/PrecedencePredicateTransition.h"
#include "atn/SingletonPredictionContext.h"
#include "atn/ActionTransition.h"
#include "atn/EpsilonTransition.h"
#include "atn/RuleStopState.h"
#include "atn/ATNConfigSet.h"
#include "atn/ATNConfig.h"
#include "internal/Synchronization.h"
#include "atn/StarLoopEntryState.h"
#include "atn/BlockStartState.h"
#include "atn/BlockEndState.h"
#include "misc/Interval.h"
#include "ANTLRErrorListener.h"
#include "Vocabulary.h"
#include "support/Arrays.h"
#include "support/Casts.h"
#include "atn/ParserATNSimulator.h"
#define DEBUG_ATN 0
#define DEBUG_LIST_ATN_DECISIONS 0
#define DEBUG_DFA 0
#define RETRY_DEBUG 0
using namespace antlr4;
using namespace antlr4::atn;
using namespace antlr4::internal;
using namespace antlrcpp;
const bool ParserATNSimulator::TURN_OFF_LR_LOOP_ENTRY_BRANCH_OPT = ParserATNSimulator::getLrLoopSetting();
ParserATNSimulator::ParserATNSimulator(const ATN &atn, std::vector<dfa::DFA> &decisionToDFA,
PredictionContextCache &sharedContextCache)
: ParserATNSimulator(nullptr, atn, decisionToDFA, sharedContextCache) {
}
ParserATNSimulator::ParserATNSimulator(Parser *parser, const ATN &atn, std::vector<dfa::DFA> &decisionToDFA,
PredictionContextCache &sharedContextCache)
: ParserATNSimulator(parser, atn, decisionToDFA, sharedContextCache, ParserATNSimulatorOptions()) {}
ParserATNSimulator::ParserATNSimulator(Parser *parser, const ATN &atn, std::vector<dfa::DFA> &decisionToDFA,
PredictionContextCache &sharedContextCache,
const ParserATNSimulatorOptions &options)
: ATNSimulator(atn, sharedContextCache), decisionToDFA(decisionToDFA), parser(parser),
mergeCache(options.getPredictionContextMergeCacheOptions()) {
InitializeInstanceFields();
}
void ParserATNSimulator::reset() {
}
void ParserATNSimulator::clearDFA() {
int size = (int)decisionToDFA.size();
decisionToDFA.clear();
for (int d = 0; d < size; ++d) {
decisionToDFA.push_back(dfa::DFA(atn.getDecisionState(d), d));
}
}
size_t ParserATNSimulator::adaptivePredict(TokenStream *input, size_t decision, ParserRuleContext *outerContext) {
#if DEBUG_ATN == 1 || DEBUG_LIST_ATN_DECISIONS == 1
std::cout << "adaptivePredict decision " << decision << " exec LA(1)==" << getLookaheadName(input) << " line "
<< input->LT(1)->getLine() << ":" << input->LT(1)->getCharPositionInLine() << std::endl;
#endif
_input = input;
_startIndex = input->index();
_outerContext = outerContext;
dfa::DFA &dfa = decisionToDFA[decision];
_dfa = &dfa;
ssize_t m = input->mark();
size_t index = _startIndex;
// Now we are certain to have a specific decision's DFA
// But, do we still need an initial state?
auto onExit = finally([this, input, index, m] {
if (mergeCache.getOptions().getClearEveryN() != 0) {
if (++_mergeCacheCounter == mergeCache.getOptions().getClearEveryN()) {
mergeCache.clear();
_mergeCacheCounter = 0;
}
}
_dfa = nullptr;
input->seek(index);
input->release(m);
});
dfa::DFAState *s0;
{
SharedLock<SharedMutex> stateLock(atn._stateMutex);
if (dfa.isPrecedenceDfa()) {
// the start state for a precedence DFA depends on the current
// parser precedence, and is provided by a DFA method.
SharedLock<SharedMutex> edgeLock(atn._edgeMutex);
s0 = dfa.getPrecedenceStartState(parser->getPrecedence());
} else {
// the start state for a "regular" DFA is just s0
s0 = dfa.s0;
}
}
if (s0 == nullptr) {
auto s0_closure = computeStartState(dfa.atnStartState, &ParserRuleContext::EMPTY, false);
std::unique_ptr<dfa::DFAState> newState;
std::unique_ptr<dfa::DFAState> oldState;
UniqueLock<SharedMutex> stateLock(atn._stateMutex);
dfa::DFAState* ds0 = dfa.s0;
if (dfa.isPrecedenceDfa()) {
/* If this is a precedence DFA, we use applyPrecedenceFilter
* to convert the computed start state to a precedence start
* state. We then use DFA.setPrecedenceStartState to set the
* appropriate start state for the precedence level rather
* than simply setting DFA.s0.
*/
ds0->configs = std::move(s0_closure); // not used for prediction but useful to know start configs anyway
newState = std::make_unique<dfa::DFAState>(applyPrecedenceFilter(ds0->configs.get()));
s0 = addDFAState(dfa, newState.get());
UniqueLock<SharedMutex> edgeLock(atn._edgeMutex);
dfa.setPrecedenceStartState(parser->getPrecedence(), s0);
} else {
newState = std::make_unique<dfa::DFAState>(std::move(s0_closure));
s0 = addDFAState(dfa, newState.get());
if (ds0 != s0) {
oldState.reset(ds0);
dfa.s0 = s0;
}
}
if (s0 == newState.get()) {
newState.release();
}
}
// We can start with an existing DFA.
size_t alt = execATN(dfa, s0, input, index, outerContext != nullptr ? outerContext : &ParserRuleContext::EMPTY);
return alt;
}
size_t ParserATNSimulator::execATN(dfa::DFA &dfa, dfa::DFAState *s0, TokenStream *input, size_t startIndex,
ParserRuleContext *outerContext) {
#if DEBUG_ATN == 1 || DEBUG_LIST_ATN_DECISIONS == 1
std::cout << "execATN decision " << dfa.decision << " exec LA(1)==" << getLookaheadName(input) <<
" line " << input->LT(1)->getLine() << ":" << input->LT(1)->getCharPositionInLine() << std::endl;
#endif
dfa::DFAState *previousD = s0;
#if DEBUG_ATN == 1
std::cout << "s0 = " << s0 << std::endl;
#endif
size_t t = input->LA(1);
while (true) { // while more work
dfa::DFAState *D = getExistingTargetState(previousD, t);
if (D == nullptr) {
D = computeTargetState(dfa, previousD, t);
}
if (D == ERROR.get()) {
// if any configs in previous dipped into outer context, that
// means that input up to t actually finished entry rule
// at least for SLL decision. Full LL doesn't dip into outer
// so don't need special case.
