summaryrefslogtreecommitdiffstats
path: root/contrib/go/_std_1.24/src/time/time.go
blob: 14e79672cad6f90891b62fcbbb5db0d3a1a2898c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package time provides functionality for measuring and displaying time.
//
// The calendrical calculations always assume a Gregorian calendar, with
// no leap seconds.
//
// # Monotonic Clocks
//
// Operating systems provide both a “wall clock,” which is subject to
// changes for clock synchronization, and a “monotonic clock,” which is
// not. The general rule is that the wall clock is for telling time and
// the monotonic clock is for measuring time. Rather than split the API,
// in this package the Time returned by [time.Now] contains both a wall
// clock reading and a monotonic clock reading; later time-telling
// operations use the wall clock reading, but later time-measuring
// operations, specifically comparisons and subtractions, use the
// monotonic clock reading.
//
// For example, this code always computes a positive elapsed time of
// approximately 20 milliseconds, even if the wall clock is changed during
// the operation being timed:
//
//	start := time.Now()
//	... operation that takes 20 milliseconds ...
//	t := time.Now()
//	elapsed := t.Sub(start)
//
// Other idioms, such as [time.Since](start), [time.Until](deadline), and
// time.Now().Before(deadline), are similarly robust against wall clock
// resets.
//
// The rest of this section gives the precise details of how operations
// use monotonic clocks, but understanding those details is not required
// to use this package.
//
// The Time returned by time.Now contains a monotonic clock reading.
// If Time t has a monotonic clock reading, t.Add adds the same duration to
// both the wall clock and monotonic clock readings to compute the result.
// Because t.AddDate(y, m, d), t.Round(d), and t.Truncate(d) are wall time
// computations, they always strip any monotonic clock reading from their results.
// Because t.In, t.Local, and t.UTC are used for their effect on the interpretation
// of the wall time, they also strip any monotonic clock reading from their results.
// The canonical way to strip a monotonic clock reading is to use t = t.Round(0).
//
// If Times t and u both contain monotonic clock readings, the operations
// t.After(u), t.Before(u), t.Equal(u), t.Compare(u), and t.Sub(u) are carried out
// using the monotonic clock readings alone, ignoring the wall clock
// readings. If either t or u contains no monotonic clock reading, these
// operations fall back to using the wall clock readings.
//
// On some systems the monotonic clock will stop if the computer goes to sleep.
// On such a system, t.Sub(u) may not accurately reflect the actual
// time that passed between t and u. The same applies to other functions and
// methods that subtract times, such as [Since], [Until], [Time.Before], [Time.After],
// [Time.Add], [Time.Equal] and [Time.Compare]. In some cases, you may need to strip
// the monotonic clock to get accurate results.
//
// Because the monotonic clock reading has no meaning outside
// the current process, the serialized forms generated by t.GobEncode,
// t.MarshalBinary, t.MarshalJSON, and t.MarshalText omit the monotonic
// clock reading, and t.Format provides no format for it. Similarly, the
// constructors [time.Date], [time.Parse], [time.ParseInLocation], and [time.Unix],
// as well as the unmarshalers t.GobDecode, t.UnmarshalBinary.
// t.UnmarshalJSON, and t.UnmarshalText always create times with
// no monotonic clock reading.
//
// The monotonic clock reading exists only in [Time] values. It is not
// a part of [Duration] values or the Unix times returned by t.Unix and
// friends.
//
// Note that the Go == operator compares not just the time instant but
// also the [Location] and the monotonic clock reading. See the
// documentation for the Time type for a discussion of equality
// testing for Time values.
//
// For debugging, the result of t.String does include the monotonic
// clock reading if present. If t != u because of different monotonic clock readings,
// that difference will be visible when printing t.String() and u.String().
//
// # Timer Resolution
//
// [Timer] resolution varies depending on the Go runtime, the operating system
// and the underlying hardware.
// On Unix, the resolution is ~1ms.
// On Windows version 1803 and newer, the resolution is ~0.5ms.
// On older Windows versions, the default resolution is ~16ms, but
// a higher resolution may be requested using [golang.org/x/sys/windows.TimeBeginPeriod].
package time

import (
	"errors"
	"math/bits"
	_ "unsafe" // for go:linkname
)

// A Time represents an instant in time with nanosecond precision.
//
// Programs using times should typically store and pass them as values,
// not pointers. That is, time variables and struct fields should be of
// type [time.Time], not *time.Time.
//
// A Time value can be used by multiple goroutines simultaneously except
// that the methods [Time.GobDecode], [Time.UnmarshalBinary], [Time.UnmarshalJSON] and
// [Time.UnmarshalText] are not concurrency-safe.
//
// Time instants can be compared using the [Time.Before], [Time.After], and [Time.Equal] methods.
// The [Time.Sub] method subtracts two instants, producing a [Duration].
// The [Time.Add] method adds a Time and a Duration, producing a Time.
//
// The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
// As this time is unlikely to come up in practice, the [Time.IsZero] method gives
// a simple way of detecting a time that has not been initialized explicitly.
//
// Each time has an associated [Location]. The methods [Time.Local], [Time.UTC], and Time.In return a
// Time with a specific Location. Changing the Location of a Time value with
// these methods does not change the actual instant it represents, only the time
// zone in which to interpret it.
//
// Representations of a Time value saved by the [Time.GobEncode], [Time.MarshalBinary], [Time.AppendBinary],
// [Time.MarshalJSON], [Time.MarshalText] and [Time.AppendText] methods store the [Time.Location]'s offset,
// but not the location name. They therefore lose information about Daylight Saving Time.
//
// In addition to the required “wall clock” reading, a Time may contain an optional
// reading of the current process's monotonic clock, to provide additional precision
// for comparison or subtraction.
// See the “Monotonic Clocks” section in the package documentation for details.
//
// Note that the Go == operator compares not just the time instant but also the
// Location and the monotonic clock reading. Therefore, Time values should not
// be used as map or database keys without first guaranteeing that the
// identical Location has been set for all values, which can be achieved
// through use of the UTC or Local method, and that the monotonic clock reading
// has been stripped by setting t = t.Round(0). In general, prefer t.Equal(u)
// to t == u, since t.Equal uses the most accurate comparison available and
// correctly handles the case when only one of its arguments has a monotonic
// clock reading.
type Time struct {
	// wall and ext encode the wall time seconds, wall time nanoseconds,
	// and optional monotonic clock reading in nanoseconds.
	//
	// From high to low bit position, wall encodes a 1-bit flag (hasMonotonic),
	// a 33-bit seconds field, and a 30-bit wall time nanoseconds field.
	// The nanoseconds field is in the range [0, 999999999].
	// If the hasMonotonic bit is 0, then the 33-bit field must be zero
	// and the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext.
	// If the hasMonotonic bit is 1, then the 33-bit field holds a 33-bit
	// unsigned wall seconds since Jan 1 year 1885, and ext holds a
	// signed 64-bit monotonic clock reading, nanoseconds since process start.
	wall uint64
	ext  int64

	// loc specifies the Location that should be used to
	// determine the minute, hour, month, day, and year
	// that correspond to this Time.
	// The nil location means UTC.
	// All UTC times are represented with loc==nil, never loc==&utcLoc.
	loc *Location
}

const (
	hasMonotonic = 1 << 63
	maxWall      = wallToInternal + (1<<33 - 1) // year 2157
	minWall      = wallToInternal               // year 1885
	nsecMask     = 1<<30 - 1
	nsecShift    = 30
)

// These helpers for manipulating the wall and monotonic clock readings
// take pointer receivers, even when they don't modify the time,
// to make them cheaper to call.

