aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/antlr3_cpp_runtime/include/antlr3rewriterulesubtreestream.inl
blob: b210586245a1d1dfed101837bde0fc618e9d3863 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
namespace antlr3 {

template<class ImplTraits>
RewriteRuleSubtreeStream<ImplTraits>::RewriteRuleSubtreeStream(TreeAdaptorType* adaptor, const char* description)
	: m_adaptor(adaptor)
	, m_elementDescription(description)
	, m_dirty(false)
{
	m_cursor = m_elements.begin();
}

template<class ImplTraits>
RewriteRuleSubtreeStream<ImplTraits>::RewriteRuleSubtreeStream(TreeAdaptorType* adaptor, const char* description,
	TreeType* oneElement
	)
	: m_adaptor(adaptor)
	, m_elementDescription(description)
	, m_dirty(false)
{
	if( oneElement != NULL )
	{
		auto tree_clone = this->dup(oneElement);
		this->add( tree_clone );
	}
	m_cursor = m_elements.begin();
}

template<class ImplTraits>
RewriteRuleSubtreeStream<ImplTraits>::RewriteRuleSubtreeStream(TreeAdaptorType* adaptor, const char* description,
	TreeTypePtr& oneElement
	)
	: m_adaptor(adaptor)
	, m_elementDescription(description)
	, m_dirty(false)
{
	if( oneElement != NULL )
		this->add( oneElement );
	m_cursor = m_elements.begin();
}

template<class ImplTraits>
RewriteRuleSubtreeStream<ImplTraits>::RewriteRuleSubtreeStream(TreeAdaptorType* adaptor, const char* description,
	const ElementsType& elements
	)
	: m_adaptor(adaptor)
	, m_elementDescription(description)
	, m_dirty(false)
	, m_elements(elements)
{
	m_cursor = m_elements.begin();
}

template<class ImplTraits>
void
RewriteRuleSubtreeStream<ImplTraits>::reset()
{
	m_cursor = m_elements.begin();
	m_dirty = true;
}

template<class ImplTraits>
void
RewriteRuleSubtreeStream<ImplTraits>::add(TreeTypePtr& el)
{
	if ( el == NULL )
		return;

	m_elements.push_back(std::move(el));
	m_cursor = m_elements.begin();
}

template<class ImplTraits>
typename RewriteRuleSubtreeStream<ImplTraits>::ElementsType::iterator
RewriteRuleSubtreeStream<ImplTraits>::_next()
{
	if (m_elements.empty())
	{
		// This means that the stream is empty
		// Caller must cope with this (TODO throw RewriteEmptyStreamException)
		return m_elements.end();
	}

	if (m_dirty || m_cursor == m_elements.end())
	{
		if( m_elements.size() == 1)
		{
			// Special case when size is single element, it will just dup a lot
			return m_elements.begin();
		}

		// Out of elements and the size is not 1, so we cannot assume
		// that we just duplicate the entry n times (such as ID ent+ -> ^(ID ent)+)
		// This means we ran out of elements earlier than was expected.
		//
		return m_elements.end();	// Caller must cope with this (TODO throw RewriteEmptyStreamException)
	}

	// More than just a single element so we extract it from the
	// vector.
	return m_cursor++;
}

template<class ImplTraits>
typename RewriteRuleSubtreeStream<ImplTraits>::TreeTypePtr
RewriteRuleSubtreeStream<ImplTraits>::nextTree()
{
	if ( m_dirty || ( m_cursor == m_elements.end() && m_elements.size() == 1 ))
	{
		// if out of elements and size is 1, dup
		typename ElementsType::iterator el = this->_next();
		return this->dup(*el);
	}

	// test size above then fetch
	typename ElementsType::iterator el = this->_next();
	return std::move(*el);
}