// We will get an error no matter what so delay until after
// decision; better error message. Also, no reachable target
// ATN states in SLL implies LL will also get nowhere.
// If conflict in states that dip out, choose min since we
// will get error no matter what.
NoViableAltException e = noViableAlt(input, outerContext, previousD->configs.get(), startIndex, false);
input->seek(startIndex);
size_t alt = getSynValidOrSemInvalidAltThatFinishedDecisionEntryRule(previousD->configs.get(), outerContext);
if (alt != ATN::INVALID_ALT_NUMBER) {
return alt;
}
throw e;
}
if (D->requiresFullContext && _mode != PredictionMode::SLL) {
// IF PREDS, MIGHT RESOLVE TO SINGLE ALT => SLL (or syntax error)
BitSet conflictingAlts;
if (D->predicates.size() != 0) {
#if DEBUG_ATN == 1
std::cout << "DFA state has preds in DFA sim LL failover" << std::endl;
#endif
size_t conflictIndex = input->index();
if (conflictIndex != startIndex) {
input->seek(startIndex);
}
conflictingAlts = evalSemanticContext(D->predicates, outerContext, true);
if (conflictingAlts.count() == 1) {
#if DEBUG_ATN == 1
std::cout << "Full LL avoided" << std::endl;
#endif
return conflictingAlts.nextSetBit(0);
}
if (conflictIndex != startIndex) {
// restore the index so reporting the fallback to full
// context occurs with the index at the correct spot
input->seek(conflictIndex);
}
}
#if DEBUG_DFA == 1
std::cout << "ctx sensitive state " << outerContext << " in " << D << std::endl;
#endif
bool fullCtx = true;
std::unique_ptr<ATNConfigSet> s0_closure = computeStartState(dfa.atnStartState, outerContext, fullCtx);
reportAttemptingFullContext(dfa, conflictingAlts, D->configs.get(), startIndex, input->index());
size_t alt = execATNWithFullContext(dfa, D, s0_closure.get(), input, startIndex, outerContext);
return alt;
}
if (D->isAcceptState) {
if (D->predicates.empty()) {
return D->prediction;
}
size_t stopIndex = input->index();
input->seek(startIndex);
BitSet alts = evalSemanticContext(D->predicates, outerContext, true);
switch (alts.count()) {
case 0:
throw noViableAlt(input, outerContext, D->configs.get(), startIndex, false);
case 1:
return alts.nextSetBit(0);
default:
// report ambiguity after predicate evaluation to make sure the correct
// set of ambig alts is reported.
reportAmbiguity(dfa, D, startIndex, stopIndex, false, alts, D->configs.get());
return alts.nextSetBit(0);
}
}
previousD = D;
if (t != Token::EOF) {
input->consume();
t = input->LA(1);
}
}
}
dfa::DFAState *ParserATNSimulator::getExistingTargetState(dfa::DFAState *previousD, size_t t) {
dfa::DFAState* retval;
SharedLock<SharedMutex> edgeLock(atn._edgeMutex);
auto iterator = previousD->edges.find(t);
retval = (iterator == previousD->edges.end()) ? nullptr : iterator->second;
return retval;
}
dfa::DFAState *ParserATNSimulator::computeTargetState(dfa::DFA &dfa, dfa::DFAState *previousD, size_t t) {
std::unique_ptr<ATNConfigSet> reach = computeReachSet(previousD->configs.get(), t, false);
if (reach == nullptr) {
addDFAEdge(dfa, previousD, t, ERROR.get());
return ERROR.get();
}
// create new target state; we'll add to DFA after it's complete
dfa::DFAState *D = new dfa::DFAState(std::move(reach)); /* mem-check: managed by the DFA or deleted below, "reach" is no longer valid now. */
size_t predictedAlt = getUniqueAlt(D->configs.get());
if (predictedAlt != ATN::INVALID_ALT_NUMBER) {
// NO CONFLICT, UNIQUELY PREDICTED ALT
D->isAcceptState = true;
D->configs->uniqueAlt = predictedAlt;
D->prediction = predictedAlt;
} else if (PredictionModeClass::hasSLLConflictTerminatingPrediction(_mode, D->configs.get())) {
// MORE THAN ONE VIABLE ALTERNATIVE
D->configs->conflictingAlts = getConflictingAlts(D->configs.get());
D->requiresFullContext = true;
// in SLL-only mode, we will stop at this state and return the minimum alt
D->isAcceptState = true;
D->prediction = D->configs->conflictingAlts.nextSetBit(0);
}
if (D->isAcceptState && D->configs->hasSemanticContext) {
predicateDFAState(D, atn.getDecisionState(dfa.decision));
if (D->predicates.size() != 0) {
D->prediction = ATN::INVALID_ALT_NUMBER;
}
}
// all adds to dfa are done after we've created full D state
dfa::DFAState *state = addDFAEdge(dfa, previousD, t, D);
if (state != D) {
delete D; // If the new state exists already we don't need it and use the existing one instead.
}
return state;
}
void ParserATNSimulator::predicateDFAState(dfa::DFAState *dfaState, DecisionState *decisionState) {
// We need to test all predicates, even in DFA states that
// uniquely predict alternative.
size_t nalts = decisionState->transitions.size();
// Update DFA so reach becomes accept state with (predicate,alt)
// pairs if preds found for conflicting alts
BitSet altsToCollectPredsFrom = getConflictingAltsOrUniqueAlt(dfaState->configs.get());
std::vector<Ref<const SemanticContext>> altToPred = getPredsForAmbigAlts(altsToCollectPredsFrom, dfaState->configs.get(), nalts);
if (!altToPred.empty()) {
dfaState->predicates = getPredicatePredictions(altsToCollectPredsFrom, altToPred);
dfaState->prediction = ATN::INVALID_ALT_NUMBER; // make sure we use preds
} else {
// There are preds in configs but they might go away
// when OR'd together like {p}? || NONE == NONE. If neither
// alt has preds, resolve to min alt
dfaState->prediction = altsToCollectPredsFrom.nextSetBit(0);
}
}
size_t ParserATNSimulator::execATNWithFullContext(dfa::DFA &dfa, dfa::DFAState *D, ATNConfigSet *s0,
TokenStream *input, size_t startIndex, ParserRuleContext *outerContext) {
bool fullCtx = true;
bool foundExactAmbig = false;
std::unique_ptr<ATNConfigSet> reach;
ATNConfigSet *previous = s0;
input->seek(startIndex);
size_t t = input->LA(1);
size_t predictedAlt;
while (true) {
reach = computeReachSet(previous, t, fullCtx);
if (reach == nullptr) {
// if any configs in previous dipped into outer context, that
// means that input up to t actually finished entry rule
// at least for LL decision. Full LL doesn't dip into outer
// so don't need special case.