// nsec returns the time's nanoseconds.
func (t *Time) nsec() int32 {
	return int32(t.wall & nsecMask)
}

// sec returns the time's seconds since Jan 1 year 1.
func (t *Time) sec() int64 {
	if t.wall&hasMonotonic != 0 {
		return wallToInternal + int64(t.wall<<1>>(nsecShift+1))
	}
	return t.ext
}

// unixSec returns the time's seconds since Jan 1 1970 (Unix time).
func (t *Time) unixSec() int64 { return t.sec() + internalToUnix }

// addSec adds d seconds to the time.
func (t *Time) addSec(d int64) {
	if t.wall&hasMonotonic != 0 {
		sec := int64(t.wall << 1 >> (nsecShift + 1))
		dsec := sec + d
		if 0 <= dsec && dsec <= 1<<33-1 {
			t.wall = t.wall&nsecMask | uint64(dsec)<<nsecShift | hasMonotonic
			return
		}
		// Wall second now out of range for packed field.
		// Move to ext.
		t.stripMono()
	}

	// Check if the sum of t.ext and d overflows and handle it properly.
	sum := t.ext + d
	if (sum > t.ext) == (d > 0) {
		t.ext = sum
	} else if d > 0 {
		t.ext = 1<<63 - 1
	} else {
		t.ext = -(1<<63 - 1)
	}
}

// setLoc sets the location associated with the time.
func (t *Time) setLoc(loc *Location) {
	if loc == &utcLoc {
		loc = nil
	}
	t.stripMono()
	t.loc = loc
}

// stripMono strips the monotonic clock reading in t.
func (t *Time) stripMono() {
	if t.wall&hasMonotonic != 0 {
		t.ext = t.sec()
		t.wall &= nsecMask
	}
}

// setMono sets the monotonic clock reading in t.
// If t cannot hold a monotonic clock reading,
// because its wall time is too large,
// setMono is a no-op.
func (t *Time) setMono(m int64) {
	if t.wall&hasMonotonic == 0 {
		sec := t.ext
		if sec < minWall || maxWall < sec {
			return
		}
		t.wall |= hasMonotonic | uint64(sec-minWall)<<nsecShift
	}
	t.ext = m
}

// mono returns t's monotonic clock reading.
// It returns 0 for a missing reading.
// This function is used only for testing,
// so it's OK that technically 0 is a valid
// monotonic clock reading as well.
func (t *Time) mono() int64 {
	if t.wall&hasMonotonic == 0 {
		return 0
	}
	return t.ext
}

// IsZero reports whether t represents the zero time instant,
// January 1, year 1, 00:00:00 UTC.
func (t Time) IsZero() bool {
	return t.sec() == 0 && t.nsec() == 0
}

// After reports whether the time instant t is after u.
func (t Time) After(u Time) bool {
	if t.wall&u.wall&hasMonotonic != 0 {
		return t.ext > u.ext
	}
	ts := t.sec()
	us := u.sec()
	return ts > us || ts == us && t.nsec() > u.nsec()
}

// Before reports whether the time instant t is before u.
func (t Time) Before(u Time) bool {
	if t.wall&u.wall&hasMonotonic != 0 {
		return t.ext < u.ext
	}
	ts := t.sec()
	us := u.sec()
	return ts < us || ts == us && t.nsec() < u.nsec()
}

// Compare compares the time instant t with u. If t is before u, it returns -1;
// if t is after u, it returns +1; if they're the same, it returns 0.
func (t Time) Compare(u Time) int {
	var tc, uc int64
	if t.wall&u.wall&hasMonotonic != 0 {
		tc, uc = t.ext, u.ext
	} else {
		tc, uc = t.sec(), u.sec()
		if tc == uc {
			tc, uc = int64(t.nsec()), int64(u.nsec())
		}
	}
	switch {
	case tc < uc:
		return -1
	case tc > uc:
		return +1
	}
	return 0
}

// Equal reports whether t and u represent the same time instant.
// Two times can be equal even if they are in different locations.
// For example, 6:00 +0200 and 4:00 UTC are Equal.
// See the documentation on the Time type for the pitfalls of using == with
// Time values; most code should use Equal instead.
func (t Time) Equal(u Time) bool {
	if t.wall&u.wall&hasMonotonic != 0 {
		return t.ext == u.ext
	}
	return t.sec() == u.sec() && t.nsec() == u.nsec()
}

// A Month specifies a month of the year (January = 1, ...).
type Month int

const (
	January Month = 1 + iota
	February
	March
	April
	May
	June
	July
	August
	September
	October
	November
	December
)

// String returns the English name of the month ("January", "February", ...).
func (m Month) String() string {
	if January <= m && m <= December {
		return longMonthNames[m-1]
	}
	buf := make([]byte, 20)
	n := fmtInt(buf, uint64(m))
	return "%!Month(" + string(buf[n:]) + ")"
}

// A Weekday specifies a day of the week (Sunday = 0, ...).
type Weekday int

const (
	Sunday Weekday = iota
	Monday
	Tuesday
	Wednesday
	Thursday
	Friday
	Saturday
)

// String returns the English name of the day ("Sunday", "Monday", ...).
func (d Weekday) String() string {
	if Sunday <= d && d <= Saturday {
		return longDayNames[d]
	}
	buf := make([]byte, 20)
	n := fmtInt(buf, uint64(d))
	return "%!Weekday(" + string(buf[n:]) + ")"
}