/*
template<class ImplTraits, class SuperType>
typename RewriteRuleSubtreeStream<ImplTraits, SuperType>::TokenType*
RewriteRuleSubtreeStream<ImplTraits, SuperType>::nextToken()
{
	return this->_next();
}

template<class ImplTraits, class SuperType>
typename RewriteRuleSubtreeStream<ImplTraits, SuperType>::TokenType*
RewriteRuleSubtreeStream<ImplTraits, SuperType>::next()
{
	ANTLR_UINT32   s;
	s = this->size();
	if ( (m_cursor >= s) && (s == 1) )
	{
		TreeTypePtr el;
		el = this->_next();
		return	this->dup(el);
	}
	return this->_next();
}

*/

template<class ImplTraits>
typename RewriteRuleSubtreeStream<ImplTraits>::TreeTypePtr
RewriteRuleSubtreeStream<ImplTraits>::dup(const TreeTypePtr& element)
{
	return this->dupTree(element);
}

template<class ImplTraits>
typename RewriteRuleSubtreeStream<ImplTraits>::TreeTypePtr
RewriteRuleSubtreeStream<ImplTraits>::dup(const TreeType* element)
{
	return std::move(this->dupTree(element));
}

template<class ImplTraits>
typename RewriteRuleSubtreeStream<ImplTraits>::TreeTypePtr
RewriteRuleSubtreeStream<ImplTraits>::dupTree(const TreeTypePtr& element)
{
	return std::move(m_adaptor->dupTree(element));
}

template<class ImplTraits>
typename RewriteRuleSubtreeStream<ImplTraits>::TreeTypePtr
RewriteRuleSubtreeStream<ImplTraits>::dupTree(const TreeType* element)
{
	return std::move(m_adaptor->dupTree(element));
}

template<class ImplTraits>
typename RewriteRuleSubtreeStream<ImplTraits>::ElementType*
RewriteRuleSubtreeStream<ImplTraits>::toTree( ElementType* element)
{
	return element;
}

template<class ImplTraits>
bool RewriteRuleSubtreeStream<ImplTraits>::hasNext()
{
	return m_cursor != m_elements.end();
}

/// Number of elements available in the stream
///
template<class ImplTraits>
ANTLR_UINT32 RewriteRuleSubtreeStream<ImplTraits>::size()
{
	return (ANTLR_UINT32)(m_elements.size());
}

template<class ImplTraits>
typename RewriteRuleSubtreeStream<ImplTraits>::StringType
RewriteRuleSubtreeStream<ImplTraits>::getDescription()
{
	if ( m_elementDescription.empty() )
	{
		m_elementDescription = "<unknown source>";
	}
	return  m_elementDescription;
}

template<class ImplTraits>
RewriteRuleSubtreeStream<ImplTraits>::~RewriteRuleSubtreeStream()
{
    // Before placing the stream back in the pool, we
	// need to clear any vector it has.
	m_elements.clear();
}

template<class ImplTraits>
typename RewriteRuleSubtreeStream<ImplTraits>::TreeTypePtr
RewriteRuleSubtreeStream<ImplTraits>::nextNode()
{
	//System.out.println("nextNode: elements="+elements+", singleElement="+((Tree)singleElement).toStringTree());
	//ANTLR_UINT32 n = this->size();
	if (m_dirty || (m_cursor == m_elements.end() && m_elements.size() == 1)) {
		// if out of elements and size is 1, dup (at most a single node
		// since this is for making root nodes).
		typename ElementsType::iterator el = this->_next();
		return m_adaptor->dupNode(*el);
	}

	typename ElementsType::iterator el = this->_next();
	//while (m_adaptor->isNilNode(el) && m_adaptor->getChildCount(el) == 1)
	//	tree = m_adaptor->getChild(tree, 0);
	TreeTypePtr& node = leftestNode(*el);
	//System.out.println("_next="+((Tree)tree).toStringTree());
	return m_adaptor->dupNode(node); // dup just the root (want node here)
}

template<class ImplTraits>
ANTLR_INLINE
typename RewriteRuleSubtreeStream<ImplTraits>::TreeTypePtr&
RewriteRuleSubtreeStream<ImplTraits>::leftestNode(TreeTypePtr& node) const
{
	if(m_adaptor->isNilNode(node) && m_adaptor->getChildCount(node) == 1)
		return leftestNode(node->getChild(0));
	else
		return node;
}

}