// We will get an error no matter what so delay until after
// decision; better error message. Also, no reachable target
// ATN states in SLL implies LL will also get nowhere.
// If conflict in states that dip out, choose min since we
// will get error no matter what.
NoViableAltException e = noViableAlt(input, outerContext, previous, startIndex, previous != s0);
input->seek(startIndex);
size_t alt = getSynValidOrSemInvalidAltThatFinishedDecisionEntryRule(previous, outerContext);
if (alt != ATN::INVALID_ALT_NUMBER) {
return alt;
}
throw e;
}
if (previous != s0) // Don't delete the start set.
delete previous;
previous = nullptr;
std::vector<BitSet> altSubSets = PredictionModeClass::getConflictingAltSubsets(reach.get());
reach->uniqueAlt = getUniqueAlt(reach.get());
// unique prediction?
if (reach->uniqueAlt != ATN::INVALID_ALT_NUMBER) {
predictedAlt = reach->uniqueAlt;
break;
}
if (_mode != PredictionMode::LL_EXACT_AMBIG_DETECTION) {
predictedAlt = PredictionModeClass::resolvesToJustOneViableAlt(altSubSets);
if (predictedAlt != ATN::INVALID_ALT_NUMBER) {
break;
}
} else {
// In exact ambiguity mode, we never try to terminate early.
// Just keeps scarfing until we know what the conflict is
if (PredictionModeClass::allSubsetsConflict(altSubSets) && PredictionModeClass::allSubsetsEqual(altSubSets)) {
foundExactAmbig = true;
predictedAlt = PredictionModeClass::getSingleViableAlt(altSubSets);
break;
}
// else there are multiple non-conflicting subsets or
// we're not sure what the ambiguity is yet.
// So, keep going.
}
previous = reach.release();
if (t != Token::EOF) {
input->consume();
t = input->LA(1);
}
}
if (previous != s0) // Don't delete the start set
delete previous;
// If the configuration set uniquely predicts an alternative,
// without conflict, then we know that it's a full LL decision
// not SLL.
if (reach->uniqueAlt != ATN::INVALID_ALT_NUMBER) {
reportContextSensitivity(dfa, predictedAlt, reach.get(), startIndex, input->index());
return predictedAlt;
}
// We do not check predicates here because we have checked them
// on-the-fly when doing full context prediction.
/*
In non-exact ambiguity detection mode, we might actually be able to
detect an exact ambiguity, but I'm not going to spend the cycles
needed to check. We only emit ambiguity warnings in exact ambiguity
mode.
For example, we might know that we have conflicting configurations.
But, that does not mean that there is no way forward without a
conflict. It's possible to have nonconflicting alt subsets as in:
LL altSubSets=[{1, 2}, {1, 2}, {1}, {1, 2}]
from
[(17,1,[5 $]), (13,1,[5 10 $]), (21,1,[5 10 $]), (11,1,[$]),
(13,2,[5 10 $]), (21,2,[5 10 $]), (11,2,[$])]
In this case, (17,1,[5 $]) indicates there is some next sequence that
would resolve this without conflict to alternative 1. Any other viable
next sequence, however, is associated with a conflict. We stop
looking for input because no amount of further lookahead will alter
the fact that we should predict alternative 1. We just can't say for
sure that there is an ambiguity without looking further.
*/
reportAmbiguity(dfa, D, startIndex, input->index(), foundExactAmbig, reach->getAlts(), reach.get());
return predictedAlt;
}
std::unique_ptr<ATNConfigSet> ParserATNSimulator::computeReachSet(ATNConfigSet *closure_, size_t t, bool fullCtx) {
std::unique_ptr<ATNConfigSet> intermediate(new ATNConfigSet(fullCtx));
/* Configurations already in a rule stop state indicate reaching the end
* of the decision rule (local context) or end of the start rule (full
* context). Once reached, these configurations are never updated by a
* closure operation, so they are handled separately for the performance
* advantage of having a smaller intermediate set when calling closure.
*
* For full-context reach operations, separate handling is required to
* ensure that the alternative matching the longest overall sequence is
* chosen when multiple such configurations can match the input.
*/
std::vector<Ref<ATNConfig>> skippedStopStates;
// First figure out where we can reach on input t
for (const auto &c : closure_->configs) {
if (RuleStopState::is(c->state)) {
assert(c->context->isEmpty());
if (fullCtx || t == Token::EOF) {
skippedStopStates.push_back(c);
}
continue;
}
size_t n = c->state->transitions.size();
for (size_t ti = 0; ti < n; ti++) { // for each transition
const Transition *trans = c->state->transitions[ti].get();
ATNState *target = getReachableTarget(trans, (int)t);
if (target != nullptr) {
intermediate->add(std::make_shared<ATNConfig>(*c, target), &mergeCache);
}
}
}
// Now figure out where the reach operation can take us...
std::unique_ptr<ATNConfigSet> reach;
/* This block optimizes the reach operation for intermediate sets which
* trivially indicate a termination state for the overall
* adaptivePredict operation.
*
* The conditions assume that intermediate
* contains all configurations relevant to the reach set, but this
* condition is not true when one or more configurations have been
* withheld in skippedStopStates, or when the current symbol is EOF.
*/
if (skippedStopStates.empty() && t != Token::EOF) {
if (intermediate->size() == 1) {
// Don't pursue the closure if there is just one state.
// It can only have one alternative; just add to result
// Also don't pursue the closure if there is unique alternative
// among the configurations.
reach = std::move(intermediate);
} else if (getUniqueAlt(intermediate.get()) != ATN::INVALID_ALT_NUMBER) {
// Also don't pursue the closure if there is unique alternative
// among the configurations.
reach = std::move(intermediate);
}
}
/* If the reach set could not be trivially determined, perform a closure
* operation on the intermediate set to compute its initial value.
*/
if (reach == nullptr) {
reach.reset(new ATNConfigSet(fullCtx));
ATNConfig::Set closureBusy;
bool treatEofAsEpsilon = t == Token::EOF;
for (const auto &c : intermediate->configs) {
closure(c, reach.get(), closureBusy, false, fullCtx, treatEofAsEpsilon);
}
}
if (t == IntStream::EOF) {
/* After consuming EOF no additional input is possible, so we are
* only interested in configurations which reached the end of the
* decision rule (local context) or end of the start rule (full
* context). Update reach to contain only these configurations. This
* handles both explicit EOF transitions in the grammar and implicit
* EOF transitions following the end of the decision or start rule.