// Computations on Times
//
// The zero value for a Time is defined to be
//	January 1, year 1, 00:00:00.000000000 UTC
// which (1) looks like a zero, or as close as you can get in a date
// (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
// be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
// non-negative year even in time zones west of UTC, unlike 1-1-0
// 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
//
// The zero Time value does not force a specific epoch for the time
// representation. For example, to use the Unix epoch internally, we
// could define that to distinguish a zero value from Jan 1 1970, that
// time would be represented by sec=-1, nsec=1e9. However, it does
// suggest a representation, namely using 1-1-1 00:00:00 UTC as the
// epoch, and that's what we do.
//
// The Add and Sub computations are oblivious to the choice of epoch.
//
// The presentation computations - year, month, minute, and so on - all
// rely heavily on division and modulus by positive constants. For
// calendrical calculations we want these divisions to round down, even
// for negative values, so that the remainder is always positive, but
// Go's division (like most hardware division instructions) rounds to
// zero. We can still do those computations and then adjust the result
// for a negative numerator, but it's annoying to write the adjustment
// over and over. Instead, we can change to a different epoch so long
// ago that all the times we care about will be positive, and then round
// to zero and round down coincide. These presentation routines already
// have to add the zone offset, so adding the translation to the
// alternate epoch is cheap. For example, having a non-negative time t
// means that we can write
//
//	sec = t % 60
//
// instead of
//
//	sec = t % 60
//	if sec < 0 {
//		sec += 60
//	}
//
// everywhere.
//
// The calendar runs on an exact 400 year cycle: a 400-year calendar
// printed for 1970-2369 will apply as well to 2370-2769. Even the days
// of the week match up. It simplifies date computations to choose the
// cycle boundaries so that the exceptional years are always delayed as
// long as possible: March 1, year 0 is such a day:
// the first leap day (Feb 29) is four years minus one day away,
// the first multiple-of-4 year without a Feb 29 is 100 years minus one day away,
// and the first multiple-of-100 year with a Feb 29 is 400 years minus one day away.
// March 1 year Y for any Y = 0 mod 400 is also such a day.
//
// Finally, it's convenient if the delta between the Unix epoch and
// long-ago epoch is representable by an int64 constant.
//
// These three considerations—choose an epoch as early as possible, that
// starts on March 1 of a year equal to 0 mod 400, and that is no more than
// 2⁶³ seconds earlier than 1970—bring us to the year -292277022400.
// We refer to this moment as the absolute zero instant, and to times
// measured as a uint64 seconds since this year as absolute times.
//
// Times measured as an int64 seconds since the year 1—the representation
// used for Time's sec field—are called internal times.
//
// Times measured as an int64 seconds since the year 1970 are called Unix
// times.
//
// It is tempting to just use the year 1 as the absolute epoch, defining
// that the routines are only valid for years >= 1. However, the
// routines would then be invalid when displaying the epoch in time zones
// west of UTC, since it is year 0. It doesn't seem tenable to say that
// printing the zero time correctly isn't supported in half the time
// zones. By comparison, it's reasonable to mishandle some times in
// the year -292277022400.
//
// All this is opaque to clients of the API and can be changed if a
// better implementation presents itself.
//
// The date calculations are implemented using the following clever math from
// Cassio Neri and Lorenz Schneider, “Euclidean affine functions and their
// application to calendar algorithms,” SP&E 2023. https://doi.org/10.1002/spe.3172
//
// Define a “calendrical division” (f, f°, f*) to be a triple of functions converting
// one time unit into a whole number of larger units and the remainder and back.
// For example, in a calendar with no leap years, (d/365, d%365, y*365) is the
// calendrical division for days into years:
//
//	(f)  year := days/365
//	(f°) yday := days%365
//	(f*) days := year*365 (+ yday)
//
// Note that f* is usually the “easy” function to write: it's the
// calendrical multiplication that inverts the more complex division.
//
// Neri and Schneider prove that when f* takes the form
//
//	f*(n) = (a n + b) / c
//
// using integer division rounding down with a ≥ c > 0,
// which they call a Euclidean affine function or EAF, then:
//
//	f(n) = (c n + c - b - 1) / a
//	f°(n) = (c n + c - b - 1) % a / c
//
// This gives a fairly direct calculation for any calendrical division for which
// we can write the calendrical multiplication in EAF form.
// Because the epoch has been shifted to March 1, all the calendrical
// multiplications turn out to be possible to write in EAF form.
// When a date is broken into [century, cyear, amonth, mday],
// with century, cyear, and mday 0-based,
// and amonth 3-based (March = 3, ..., January = 13, February = 14),
// the calendrical multiplications written in EAF form are:
//
//	yday = (153 (amonth-3) + 2) / 5 = (153 amonth - 457) / 5
//	cday = 365 cyear + cyear/4 = 1461 cyear / 4
//	centurydays = 36524 century + century/4 = 146097 century / 4
//	days = centurydays + cday + yday + mday.
//
// We can only handle one periodic cycle per equation, so the year
// calculation must be split into [century, cyear], handling both the
// 100-year cycle and the 400-year cycle.
//
// The yday calculation is not obvious but derives from the fact
// that the March through January calendar repeats the 5-month
// 153-day cycle 31, 30, 31, 30, 31 (we don't care about February
// because yday only ever count the days _before_ February 1,
// since February is the last month).
//
// Using the rule for deriving f and f° from f*, these multiplications
// convert to these divisions:
//
//	century := (4 days + 3) / 146097
//	cdays := (4 days + 3) % 146097 / 4
//	cyear := (4 cdays + 3) / 1461
//	ayday := (4 cdays + 3) % 1461 / 4
//	amonth := (5 ayday + 461) / 153
//	mday := (5 ayday + 461) % 153 / 5
//
// The a in ayday and amonth stands for absolute (March 1-based)
// to distinguish from the standard yday (January 1-based).
//
// After computing these, we can translate from the March 1 calendar
// to the standard January 1 calendar with branch-free math assuming a
// branch-free conversion from bool to int 0 or 1, denoted int(b) here:
//
//	isJanFeb := int(yday >= marchThruDecember)
//	month := amonth - isJanFeb*12
//	year := century*100 + cyear + isJanFeb
//	isLeap := int(cyear%4 == 0) & (int(cyear != 0) | int(century%4 == 0))
//	day := 1 + mday
//	yday := 1 + ayday + 31 + 28 + isLeap&^isJanFeb - 365*isJanFeb
//
// isLeap is the standard leap-year rule, but the split year form
// makes the divisions all reduce to binary masking.
// Note that day and yday are 1-based, in contrast to mday and ayday.

// To keep the various units separate, we define integer types
// for each. These are never stored in interfaces nor allocated,
// so their type information does not appear in Go binaries.
const (
	secondsPerMinute = 60
	secondsPerHour   = 60 * secondsPerMinute
	secondsPerDay    = 24 * secondsPerHour
	secondsPerWeek   = 7 * secondsPerDay
	daysPer400Years  = 365*400 + 97

	// Days from March 1 through end of year
	marchThruDecember = 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31

	// absoluteYears is the number of years we subtract from internal time to get absolute time.
	// This value must be 0 mod 400, and it defines the “absolute zero instant”
	// mentioned in the “Computations on Times” comment above: March 1, -absoluteYears.
	// Dates before the absolute epoch will not compute correctly,
	// but otherwise the value can be changed as needed.
	absoluteYears = 292277022400

	// The year of the zero Time.
	// Assumed by the unixToInternal computation below.
	internalYear = 1

