1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
namespace antlr3 {
template<class ImplTraits, class CtxType>
CyclicDFA<ImplTraits, CtxType>::CyclicDFA( ANTLR_INT32 decisionNumber
, const ANTLR_UCHAR* description
, const ANTLR_INT32* const eot
, const ANTLR_INT32* const eof
, const ANTLR_INT32* const min
, const ANTLR_INT32* const max
, const ANTLR_INT32* const accept
, const ANTLR_INT32* const special
, const ANTLR_INT32* const *const transition )
:m_decisionNumber(decisionNumber)
, m_eot(eot)
, m_eof(eof)
, m_min(min)
, m_max(max)
, m_accept(accept)
, m_special(special)
, m_transition(transition)
{
m_description = description;
}
template<class ImplTraits, class CtxType>
CyclicDFA<ImplTraits, CtxType>::CyclicDFA( const CyclicDFA& dfa )
{
m_decisionNumber = dfa.m_decisionNumber;
m_description = dfa.m_description;
m_eot = dfa.m_eot;
m_eof = dfa.m_eof;
m_min = dfa.m_min;
m_max = dfa.m_max;
m_accept = dfa.m_accept;
m_special = dfa.m_special;
m_transition = dfa.m_transition;
}
template<class ImplTraits, class CtxType>
CyclicDFA<ImplTraits, CtxType>& CyclicDFA<ImplTraits, CtxType>::operator=( const CyclicDFA& dfa)
{
m_decisionNumber = dfa.m_decisionNumber;
m_description = dfa.m_description;
m_eot = dfa.m_eot;
m_eof = dfa.m_eof;
m_min = dfa.m_min;
m_max = dfa.m_max;
m_accept = dfa.m_accept;
m_special = dfa.m_special;
m_transition = dfa.m_transition;
return *this;
}
template<class ImplTraits, class CtxType>
ANTLR_INT32 CyclicDFA<ImplTraits, CtxType>::specialStateTransition(CtxType * ,
RecognizerType* ,
IntStreamType* , ANTLR_INT32 )
{
return -1;
}
template<class ImplTraits, class CtxType>
ANTLR_INT32 CyclicDFA<ImplTraits, CtxType>::specialTransition(CtxType * /*ctx*/,
RecognizerType* /*recognizer*/,
IntStreamType* /*is*/, ANTLR_INT32 /*s*/)
{
return 0;
}
template<class ImplTraits, class CtxType>
template<typename SuperType>
ANTLR_INT32 CyclicDFA<ImplTraits, CtxType>::predict(CtxType * ctx,
RecognizerType* recognizer,
IntStreamType* is, SuperType& super)
{
ANTLR_MARKER mark;
ANTLR_INT32 s;
ANTLR_INT32 specialState;
ANTLR_INT32 c;
mark = is->mark(); /* Store where we are right now */
s = 0; /* Always start with state 0 */
for (;;)
{
/* Pick out any special state entry for this state
*/
specialState = m_special[s];
/* Transition the special state and consume an input token
*/
if (specialState >= 0)
{
s = super.specialStateTransition(ctx, recognizer, is, specialState);
// Error?
//
if (s<0)
{
// If the predicate/rule raised an exception then we leave it
// in tact, else we have an NVA.
//
if (recognizer->get_state()->get_error() != true)
{
this->noViableAlt(recognizer, s);
}
is->rewind(mark);
return 0;
}
is->consume();
continue;
}
/* Accept state?
*/
if (m_accept[s] >= 1)
{
is->rewind(mark);
return m_accept[s];
}
/* Look for a normal transition state based upon the input token element
*/
c = is->LA(1);
/* Check against min and max for this state
*/
if (c>= m_min[s] && c <= m_max[s])
{
ANTLR_INT32 snext;
/* What is the next state?
*/
snext = m_transition[s][c - m_min[s]];
if (snext < 0)
{
/* Was in range but not a normal transition
* must check EOT, which is like the else clause.
* eot[s]>=0 indicates that an EOT edge goes to another
* state.
*/
if ( m_eot[s] >= 0)
{
s = m_eot[s];
is->consume();
continue;
}
this->noViableAlt(recognizer, s);
is->rewind(mark);
return 0;
}
/* New current state - move to it
*/
s = snext;
is->consume();
continue;
}
/* EOT Transition?
*/
if ( m_eot[s] >= 0)
{
s = m_eot[s];
is->consume();
continue;
}
/* EOF transition to accept state?
*/
if ( c == ImplTraits::CommonTokenType::TOKEN_EOF && m_eof[s] >= 0)
{
is->rewind(mark);
return m_accept[m_eof[s]];
}
/* No alt, so bomb
*/
this->noViableAlt(recognizer, s);
is->rewind(mark);
return 0;
}
}
template<class ImplTraits, class CtxType>
void CyclicDFA<ImplTraits, CtxType>::noViableAlt(RecognizerType* rec, ANTLR_UINT32 s)
{
// In backtracking mode, we just set the failed flag so that the
// alt can just exit right now. If we are parsing though, then
// we want the exception to be raised.
//
if (rec->get_state()->get_backtracking() > 0)
{
rec->get_state()->set_failed(true);
}
else
{
ANTLR_Exception<ImplTraits, NO_VIABLE_ALT_EXCEPTION, StreamType>* ex
= new ANTLR_Exception<ImplTraits, NO_VIABLE_ALT_EXCEPTION, StreamType>( rec, (const char*)m_description );
ex->set_decisionNum( m_decisionNumber );
ex->set_state(s);
}
}
}
|