*
* When reach==intermediate, no closure operation was performed. In
* this case, removeAllConfigsNotInRuleStopState needs to check for
* reachable rule stop states as well as configurations already in
* a rule stop state.
*
* This is handled before the configurations in skippedStopStates,
* because any configurations potentially added from that list are
* already guaranteed to meet this condition whether or not it's
* required.
*/
ATNConfigSet *temp = removeAllConfigsNotInRuleStopState(reach.get(), *reach == *intermediate);
if (temp != reach.get())
reach.reset(temp); // We got a new set, so use that.
}
/* If skippedStopStates is not null, then it contains at least one
* configuration. For full-context reach operations, these
* configurations reached the end of the start rule, in which case we
* only add them back to reach if no configuration during the current
* closure operation reached such a state. This ensures adaptivePredict
* chooses an alternative matching the longest overall sequence when
* multiple alternatives are viable.
*/
if (skippedStopStates.size() > 0 && (!fullCtx || !PredictionModeClass::hasConfigInRuleStopState(reach.get()))) {
assert(!skippedStopStates.empty());
for (const auto &c : skippedStopStates) {
reach->add(c, &mergeCache);
}
}
if (reach->isEmpty()) {
return nullptr;
}
return reach;
}
ATNConfigSet* ParserATNSimulator::removeAllConfigsNotInRuleStopState(ATNConfigSet *configs,
bool lookToEndOfRule) {
if (PredictionModeClass::allConfigsInRuleStopStates(configs)) {
return configs;
}
ATNConfigSet *result = new ATNConfigSet(configs->fullCtx); /* mem-check: released by caller */
for (const auto &config : configs->configs) {
if (config->state != nullptr && config->state->getStateType() == ATNStateType::RULE_STOP) {
result->add(config, &mergeCache);
continue;
}
if (lookToEndOfRule && config->state->epsilonOnlyTransitions) {
misc::IntervalSet nextTokens = atn.nextTokens(config->state);
if (nextTokens.contains(Token::EPSILON)) {
ATNState *endOfRuleState = atn.ruleToStopState[config->state->ruleIndex];
result->add(std::make_shared<ATNConfig>(*config, endOfRuleState), &mergeCache);
}
}
}
return result;
}
std::unique_ptr<ATNConfigSet> ParserATNSimulator::computeStartState(ATNState *p, RuleContext *ctx, bool fullCtx) {
// always at least the implicit call to start rule
Ref<const PredictionContext> initialContext = PredictionContext::fromRuleContext(atn, ctx);
std::unique_ptr<ATNConfigSet> configs(new ATNConfigSet(fullCtx));
for (size_t i = 0; i < p->transitions.size(); i++) {
ATNState *target = p->transitions[i]->target;
Ref<ATNConfig> c = std::make_shared<ATNConfig>(target, (int)i + 1, initialContext);
ATNConfig::Set closureBusy;
closure(c, configs.get(), closureBusy, true, fullCtx, false);
}
return configs;
}
std::unique_ptr<ATNConfigSet> ParserATNSimulator::applyPrecedenceFilter(ATNConfigSet *configs) {
std::map<size_t, Ref<const PredictionContext>> statesFromAlt1;
std::unique_ptr<ATNConfigSet> configSet(new ATNConfigSet(configs->fullCtx));
for (const auto &config : configs->configs) {
// handle alt 1 first
if (config->alt != 1) {
continue;
}
Ref<const SemanticContext> updatedContext = config->semanticContext->evalPrecedence(parser, _outerContext);
if (updatedContext == nullptr) {
// the configuration was eliminated
continue;
}
statesFromAlt1[config->state->stateNumber] = config->context;
if (updatedContext != config->semanticContext) {
configSet->add(std::make_shared<ATNConfig>(*config, updatedContext), &mergeCache);
}
else {
configSet->add(config, &mergeCache);
}
}
for (const auto &config : configs->configs) {
if (config->alt == 1) {
// already handled
continue;
}
if (!config->isPrecedenceFilterSuppressed()) {
/* In the future, this elimination step could be updated to also
* filter the prediction context for alternatives predicting alt>1
* (basically a graph subtraction algorithm).
*/
auto iterator = statesFromAlt1.find(config->state->stateNumber);
if (iterator != statesFromAlt1.end() && *iterator->second == *config->context) {
// eliminated
continue;
}
}
configSet->add(config, &mergeCache);
}
return configSet;
}
atn::ATNState* ParserATNSimulator::getReachableTarget(const Transition *trans, size_t ttype) {
if (trans->matches(ttype, 0, atn.maxTokenType)) {
return trans->target;
}
return nullptr;
}
// Note that caller must memory manage the returned value from this function
std::vector<Ref<const SemanticContext>> ParserATNSimulator::getPredsForAmbigAlts(const BitSet &ambigAlts,
ATNConfigSet *configs, size_t nalts) {
// REACH=[1|1|[]|0:0, 1|2|[]|0:1]
/* altToPred starts as an array of all null contexts. The entry at index i
* corresponds to alternative i. altToPred[i] may have one of three values:
* 1. null: no ATNConfig c is found such that c.alt==i
* 2. SemanticContext.NONE: At least one ATNConfig c exists such that
* c.alt==i and c.semanticContext==SemanticContext.NONE. In other words,
* alt i has at least one un-predicated config.
* 3. Non-NONE Semantic Context: There exists at least one, and for all
* ATNConfig c such that c.alt==i, c.semanticContext!=SemanticContext.NONE.
*
* From this, it is clear that NONE||anything==NONE.