	// Offsets to convert between internal and absolute or Unix times.
	absoluteToInternal int64 = -(absoluteYears*365.2425 + marchThruDecember) * secondsPerDay
	internalToAbsolute       = -absoluteToInternal

	unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
	internalToUnix int64 = -unixToInternal

	absoluteToUnix = absoluteToInternal + internalToUnix
	unixToAbsolute = unixToInternal + internalToAbsolute

	wallToInternal int64 = (1884*365 + 1884/4 - 1884/100 + 1884/400) * secondsPerDay
)

// An absSeconds counts the number of seconds since the absolute zero instant.
type absSeconds uint64

// An absDays counts the number of days since the absolute zero instant.
type absDays uint64

// An absCentury counts the number of centuries since the absolute zero instant.
type absCentury uint64

// An absCyear counts the number of years since the start of a century.
type absCyear int

// An absYday counts the number of days since the start of a year.
// Note that absolute years start on March 1.
type absYday int

// An absMonth counts the number of months since the start of a year.
// absMonth=0 denotes March.
type absMonth int

// An absLeap is a single bit (0 or 1) denoting whether a given year is a leap year.
type absLeap int

// An absJanFeb is a single bit (0 or 1) denoting whether a given day falls in January or February.
// That is a special case because the absolute years start in March (unlike normal calendar years).
type absJanFeb int

// dateToAbsDays takes a standard year/month/day and returns the
// number of days from the absolute epoch to that day.
// The days argument can be out of range and in particular can be negative.
func dateToAbsDays(year int64, month Month, day int) absDays {
	// See “Computations on Times” comment above.
	amonth := uint32(month)
	janFeb := uint32(0)
	if amonth < 3 {
		janFeb = 1
	}
	amonth += 12 * janFeb
	y := uint64(year) - uint64(janFeb) + absoluteYears

	// For amonth is in the range [3,14], we want:
	//
	//	ayday := (153*amonth - 457) / 5
	//
	// (See the “Computations on Times” comment above
	// as well as Neri and Schneider, section 7.)
	//
	// That is equivalent to:
	//
	//	ayday := (979*amonth - 2919) >> 5
	//
	// and the latter form uses a couple fewer instructions,
	// so use it, saving a few cycles.
	// See Neri and Schneider, section 8.3
	// for more about this optimization.
	//
	// (Note that there is no saved division, because the compiler
	// implements / 5 without division in all cases.)
	ayday := (979*amonth - 2919) >> 5

	century := y / 100
	cyear := uint32(y % 100)
	cday := 1461 * cyear / 4
	centurydays := 146097 * century / 4

	return absDays(centurydays + uint64(int64(cday+ayday)+int64(day)-1))
}

// days converts absolute seconds to absolute days.
func (abs absSeconds) days() absDays {
	return absDays(abs / secondsPerDay)
}

// split splits days into century, cyear, ayday.
func (days absDays) split() (century absCentury, cyear absCyear, ayday absYday) {
	// See “Computations on Times” comment above.
	d := 4*uint64(days) + 3
	century = absCentury(d / 146097)

	// This should be
	//	cday := uint32(d % 146097) / 4
	//	cd := 4*cday + 3
	// which is to say
	//	cday := uint32(d % 146097) >> 2
	//	cd := cday<<2 + 3
	// but of course (x>>2<<2)+3 == x|3,
	// so do that instead.
	cd := uint32(d%146097) | 3

	// For cdays in the range [0,146097] (100 years), we want:
	//
	//	cyear := (4 cdays + 3) / 1461
	//	yday := (4 cdays + 3) % 1461 / 4
	//
	// (See the “Computations on Times” comment above
	// as well as Neri and Schneider, section 7.)
	//
	// That is equivalent to:
	//
	//	cyear := (2939745 cdays) >> 32
	//	yday := (2939745 cdays) & 0xFFFFFFFF / 2939745 / 4
	//
	// so do that instead, saving a few cycles.
	// See Neri and Schneider, section 8.3
	// for more about this optimization.
	hi, lo := bits.Mul32(2939745, uint32(cd))
	cyear = absCyear(hi)
	ayday = absYday(lo / 2939745 / 4)
	return
}

// split splits ayday into absolute month and standard (1-based) day-in-month.
func (ayday absYday) split() (m absMonth, mday int) {
	// See “Computations on Times” comment above.
	//
	// For yday in the range [0,366],
	//
	//	amonth := (5 yday + 461) / 153
	//	mday := (5 yday + 461) % 153 / 5
	//
	// is equivalent to:
	//
	//	amonth = (2141 yday + 197913) >> 16
	//	mday = (2141 yday + 197913) & 0xFFFF / 2141
	//
	// so do that instead, saving a few cycles.
	// See Neri and Schneider, section 8.3.
	d := 2141*uint32(ayday) + 197913
	return absMonth(d >> 16), 1 + int((d&0xFFFF)/2141)
}

// janFeb returns 1 if the March 1-based ayday is in January or February, 0 otherwise.
func (ayday absYday) janFeb() absJanFeb {
	// See “Computations on Times” comment above.
	jf := absJanFeb(0)
	if ayday >= marchThruDecember {
		jf = 1
	}
	return jf
}

// month returns the standard Month for (m, janFeb)
func (m absMonth) month(janFeb absJanFeb) Month {
	// See “Computations on Times” comment above.
	return Month(m) - Month(janFeb)*12
}

// leap returns 1 if (century, cyear) is a leap year, 0 otherwise.
func (century absCentury) leap(cyear absCyear) absLeap {
	// See “Computations on Times” comment above.
	y4ok := 0
	if cyear%4 == 0 {
		y4ok = 1
	}
	y100ok := 0
	if cyear != 0 {
		y100ok = 1
	}
	y400ok := 0
	if century%4 == 0 {
		y400ok = 1
	}
	return absLeap(y4ok & (y100ok | y400ok))
}

// year returns the standard year for (century, cyear, janFeb).
func (century absCentury) year(cyear absCyear, janFeb absJanFeb) int {
	// See “Computations on Times” comment above.
	return int(uint64(century)*100-absoluteYears) + int(cyear) + int(janFeb)
}

// yday returns the standard 1-based yday for (ayday, janFeb, leap).
func (ayday absYday) yday(janFeb absJanFeb, leap absLeap) int {
	// See “Computations on Times” comment above.
	return int(ayday) + (1 + 31 + 28) + int(leap)&^int(janFeb) - 365*int(janFeb)
}

// date converts days into standard year, month, day.
func (days absDays) date() (year int, month Month, day int) {
	century, cyear, ayday := days.split()
	amonth, day := ayday.split()
	janFeb := ayday.janFeb()
	year = century.year(cyear, janFeb)
	month = amonth.month(janFeb)
	return
}

// yearYday converts days into the standard year and 1-based yday.
func (days absDays) yearYday() (year, yday int) {
	century, cyear, ayday := days.split()
	janFeb := ayday.janFeb()
	year = century.year(cyear, janFeb)
	yday = ayday.yday(janFeb, century.leap(cyear))
	return
}