*/
std::vector<Ref<const SemanticContext>> altToPred(nalts + 1);
for (const auto &c : configs->configs) {
if (ambigAlts.test(c->alt)) {
altToPred[c->alt] = SemanticContext::Or(altToPred[c->alt], c->semanticContext);
}
}
size_t nPredAlts = 0;
for (size_t i = 1; i <= nalts; i++) {
if (altToPred[i] == nullptr) {
altToPred[i] = SemanticContext::Empty::Instance;
} else if (altToPred[i] != SemanticContext::Empty::Instance) {
nPredAlts++;
}
}
// nonambig alts are null in altToPred
if (nPredAlts == 0) {
altToPred.clear();
}
#if DEBUG_ATN == 1
std::cout << "getPredsForAmbigAlts result " << Arrays::toString(altToPred) << std::endl;
#endif
return altToPred;
}
std::vector<dfa::DFAState::PredPrediction> ParserATNSimulator::getPredicatePredictions(const antlrcpp::BitSet &ambigAlts,
const std::vector<Ref<const SemanticContext>> &altToPred) {
bool containsPredicate = std::find_if(altToPred.begin(), altToPred.end(), [](const Ref<const SemanticContext> &context) {
return context != SemanticContext::Empty::Instance;
}) != altToPred.end();
std::vector<dfa::DFAState::PredPrediction> pairs;
if (containsPredicate) {
for (size_t i = 1; i < altToPred.size(); i++) {
const auto &pred = altToPred[i];
assert(pred != nullptr); // unpredicted is indicated by SemanticContext.NONE
if (ambigAlts.test(i)) {
pairs.emplace_back(pred, static_cast<int>(i));
}
}
}
return pairs;
}
size_t ParserATNSimulator::getSynValidOrSemInvalidAltThatFinishedDecisionEntryRule(ATNConfigSet *configs,
ParserRuleContext *outerContext)
{
std::pair<ATNConfigSet *, ATNConfigSet *> sets = splitAccordingToSemanticValidity(configs, outerContext);
std::unique_ptr<ATNConfigSet> semValidConfigs(sets.first);
std::unique_ptr<ATNConfigSet> semInvalidConfigs(sets.second);
size_t alt = getAltThatFinishedDecisionEntryRule(semValidConfigs.get());
if (alt != ATN::INVALID_ALT_NUMBER) { // semantically/syntactically viable path exists
return alt;
}
// Is there a syntactically valid path with a failed pred?
if (!semInvalidConfigs->configs.empty()) {
alt = getAltThatFinishedDecisionEntryRule(semInvalidConfigs.get());
if (alt != ATN::INVALID_ALT_NUMBER) { // syntactically viable path exists
return alt;
}
}
return ATN::INVALID_ALT_NUMBER;
}
size_t ParserATNSimulator::getAltThatFinishedDecisionEntryRule(ATNConfigSet *configs) {
misc::IntervalSet alts;
for (const auto &c : configs->configs) {
if (c->getOuterContextDepth() > 0 || (c->state != nullptr && c->state->getStateType() == ATNStateType::RULE_STOP && c->context->hasEmptyPath())) {
alts.add(c->alt);
}
}
if (alts.size() == 0) {
return ATN::INVALID_ALT_NUMBER;
}
return alts.getMinElement();
}
std::pair<ATNConfigSet *, ATNConfigSet *> ParserATNSimulator::splitAccordingToSemanticValidity(ATNConfigSet *configs,
ParserRuleContext *outerContext) {
// mem-check: both pointers must be freed by the caller.
ATNConfigSet *succeeded(new ATNConfigSet(configs->fullCtx));
ATNConfigSet *failed(new ATNConfigSet(configs->fullCtx));
for (const auto &c : configs->configs) {
if (c->semanticContext != SemanticContext::Empty::Instance) {
bool predicateEvaluationResult = evalSemanticContext(c->semanticContext, outerContext, c->alt, configs->fullCtx);
if (predicateEvaluationResult) {
succeeded->add(c);
} else {
failed->add(c);
}
} else {
succeeded->add(c);
}
}
return { succeeded, failed };
}
BitSet ParserATNSimulator::evalSemanticContext(const std::vector<dfa::DFAState::PredPrediction> &predPredictions,
ParserRuleContext *outerContext, bool complete) {
BitSet predictions;
for (const auto &prediction : predPredictions) {
if (prediction.pred == SemanticContext::Empty::Instance) {
predictions.set(prediction.alt);
if (!complete) {
break;
}
continue;
}
bool fullCtx = false; // in dfa
bool predicateEvaluationResult = evalSemanticContext(prediction.pred, outerContext, prediction.alt, fullCtx);
#if DEBUG_ATN == 1 || DEBUG_DFA == 1
std::cout << "eval pred " << prediction.toString() << " = " << predicateEvaluationResult << std::endl;
#endif
if (predicateEvaluationResult) {
#if DEBUG_ATN == 1 || DEBUG_DFA == 1
std::cout << "PREDICT " << prediction.alt << std::endl;
#endif
predictions.set(prediction.alt);
if (!complete) {
break;
}
}
}
return predictions;
}
bool ParserATNSimulator::evalSemanticContext(Ref<const SemanticContext> const& pred, ParserRuleContext *parserCallStack,
size_t /*alt*/, bool /*fullCtx*/) {
return pred->eval(parser, parserCallStack);
}
void ParserATNSimulator::closure(Ref<ATNConfig> const& config, ATNConfigSet *configs, ATNConfig::Set &closureBusy,
bool collectPredicates, bool fullCtx, bool treatEofAsEpsilon) {
const int initialDepth = 0;
closureCheckingStopState(config, configs, closureBusy, collectPredicates, fullCtx, initialDepth, treatEofAsEpsilon);
assert(!fullCtx || !configs->dipsIntoOuterContext);
}
void ParserATNSimulator::closureCheckingStopState(Ref<ATNConfig> const& config, ATNConfigSet *configs,
ATNConfig::Set &closureBusy, bool collectPredicates, bool fullCtx, int depth, bool treatEofAsEpsilon) {
#if DEBUG_ATN == 1
std::cout << "closure(" << config->toString(true) << ")" << std::endl;
#endif
if (config->state != nullptr && config->state->getStateType() == ATNStateType::RULE_STOP) {
// We hit rule end. If we have context info, use it
// run thru all possible stack tops in ctx
if (!config->context->isEmpty()) {
for (size_t i = 0; i < config->context->size(); i++) {
if (config->context->getReturnState(i) == PredictionContext::EMPTY_RETURN_STATE) {
if (fullCtx) {
configs->add(std::make_shared<ATNConfig>(*config, config->state, PredictionContext::EMPTY), &mergeCache);
continue;
} else {
// we have no context info, just chase follow links (if greedy)
#if DEBUG_ATN == 1
std::cout << "FALLING off rule " << getRuleName(config->state->ruleIndex) << std::endl;
#endif
closure_(config, configs, closureBusy, collectPredicates, fullCtx, depth, treatEofAsEpsilon);
}
continue;
}
ATNState *returnState = atn.states[config->context->getReturnState(i)];
Ref<const PredictionContext> newContext = config->context->getParent(i); // "pop" return state
Ref<ATNConfig> c = std::make_shared<ATNConfig>(returnState, config->alt, newContext, config->semanticContext);
// While we have context to pop back from, we may have
// gotten that context AFTER having falling off a rule.
// Make sure we track that we are now out of context.
//
// This assignment also propagates the
// isPrecedenceFilterSuppressed() value to the new
// configuration.
c->reachesIntoOuterContext = config->reachesIntoOuterContext;
assert(depth > INT_MIN);
closureCheckingStopState(c, configs, closureBusy, collectPredicates, fullCtx, depth - 1, treatEofAsEpsilon);
}
return;
} else if (fullCtx) {
// reached end of start rule
configs->add(config, &mergeCache);
return;
} else {
// else if we have no context info, just chase follow links (if greedy)
}
}
closure_(config, configs, closureBusy, collectPredicates, fullCtx, depth, treatEofAsEpsilon);
}
void ParserATNSimulator::closure_(Ref<ATNConfig> const& config, ATNConfigSet *configs, ATNConfig::Set &closureBusy,
bool collectPredicates, bool fullCtx, int depth, bool treatEofAsEpsilon) {
ATNState *p = config->state;
// optimization
if (!p->epsilonOnlyTransitions) {
// make sure to not return here, because EOF transitions can act as
// both epsilon transitions and non-epsilon transitions.
configs->add(config, &mergeCache);
}
for (size_t i = 0; i < p->transitions.size(); i++) {
if (i == 0 && canDropLoopEntryEdgeInLeftRecursiveRule(config.get()))
continue;
const Transition *t = p->transitions[i].get();
bool continueCollecting = !(t != nullptr && t->getTransitionType() == TransitionType::ACTION) && collectPredicates;
Ref<ATNConfig> c = getEpsilonTarget(config, t, continueCollecting, depth == 0, fullCtx, treatEofAsEpsilon);
if (c != nullptr) {
int newDepth = depth;
if (config->state != nullptr && config->state->getStateType() == ATNStateType::RULE_STOP) {
assert(!fullCtx);
// target fell off end of rule; mark resulting c as having dipped into outer context
// We can't get here if incoming config was rule stop and we had context
// track how far we dip into outer context. Might
// come in handy and we avoid evaluating context dependent
// preds if this is > 0.
if (closureBusy.count(c) > 0) {
// avoid infinite recursion for right-recursive rules
continue;
}
closureBusy.insert(c);
if (_dfa != nullptr && _dfa->isPrecedenceDfa()) {
size_t outermostPrecedenceReturn = downCast<const EpsilonTransition *>(t)->outermostPrecedenceReturn();
if (outermostPrecedenceReturn == _dfa->atnStartState->ruleIndex) {
c->setPrecedenceFilterSuppressed(true);
}
}
c->reachesIntoOuterContext++;
if (!t->isEpsilon()) {
// avoid infinite recursion for EOF* and EOF+
if (closureBusy.count(c) == 0) {
closureBusy.insert(c);
} else {
continue;
}
}
configs->dipsIntoOuterContext = true; // TODO: can remove? only care when we add to set per middle of this method
assert(newDepth > INT_MIN);
newDepth--;
#if DEBUG_DFA == 1
std::cout << "dips into outer ctx: " << c << std::endl;
#endif
} else if (!t->isEpsilon()) {
// avoid infinite recursion for EOF* and EOF+
if (closureBusy.count(c) == 0) {
closureBusy.insert(c);
} else {
continue;
}
}
if (t != nullptr && t->getTransitionType() == TransitionType::RULE) {
// latch when newDepth goes negative - once we step out of the entry context we can't return
if (newDepth >= 0) {
newDepth++;
}
}
closureCheckingStopState(c, configs, closureBusy, continueCollecting, fullCtx, newDepth, treatEofAsEpsilon);
}
}
}
bool ParserATNSimulator::canDropLoopEntryEdgeInLeftRecursiveRule(ATNConfig *config) const {
if (TURN_OFF_LR_LOOP_ENTRY_BRANCH_OPT)
return false;
ATNState *p = config->state;
// First check to see if we are in StarLoopEntryState generated during
// left-recursion elimination. For efficiency, also check if
// the context has an empty stack case. If so, it would mean
// global FOLLOW so we can't perform optimization
if (p->getStateType() != ATNStateType::STAR_LOOP_ENTRY ||
!((StarLoopEntryState *)p)->isPrecedenceDecision || // Are we the special loop entry/exit state?
config->context->isEmpty() || // If SLL wildcard
config->context->hasEmptyPath())
{
return false;
}
// Require all return states to return back to the same rule
// that p is in.
size_t numCtxs = config->context->size();
for (size_t i = 0; i < numCtxs; i++) { // for each stack context
ATNState *returnState = atn.states[config->context->getReturnState(i)];
if (returnState->ruleIndex != p->ruleIndex)
return false;
}
BlockStartState *decisionStartState = (BlockStartState *)p->transitions[0]->target;
size_t blockEndStateNum = decisionStartState->endState->stateNumber;
BlockEndState *blockEndState = (BlockEndState *)atn.states[blockEndStateNum];
// Verify that the top of each stack context leads to loop entry/exit
// state through epsilon edges and w/o leaving rule.
for (size_t i = 0; i < numCtxs; i++) { // for each stack context
size_t returnStateNumber = config->context->getReturnState(i);
ATNState *returnState = atn.states[returnStateNumber];
// All states must have single outgoing epsilon edge.
if (returnState->transitions.size() != 1 || !returnState->transitions[0]->isEpsilon())
{
return false;
}
// Look for prefix op case like 'not expr', (' type ')' expr
ATNState *returnStateTarget = returnState->transitions[0]->target;
if (returnState->getStateType() == ATNStateType::BLOCK_END && returnStateTarget == p) {
continue;
}
// Look for 'expr op expr' or case where expr's return state is block end
// of (...)* internal block; the block end points to loop back
// which points to p but we don't need to check that
if (returnState == blockEndState) {
continue;
}
// Look for ternary expr ? expr : expr. The return state points at block end,
// which points at loop entry state
if (returnStateTarget == blockEndState) {
continue;
}
// Look for complex prefix 'between expr and expr' case where 2nd expr's
// return state points at block end state of (...)* internal block
if (returnStateTarget->getStateType() == ATNStateType::BLOCK_END &&
returnStateTarget->transitions.size() == 1 &&
returnStateTarget->transitions[0]->isEpsilon() &&
returnStateTarget->transitions[0]->target == p)
{
continue;
}
// Anything else ain't conforming.