// absSec returns the time t as an absolute seconds, adjusted by the zone offset.
// It is called when computing a presentation property like Month or Hour.
// We'd rather call it abs, but there are linknames to abs that make that problematic.
// See timeAbs below.
func (t Time) absSec() absSeconds {
	l := t.loc
	// Avoid function calls when possible.
	if l == nil || l == &localLoc {
		l = l.get()
	}
	sec := t.unixSec()
	if l != &utcLoc {
		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
			sec += int64(l.cacheZone.offset)
		} else {
			_, offset, _, _, _ := l.lookup(sec)
			sec += int64(offset)
		}
	}
	return absSeconds(sec + (unixToInternal + internalToAbsolute))
}

// locabs is a combination of the Zone and abs methods,
// extracting both return values from a single zone lookup.
func (t Time) locabs() (name string, offset int, abs absSeconds) {
	l := t.loc
	if l == nil || l == &localLoc {
		l = l.get()
	}
	// Avoid function call if we hit the local time cache.
	sec := t.unixSec()
	if l != &utcLoc {
		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
			name = l.cacheZone.name
			offset = l.cacheZone.offset
		} else {
			name, offset, _, _, _ = l.lookup(sec)
		}
		sec += int64(offset)
	} else {
		name = "UTC"
	}
	abs = absSeconds(sec + (unixToInternal + internalToAbsolute))
	return
}

// Date returns the year, month, and day in which t occurs.
func (t Time) Date() (year int, month Month, day int) {
	return t.absSec().days().date()
}

// Year returns the year in which t occurs.
func (t Time) Year() int {
	century, cyear, ayday := t.absSec().days().split()
	janFeb := ayday.janFeb()
	return century.year(cyear, janFeb)
}

// Month returns the month of the year specified by t.
func (t Time) Month() Month {
	_, _, ayday := t.absSec().days().split()
	amonth, _ := ayday.split()
	return amonth.month(ayday.janFeb())
}

// Day returns the day of the month specified by t.
func (t Time) Day() int {
	_, _, ayday := t.absSec().days().split()
	_, day := ayday.split()
	return day
}

// Weekday returns the day of the week specified by t.
func (t Time) Weekday() Weekday {
	return t.absSec().days().weekday()
}

// weekday returns the day of the week specified by days.
func (days absDays) weekday() Weekday {
	// March 1 of the absolute year, like March 1 of 2000, was a Wednesday.
	return Weekday((uint64(days) + uint64(Wednesday)) % 7)
}

// ISOWeek returns the ISO 8601 year and week number in which t occurs.
// Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
// week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
// of year n+1.
func (t Time) ISOWeek() (year, week int) {
	// According to the rule that the first calendar week of a calendar year is
	// the week including the first Thursday of that year, and that the last one is
	// the week immediately preceding the first calendar week of the next calendar year.
	// See https://www.iso.org/obp/ui#iso:std:iso:8601:-1:ed-1:v1:en:term:3.1.1.23 for details.

	// weeks start with Monday
	// Monday Tuesday Wednesday Thursday Friday Saturday Sunday
	// 1      2       3         4        5      6        7
	// +3     +2      +1        0        -1     -2       -3
	// the offset to Thursday
	days := t.absSec().days()
	thu := days + absDays(Thursday-((days-1).weekday()+1))
	year, yday := thu.yearYday()
	return year, (yday-1)/7 + 1
}

// Clock returns the hour, minute, and second within the day specified by t.
func (t Time) Clock() (hour, min, sec int) {
	return t.absSec().clock()
}

// clock returns the hour, minute, and second within the day specified by abs.
func (abs absSeconds) clock() (hour, min, sec int) {
	sec = int(abs % secondsPerDay)
	hour = sec / secondsPerHour
	sec -= hour * secondsPerHour
	min = sec / secondsPerMinute
	sec -= min * secondsPerMinute
	return
}

// Hour returns the hour within the day specified by t, in the range [0, 23].
func (t Time) Hour() int {
	return int(t.absSec()%secondsPerDay) / secondsPerHour
}

// Minute returns the minute offset within the hour specified by t, in the range [0, 59].
func (t Time) Minute() int {
	return int(t.absSec()%secondsPerHour) / secondsPerMinute
}

// Second returns the second offset within the minute specified by t, in the range [0, 59].
func (t Time) Second() int {
	return int(t.absSec() % secondsPerMinute)
}

// Nanosecond returns the nanosecond offset within the second specified by t,
// in the range [0, 999999999].
func (t Time) Nanosecond() int {
	return int(t.nsec())
}

// YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
// and [1,366] in leap years.
func (t Time) YearDay() int {
	_, yday := t.absSec().days().yearYday()
	return yday
}

// A Duration represents the elapsed time between two instants
// as an int64 nanosecond count. The representation limits the
// largest representable duration to approximately 290 years.
type Duration int64

const (
	minDuration Duration = -1 << 63
	maxDuration Duration = 1<<63 - 1
)

// Common durations. There is no definition for units of Day or larger
// to avoid confusion across daylight savings time zone transitions.
//
// To count the number of units in a [Duration], divide:
//
//	second := time.Second
//	fmt.Print(int64(second/time.Millisecond)) // prints 1000
//
// To convert an integer number of units to a Duration, multiply:
//
//	seconds := 10
//	fmt.Print(time.Duration(seconds)*time.Second) // prints 10s
const (
	Nanosecond  Duration = 1
	Microsecond          = 1000 * Nanosecond
	Millisecond          = 1000 * Microsecond
	Second               = 1000 * Millisecond
	Minute               = 60 * Second
	Hour                 = 60 * Minute
)

// String returns a string representing the duration in the form "72h3m0.5s".
// Leading zero units are omitted. As a special case, durations less than one
// second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
// that the leading digit is non-zero. The zero duration formats as 0s.
func (d Duration) String() string {
	// This is inlinable to take advantage of "function outlining".
	// Thus, the caller can decide whether a string must be heap allocated.
	var arr [32]byte
	n := d.format(&arr)
	return string(arr[n:])
}

// format formats the representation of d into the end of buf and
// returns the offset of the first character.
func (d Duration) format(buf *[32]byte) int {
	// Largest time is 2540400h10m10.000000000s
	w := len(buf)

	u := uint64(d)
	neg := d < 0
	if neg {
		u = -u
	}

	if u < uint64(Second) {
		// Special case: if duration is smaller than a second,
		// use smaller units, like 1.2ms
		var prec int
		w--
		buf[w] = 's'
		w--
		switch {
		case u == 0:
			buf[w] = '0'
			return w
		case u < uint64(Microsecond):
			// print nanoseconds
			prec = 0
			buf[w] = 'n'
		case u < uint64(Millisecond):
			// print microseconds
			prec = 3
			// U+00B5 'µ' micro sign == 0xC2 0xB5
			w-- // Need room for two bytes.
			copy(buf[w:], "µ")
		default:
			// print milliseconds
			prec = 6
			buf[w] = 'm'
		}
		w, u = fmtFrac(buf[:w], u, prec)
		w = fmtInt(buf[:w], u)
	} else {
		w--
		buf[w] = 's'

		w, u = fmtFrac(buf[:w], u, 9)