return false;
}
return true;
}
std::string ParserATNSimulator::getRuleName(size_t index) {
if (parser != nullptr) {
return parser->getRuleNames()[index];
}
return "<rule " + std::to_string(index) + ">";
}
Ref<ATNConfig> ParserATNSimulator::getEpsilonTarget(Ref<ATNConfig> const& config, const Transition *t, bool collectPredicates,
bool inContext, bool fullCtx, bool treatEofAsEpsilon) {
switch (t->getTransitionType()) {
case TransitionType::RULE:
return ruleTransition(config, static_cast<const RuleTransition*>(t));
case TransitionType::PRECEDENCE:
return precedenceTransition(config, static_cast<const PrecedencePredicateTransition*>(t), collectPredicates, inContext, fullCtx);
case TransitionType::PREDICATE:
return predTransition(config, static_cast<const PredicateTransition*>(t), collectPredicates, inContext, fullCtx);
case TransitionType::ACTION:
return actionTransition(config, static_cast<const ActionTransition*>(t));
case TransitionType::EPSILON:
return std::make_shared<ATNConfig>(*config, t->target);
case TransitionType::ATOM:
case TransitionType::RANGE:
case TransitionType::SET:
// EOF transitions act like epsilon transitions after the first EOF
// transition is traversed
if (treatEofAsEpsilon) {
if (t->matches(Token::EOF, 0, 1)) {
return std::make_shared<ATNConfig>(*config, t->target);
}
}
return nullptr;
default:
return nullptr;
}
}
Ref<ATNConfig> ParserATNSimulator::actionTransition(Ref<ATNConfig> const& config, const ActionTransition *t) {
#if DEBUG_DFA == 1
std::cout << "ACTION edge " << t->ruleIndex << ":" << t->actionIndex << std::endl;
#endif
return std::make_shared<ATNConfig>(*config, t->target);
}
Ref<ATNConfig> ParserATNSimulator::precedenceTransition(Ref<ATNConfig> const& config, const PrecedencePredicateTransition *pt,
bool collectPredicates, bool inContext, bool fullCtx) {
#if DEBUG_DFA == 1
std::cout << "PRED (collectPredicates=" << collectPredicates << ") " << pt->getPrecedence() << ">=_p" << ", ctx dependent=true" << std::endl;
if (parser != nullptr) {
std::cout << "context surrounding pred is " << Arrays::listToString(parser->getRuleInvocationStack(), ", ") << std::endl;
}
#endif
Ref<ATNConfig> c;
if (collectPredicates && inContext) {
const auto &predicate = pt->getPredicate();
if (fullCtx) {
// In full context mode, we can evaluate predicates on-the-fly
// during closure, which dramatically reduces the size of
// the config sets. It also obviates the need to test predicates
// later during conflict resolution.
size_t currentPosition = _input->index();
_input->seek(_startIndex);
bool predSucceeds = evalSemanticContext(predicate, _outerContext, config->alt, fullCtx);
_input->seek(currentPosition);
if (predSucceeds) {
c = std::make_shared<ATNConfig>(*config, pt->target); // no pred context
}
} else {
Ref<const SemanticContext> newSemCtx = SemanticContext::And(config->semanticContext, predicate);
c = std::make_shared<ATNConfig>(*config, pt->target, std::move(newSemCtx));
}
} else {
c = std::make_shared<ATNConfig>(*config, pt->target);
}
#if DEBUG_DFA == 1
std::cout << "config from pred transition=" << c << std::endl;
#endif
return c;
}
Ref<ATNConfig> ParserATNSimulator::predTransition(Ref<ATNConfig> const& config, const PredicateTransition *pt,
bool collectPredicates, bool inContext, bool fullCtx) {
#if DEBUG_DFA == 1
std::cout << "PRED (collectPredicates=" << collectPredicates << ") " << pt->getRuleIndex() << ":" << pt->getPredIndex() << ", ctx dependent=" << pt->isCtxDependent() << std::endl;
if (parser != nullptr) {
std::cout << "context surrounding pred is " << Arrays::listToString(parser->getRuleInvocationStack(), ", ") << std::endl;
}
#endif
Ref<ATNConfig> c = nullptr;
if (collectPredicates && (!pt->isCtxDependent() || (pt->isCtxDependent() && inContext))) {
const auto &predicate = pt->getPredicate();
if (fullCtx) {
// In full context mode, we can evaluate predicates on-the-fly
// during closure, which dramatically reduces the size of
// the config sets. It also obviates the need to test predicates
// later during conflict resolution.
size_t currentPosition = _input->index();
_input->seek(_startIndex);
bool predSucceeds = evalSemanticContext(predicate, _outerContext, config->alt, fullCtx);
_input->seek(currentPosition);
if (predSucceeds) {
c = std::make_shared<ATNConfig>(*config, pt->target); // no pred context
}
} else {
Ref<const SemanticContext> newSemCtx = SemanticContext::And(config->semanticContext, predicate);
c = std::make_shared<ATNConfig>(*config, pt->target, std::move(newSemCtx));
}
} else {
c = std::make_shared<ATNConfig>(*config, pt->target);
}
#if DEBUG_DFA == 1
std::cout << "config from pred transition=" << c << std::endl;
#endif
return c;
}
Ref<ATNConfig> ParserATNSimulator::ruleTransition(Ref<ATNConfig> const& config, const RuleTransition *t) {
#if DEBUG_DFA == 1
std::cout << "CALL rule " << getRuleName(t->target->ruleIndex) << ", ctx=" << config->context << std::endl;
#endif
atn::ATNState *returnState = t->followState;
Ref<const PredictionContext> newContext = SingletonPredictionContext::create(config->context, returnState->stateNumber);
return std::make_shared<ATNConfig>(*config, t->target, newContext);
}
BitSet ParserATNSimulator::getConflictingAlts(ATNConfigSet *configs) {
std::vector<BitSet> altsets = PredictionModeClass::getConflictingAltSubsets(configs);
return PredictionModeClass::getAlts(altsets);
}
BitSet ParserATNSimulator::getConflictingAltsOrUniqueAlt(ATNConfigSet *configs) {
BitSet conflictingAlts;
if (configs->uniqueAlt != ATN::INVALID_ALT_NUMBER) {
conflictingAlts.set(configs->uniqueAlt);
} else {
conflictingAlts = configs->conflictingAlts;
}
return conflictingAlts;
}
std::string ParserATNSimulator::getTokenName(size_t t) {
if (t == Token::EOF) {
return "EOF";
}
const dfa::Vocabulary &vocabulary = parser != nullptr ? parser->getVocabulary() : dfa::Vocabulary();
std::string displayName = vocabulary.getDisplayName(t);
if (displayName == std::to_string(t)) {
return displayName;
}
return displayName + "<" + std::to_string(t) + ">";
}
std::string ParserATNSimulator::getLookaheadName(TokenStream *input) {
return getTokenName(input->LA(1));
}
void ParserATNSimulator::dumpDeadEndConfigs(NoViableAltException &nvae) {
std::cerr << "dead end configs: ";
for (const auto &c : nvae.getDeadEndConfigs()->configs) {
std::string trans = "no edges";
if (c->state->transitions.size() > 0) {
const Transition *t = c->state->transitions[0].get();
if (t != nullptr && t->getTransitionType() == TransitionType::ATOM) {
const AtomTransition *at = static_cast<const AtomTransition*>(t);
trans = "Atom " + getTokenName(at->_label);
} else if (t != nullptr && t->getTransitionType() == TransitionType::SET) {
const SetTransition *st = static_cast<const SetTransition*>(t);
trans = "Set ";
trans += st->set.toString();
} else if (t != nullptr && t->getTransitionType() == TransitionType::NOT_SET) {
const SetTransition *st = static_cast<const NotSetTransition*>(t);
trans = "~Set ";
trans += st->set.toString();
}
}
std::cerr << c->toString(true) + ":" + trans;
}
}
NoViableAltException ParserATNSimulator::noViableAlt(TokenStream *input, ParserRuleContext *outerContext,
ATNConfigSet *configs, size_t startIndex, bool deleteConfigs) {
return NoViableAltException(parser, input, input->get(startIndex), input->LT(1), configs, outerContext, deleteConfigs);
}
size_t ParserATNSimulator::getUniqueAlt(ATNConfigSet *configs) {
size_t alt = ATN::INVALID_ALT_NUMBER;
for (const auto &c : configs->configs) {
if (alt == ATN::INVALID_ALT_NUMBER) {
alt = c->alt; // found first alt
} else if (c->alt != alt) {
return ATN::INVALID_ALT_NUMBER;
}
}
return alt;
}
dfa::DFAState *ParserATNSimulator::addDFAEdge(dfa::DFA &dfa, dfa::DFAState *from, ssize_t t, dfa::DFAState *to) {
#if DEBUG_DFA == 1
std::cout << "EDGE " << from << " -> " << to << " upon " << getTokenName(t) << std::endl;
#endif
if (to == nullptr) {
return nullptr;
}
{
UniqueLock<SharedMutex> stateLock(atn._stateMutex);
to = addDFAState(dfa, to); // used existing if possible not incoming
}
if (from == nullptr || t > (int)atn.maxTokenType) {
return to;
}
{
UniqueLock<SharedMutex> edgeLock(atn._edgeMutex);
from->edges[t] = to; // connect
}
#if DEBUG_DFA == 1
std::string dfaText;
if (parser != nullptr) {
dfaText = dfa.toString(parser->getVocabulary());
} else {
dfaText = dfa.toString(dfa::Vocabulary());
}
std::cout << "DFA=\n" << dfaText << std::endl;
#endif
return to;
}
dfa::DFAState *ParserATNSimulator::addDFAState(dfa::DFA &dfa, dfa::DFAState *D) {
if (D == ERROR.get()) {
return D;
}
// Optimizing the configs below should not alter the hash code. Thus we can just do an insert
// which will only succeed if an equivalent DFAState does not already exist.
auto [existing, inserted] = dfa.states.insert(D);
if (!inserted) {
return *existing;
}
// Previously we did a lookup, then set fields, then inserted. It was `dfa.states.size()`, since
// we already inserted we need to subtract one.
D->stateNumber = static_cast<int>(dfa.states.size() - 1);
if (!D->configs->isReadonly()) {
D->configs->optimizeConfigs(this);
D->configs->setReadonly(true);
}
#if DEBUG_DFA == 1
std::cout << "adding new DFA state: " << D << std::endl;
#endif
return D;
}
void ParserATNSimulator::reportAttemptingFullContext(dfa::DFA &dfa, const antlrcpp::BitSet &conflictingAlts,
ATNConfigSet *configs, size_t startIndex, size_t stopIndex) {
#if DEBUG_DFA == 1 || RETRY_DEBUG == 1
misc::Interval interval = misc::Interval((int)startIndex, (int)stopIndex);
std::cout << "reportAttemptingFullContext decision=" << dfa.decision << ":" << configs << ", input=" << parser->getTokenStream()->getText(interval) << std::endl;
#endif
if (parser != nullptr) {
parser->getErrorListenerDispatch().reportAttemptingFullContext(parser, dfa, startIndex, stopIndex, conflictingAlts, configs);
}
}
void ParserATNSimulator::reportContextSensitivity(dfa::DFA &dfa, size_t prediction, ATNConfigSet *configs,
size_t startIndex, size_t stopIndex) {
#if DEBUG_DFA == 1 || RETRY_DEBUG == 1
misc::Interval interval = misc::Interval(startIndex, stopIndex);
std::cout << "reportContextSensitivity decision=" << dfa.decision << ":" << configs << ", input=" << parser->getTokenStream()->getText(interval) << std::endl;
#endif
if (parser != nullptr) {
parser->getErrorListenerDispatch().reportContextSensitivity(parser, dfa, startIndex, stopIndex, prediction, configs);
}
}
void ParserATNSimulator::reportAmbiguity(dfa::DFA &dfa, dfa::DFAState * /*D*/, size_t startIndex, size_t stopIndex,
bool exact, const antlrcpp::BitSet &ambigAlts, ATNConfigSet *configs) {
#if DEBUG_DFA == 1 || RETRY_DEBUG == 1
misc::Interval interval = misc::Interval((int)startIndex, (int)stopIndex);
std::cout << "reportAmbiguity " << ambigAlts << ":" << configs << ", input=" << parser->getTokenStream()->getText(interval) << std::endl;
#endif
if (parser != nullptr) {
parser->getErrorListenerDispatch().reportAmbiguity(parser, dfa, startIndex, stopIndex, exact, ambigAlts, configs);
}
}
void ParserATNSimulator::setPredictionMode(PredictionMode newMode) {
_mode = newMode;
}
atn::PredictionMode ParserATNSimulator::getPredictionMode() {
return _mode;
}
Parser* ParserATNSimulator::getParser() {
return parser;
}
#ifdef _MSC_VER
#pragma warning (disable:4996) // 'getenv': This function or variable may be unsafe. Consider using _dupenv_s instead.
#endif
bool ParserATNSimulator::getLrLoopSetting() {
char *var = std::getenv("TURN_OFF_LR_LOOP_ENTRY_BRANCH_OPT");
if (var == nullptr)
return false;
std::string value(var);
return value == "true" || value == "1";
}
#ifdef _MSC_VER
#pragma warning (default:4996)
#endif
void ParserATNSimulator::InitializeInstanceFields() {
_mode = PredictionMode::LL;
_startIndex = 0;
}
|