		// u is now integer seconds
		w = fmtInt(buf[:w], u%60)
		u /= 60

		// u is now integer minutes
		if u > 0 {
			w--
			buf[w] = 'm'
			w = fmtInt(buf[:w], u%60)
			u /= 60

			// u is now integer hours
			// Stop at hours because days can be different lengths.
			if u > 0 {
				w--
				buf[w] = 'h'
				w = fmtInt(buf[:w], u)
			}
		}
	}

	if neg {
		w--
		buf[w] = '-'
	}

	return w
}

// fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the
// tail of buf, omitting trailing zeros. It omits the decimal
// point too when the fraction is 0. It returns the index where the
// output bytes begin and the value v/10**prec.
func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) {
	// Omit trailing zeros up to and including decimal point.
	w := len(buf)
	print := false
	for i := 0; i < prec; i++ {
		digit := v % 10
		print = print || digit != 0
		if print {
			w--
			buf[w] = byte(digit) + '0'
		}
		v /= 10
	}
	if print {
		w--
		buf[w] = '.'
	}
	return w, v
}

// fmtInt formats v into the tail of buf.
// It returns the index where the output begins.
func fmtInt(buf []byte, v uint64) int {
	w := len(buf)
	if v == 0 {
		w--
		buf[w] = '0'
	} else {
		for v > 0 {
			w--
			buf[w] = byte(v%10) + '0'
			v /= 10
		}
	}
	return w
}

// Nanoseconds returns the duration as an integer nanosecond count.
func (d Duration) Nanoseconds() int64 { return int64(d) }

// Microseconds returns the duration as an integer microsecond count.
func (d Duration) Microseconds() int64 { return int64(d) / 1e3 }

// Milliseconds returns the duration as an integer millisecond count.
func (d Duration) Milliseconds() int64 { return int64(d) / 1e6 }

// These methods return float64 because the dominant
// use case is for printing a floating point number like 1.5s, and
// a truncation to integer would make them not useful in those cases.
// Splitting the integer and fraction ourselves guarantees that
// converting the returned float64 to an integer rounds the same
// way that a pure integer conversion would have, even in cases
// where, say, float64(d.Nanoseconds())/1e9 would have rounded
// differently.

// Seconds returns the duration as a floating point number of seconds.
func (d Duration) Seconds() float64 {
	sec := d / Second
	nsec := d % Second
	return float64(sec) + float64(nsec)/1e9
}

// Minutes returns the duration as a floating point number of minutes.
func (d Duration) Minutes() float64 {
	min := d / Minute
	nsec := d % Minute
	return float64(min) + float64(nsec)/(60*1e9)
}

// Hours returns the duration as a floating point number of hours.
func (d Duration) Hours() float64 {
	hour := d / Hour
	nsec := d % Hour
	return float64(hour) + float64(nsec)/(60*60*1e9)
}

// Truncate returns the result of rounding d toward zero to a multiple of m.
// If m <= 0, Truncate returns d unchanged.
func (d Duration) Truncate(m Duration) Duration {
	if m <= 0 {
		return d
	}
	return d - d%m
}

// lessThanHalf reports whether x+x < y but avoids overflow,
// assuming x and y are both positive (Duration is signed).
func lessThanHalf(x, y Duration) bool {
	return uint64(x)+uint64(x) < uint64(y)
}

// Round returns the result of rounding d to the nearest multiple of m.
// The rounding behavior for halfway values is to round away from zero.
// If the result exceeds the maximum (or minimum)
// value that can be stored in a [Duration],
// Round returns the maximum (or minimum) duration.
// If m <= 0, Round returns d unchanged.
func (d Duration) Round(m Duration) Duration {
	if m <= 0 {
		return d
	}
	r := d % m
	if d < 0 {
		r = -r
		if lessThanHalf(r, m) {
			return d + r
		}
		if d1 := d - m + r; d1 < d {
			return d1
		}
		return minDuration // overflow
	}
	if lessThanHalf(r, m) {
		return d - r
	}
	if d1 := d + m - r; d1 > d {
		return d1
	}
	return maxDuration // overflow
}

// Abs returns the absolute value of d.
// As a special case, Duration([math.MinInt64]) is converted to Duration([math.MaxInt64]),
// reducing its magnitude by 1 nanosecond.
func (d Duration) Abs() Duration {
	switch {
	case d >= 0:
		return d
	case d == minDuration:
		return maxDuration
	default:
		return -d
	}
}

// Add returns the time t+d.
func (t Time) Add(d Duration) Time {
	dsec := int64(d / 1e9)
	nsec := t.nsec() + int32(d%1e9)
	if nsec >= 1e9 {
		dsec++
		nsec -= 1e9
	} else if nsec < 0 {
		dsec--
		nsec += 1e9
	}
	t.wall = t.wall&^nsecMask | uint64(nsec) // update nsec
	t.addSec(dsec)
	if t.wall&hasMonotonic != 0 {
		te := t.ext + int64(d)
		if d < 0 && te > t.ext || d > 0 && te < t.ext {
			// Monotonic clock reading now out of range; degrade to wall-only.
			t.stripMono()
		} else {
			t.ext = te
		}
	}
	return t
}

// Sub returns the duration t-u. If the result exceeds the maximum (or minimum)
// value that can be stored in a [Duration], the maximum (or minimum) duration
// will be returned.
// To compute t-d for a duration d, use t.Add(-d).
func (t Time) Sub(u Time) Duration {
	if t.wall&u.wall&hasMonotonic != 0 {
		return subMono(t.ext, u.ext)
	}
	d := Duration(t.sec()-u.sec())*Second + Duration(t.nsec()-u.nsec())
	// Check for overflow or underflow.
	switch {
	case u.Add(d).Equal(t):
		return d // d is correct
	case t.Before(u):
		return minDuration // t - u is negative out of range
	default:
		return maxDuration // t - u is positive out of range
	}
}

func subMono(t, u int64) Duration {
	d := Duration(t - u)
	if d < 0 && t > u {
		return maxDuration // t - u is positive out of range
	}
	if d > 0 && t < u {
		return minDuration // t - u is negative out of range
	}
	return d
}

// Since returns the time elapsed since t.
// It is shorthand for time.Now().Sub(t).
func Since(t Time) Duration {
	if t.wall&hasMonotonic != 0 {
		// Common case optimization: if t has monotonic time, then Sub will use only it.
		return subMono(runtimeNano()-startNano, t.ext)
	}
	return Now().Sub(t)
}

// Until returns the duration until t.
// It is shorthand for t.Sub(time.Now()).
func Until(t Time) Duration {
	if t.wall&hasMonotonic != 0 {
		// Common case optimization: if t has monotonic time, then Sub will use only it.
		return subMono(t.ext, runtimeNano()-startNano)
	}
	return t.Sub(Now())
}

// AddDate returns the time corresponding to adding the
// given number of years, months, and days to t.
// For example, AddDate(-1, 2, 3) applied to January 1, 2011
// returns March 4, 2010.
//
// Note that dates are fundamentally coupled to timezones, and calendrical
// periods like days don't have fixed durations. AddDate uses the Location of
// the Time value to determine these durations. That means that the same
// AddDate arguments can produce a different shift in absolute time depending on
// the base Time value and its Location. For example, AddDate(0, 0, 1) applied
// to 12:00 on March 27 always returns 12:00 on March 28. At some locations and
// in some years this is a 24 hour shift. In others it's a 23 hour shift due to
// daylight savings time transitions.
//
// AddDate normalizes its result in the same way that Date does,
// so, for example, adding one month to October 31 yields
// December 1, the normalized form for November 31.
func (t Time) AddDate(years int, months int, days int) Time {
	year, month, day := t.Date()
	hour, min, sec := t.Clock()
	return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec()), t.Location())
}

// daysBefore returns the number of days in a non-leap year before month m.
// daysBefore(December+1) returns 365.
func daysBefore(m Month) int {
	adj := 0
	if m >= March {
		adj = -2
	}

	// With the -2 adjustment after February,
	// we need to compute the running sum of:
	//	0  31  30  31  30  31  30  31  31  30  31  30  31
	// which is:
	//	0  31  61  92 122 153 183 214 245 275 306 336 367
	// This is almost exactly 367/12×(m-1) except for the
	// occasonal off-by-one suggesting there may be an
	// integer approximation of the form (a×m + b)/c.
	// A brute force search over small a, b, c finds that
	// (214×m - 211) / 7 computes the function perfectly.
	return (214*int(m)-211)/7 + adj
}

func daysIn(m Month, year int) int {
	if m == February {
		if isLeap(year) {
			return 29
		}
		return 28
	}
	// With the special case of February eliminated, the pattern is
	//	31 30 31 30 31 30 31 31 30 31 30 31
	// Adding m&1 produces the basic alternation;
	// adding (m>>3)&1 inverts the alternation starting in August.
	return 30 + int((m+m>>3)&1)
}

// Provided by package runtime.
//
// now returns the current real time, and is superseded by runtimeNow which returns
// the fake synctest clock when appropriate.
//
// now should be an internal detail,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
//   - gitee.com/quant1x/gox
//   - github.com/phuslu/log
//   - github.com/sethvargo/go-limiter
//   - github.com/ulule/limiter/v3
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
func now() (sec int64, nsec int32, mono int64)

// runtimeNow returns the current time.
// When called within a synctest.Run bubble, it returns the group's fake clock.
//
//go:linkname runtimeNow
func runtimeNow() (sec int64, nsec int32, mono int64)

// runtimeNano returns the current value of the runtime clock in nanoseconds.
// When called within a synctest.Run bubble, it returns the group's fake clock.
//
//go:linkname runtimeNano
func runtimeNano() int64

// Monotonic times are reported as offsets from startNano.
// We initialize startNano to runtimeNano() - 1 so that on systems where
// monotonic time resolution is fairly low (e.g. Windows 2008
// which appears to have a default resolution of 15ms),
// we avoid ever reporting a monotonic time of 0.
// (Callers may want to use 0 as "time not set".)
var startNano int64 = runtimeNano() - 1

// x/tools uses a linkname of time.Now in its tests. No harm done.
//go:linkname Now

// Now returns the current local time.
func Now() Time {
	sec, nsec, mono := runtimeNow()
	if mono == 0 {
		return Time{uint64(nsec), sec + unixToInternal, Local}
	}
	mono -= startNano
	sec += unixToInternal - minWall
	if uint64(sec)>>33 != 0 {
		// Seconds field overflowed the 33 bits available when
		// storing a monotonic time. This will be true after
		// March 16, 2157.
		return Time{uint64(nsec), sec + minWall, Local}
	}
	return Time{hasMonotonic | uint64(sec)<<nsecShift | uint64(nsec), mono, Local}
}

func unixTime(sec int64, nsec int32) Time {
	return Time{uint64(nsec), sec + unixToInternal, Local}
}

// UTC returns t with the location set to UTC.
func (t Time) UTC() Time {
	t.setLoc(&utcLoc)
	return t
}

// Local returns t with the location set to local time.
func (t Time) Local() Time {
	t.setLoc(Local)
	return t
}

// In returns a copy of t representing the same time instant, but
// with the copy's location information set to loc for display
// purposes.
//
// In panics if loc is nil.
func (t Time) In(loc *Location) Time {
	if loc == nil {
		panic("time: missing Location in call to Time.In")
	}
	t.setLoc(loc)
	return t
}

// Location returns the time zone information associated with t.
func (t Time) Location() *Location {
	l := t.loc
	if l == nil {
		l = UTC
	}
	return l
}

// Zone computes the time zone in effect at time t, returning the abbreviated
// name of the zone (such as "CET") and its offset in seconds east of UTC.
func (t Time) Zone() (name string, offset int) {
	name, offset, _, _, _ = t.loc.lookup(t.unixSec())
	return
}

// ZoneBounds returns the bounds of the time zone in effect at time t.
// The zone begins at start and the next zone begins at end.
// If the zone begins at the beginning of time, start will be returned as a zero Time.
// If the zone goes on forever, end will be returned as a zero Time.
// The Location of the returned times will be the same as t.
func (t Time) ZoneBounds() (start, end Time) {
	_, _, startSec, endSec, _ := t.loc.lookup(t.unixSec())
	if startSec != alpha {
		start = unixTime(startSec, 0)
		start.setLoc(t.loc)
	}
	if endSec != omega {
		end = unixTime(endSec, 0)
		end.setLoc(t.loc)
	}
	return
}

// Unix returns t as a Unix time, the number of seconds elapsed
// since January 1, 1970 UTC. The result does not depend on the
// location associated with t.
// Unix-like operating systems often record time as a 32-bit
// count of seconds, but since the method here returns a 64-bit
// value it is valid for billions of years into the past or future.
func (t Time) Unix() int64 {
	return t.unixSec()
}

// UnixMilli returns t as a Unix time, the number of milliseconds elapsed since
// January 1, 1970 UTC. The result is undefined if the Unix time in
// milliseconds cannot be represented by an int64 (a date more than 292 million
// years before or after 1970). The result does not depend on the
// location associated with t.
func (t Time) UnixMilli() int64 {
	return t.unixSec()*1e3 + int64(t.nsec())/1e6
}

// UnixMicro returns t as a Unix time, the number of microseconds elapsed since
// January 1, 1970 UTC. The result is undefined if the Unix time in
// microseconds cannot be represented by an int64 (a date before year -290307 or
// after year 294246). The result does not depend on the location associated
// with t.
func (t Time) UnixMicro() int64 {
	return t.unixSec()*1e6 + int64(t.nsec())/1e3
}

// UnixNano returns t as a Unix time, the number of nanoseconds elapsed
// since January 1, 1970 UTC. The result is undefined if the Unix time
// in nanoseconds cannot be represented by an int64 (a date before the year
// 1678 or after 2262). Note that this means the result of calling UnixNano
// on the zero Time is undefined. The result does not depend on the
// location associated with t.
func (t Time) UnixNano() int64 {
	return (t.unixSec())*1e9 + int64(t.nsec())
}

const (
	timeBinaryVersionV1 byte = iota + 1 // For general situation
	timeBinaryVersionV2                 // For LMT only
)

// AppendBinary implements the [encoding.BinaryAppender] interface.
func (t Time) AppendBinary(b []byte) ([]byte, error) {
	var offsetMin int16 // minutes east of UTC. -1 is UTC.
	var offsetSec int8
	version := timeBinaryVersionV1

	if t.Location() == UTC {
		offsetMin = -1
	} else {
		_, offset := t.Zone()
		if offset%60 != 0 {
			version = timeBinaryVersionV2
			offsetSec = int8(offset % 60)
		}

		offset /= 60
		if offset < -32768 || offset == -1 || offset > 32767 {
			return b, errors.New("Time.MarshalBinary: unexpected zone offset")
		}
		offsetMin = int16(offset)
	}

	sec := t.sec()
	nsec := t.nsec()
	b = append(b,
		version,       // byte 0 : version
		byte(sec>>56), // bytes 1-8: seconds
		byte(sec>>48),
		byte(sec>>40),
		byte(sec>>32),
		byte(sec>>24),
		byte(sec>>16),
		byte(sec>>8),
		byte(sec),
		byte(nsec>>24), // bytes 9-12: nanoseconds
		byte(nsec>>16),
		byte(nsec>>8),
		byte(nsec),
		byte(offsetMin>>8), // bytes 13-14: zone offset in minutes
		byte(offsetMin),
	)
	if version == timeBinaryVersionV2 {
		b = append(b, byte(offsetSec))
	}
	return b, nil
}

// MarshalBinary implements the [encoding.BinaryMarshaler] interface.
func (t Time) MarshalBinary() ([]byte, error) {
	b, err := t.AppendBinary(make([]byte, 0, 16))
	if err != nil {
		return nil, err
	}
	return b, nil
}

// UnmarshalBinary implements the [encoding.BinaryUnmarshaler] interface.
func (t *Time) UnmarshalBinary(data []byte) error {
	buf := data
	if len(buf) == 0 {
		return errors.New("Time.UnmarshalBinary: no data")
	}

	version := buf[0]
	if version != timeBinaryVersionV1 && version != timeBinaryVersionV2 {
		return errors.New("Time.UnmarshalBinary: unsupported version")
	}

	wantLen := /*version*/ 1 + /*sec*/ 8 + /*nsec*/ 4 + /*zone offset*/ 2
	if version == timeBinaryVersionV2 {
		wantLen++
	}
	if len(buf) != wantLen {
		return errors.New("Time.UnmarshalBinary: invalid length")
	}

	buf = buf[1:]
	sec := int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 |
		int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56

	buf = buf[8:]
	nsec := int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24

	buf = buf[4:]
	offset := int(int16(buf[1])|int16(buf[0])<<8) * 60
	if version == timeBinaryVersionV2 {
		offset += int(buf[2])
	}

	*t = Time{}
	t.wall = uint64(nsec)
	t.ext = sec

	if offset == -1*60 {
		t.setLoc(&utcLoc)
	} else if _, localoff, _, _, _ := Local.lookup(t.unixSec()); offset == localoff {
		t.setLoc(Local)
	} else {
		t.setLoc(FixedZone("", offset))
	}

	return nil
}

// TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2.
// The same semantics will be provided by the generic MarshalBinary, MarshalText,
// UnmarshalBinary, UnmarshalText.

// GobEncode implements the gob.GobEncoder interface.
func (t Time) GobEncode() ([]byte, error) {
	return t.MarshalBinary()
}

// GobDecode implements the gob.GobDecoder interface.
func (t *Time) GobDecode(data []byte) error {
	return t.UnmarshalBinary(data)
}

// MarshalJSON implements the [encoding/json.Marshaler] interface.
// The time is a quoted string in the RFC 3339 format with sub-second precision.
// If the timestamp cannot be represented as valid RFC 3339
// (e.g., the year is out of range), then an error is reported.
func (t Time) MarshalJSON() ([]byte, error) {
	b := make([]byte, 0, len(RFC3339Nano)+len(`""`))
	b = append(b, '"')
	b, err := t.appendStrictRFC3339(b)
	b = append(b, '"')
	if err != nil {
		return nil, errors.New("Time.MarshalJSON: " + err.Error())
	}
	return b, nil
}

// UnmarshalJSON implements the [encoding/json.Unmarshaler] interface.
// The time must be a quoted string in the RFC 3339 format.
func (t *Time) UnmarshalJSON(data []byte) error {
	if string(data) == "null" {
		return nil
	}
	// TODO(https://go.dev/issue/47353): Properly unescape a JSON string.
	if len(data) < 2 || data[0] != '"' || data[len(data)-1] != '"' {
		return errors.New("Time.UnmarshalJSON: input is not a JSON string")
	}
	data = data[len(`"`) : len(data)-len(`"`)]
	var err error
	*t, err = parseStrictRFC3339(data)
	return err
}

func (t Time) appendTo(b []byte, errPrefix string) ([]byte, error) {
	b, err := t.appendStrictRFC3339(b)
	if err != nil {
		return nil, errors.New(errPrefix + err.Error())
	}
	return b, nil
}

// AppendText implements the [encoding.TextAppender] interface.
// The time is formatted in RFC 3339 format with sub-second precision.
// If the timestamp cannot be represented as valid RFC 3339
// (e.g., the year is out of range), then an error is returned.
func (t Time) AppendText(b []byte) ([]byte, error) {
	return t.appendTo(b, "Time.AppendText: ")
}

// MarshalText implements the [encoding.TextMarshaler] interface. The output
// matches that of calling the [Time.AppendText] method.
//
// See [Time.AppendText] for more information.
func (t Time) MarshalText() ([]byte, error) {
	return t.appendTo(make([]byte, 0, len(RFC3339Nano)), "Time.MarshalText: ")
}

// UnmarshalText implements the [encoding.TextUnmarshaler] interface.
// The time must be in the RFC 3339 format.
func (t *Time) UnmarshalText(data []byte) error {
	var err error
	*t, err = parseStrictRFC3339(data)
	return err
}

// Unix returns the local Time corresponding to the given Unix time,
// sec seconds and nsec nanoseconds since January 1, 1970 UTC.
// It is valid to pass nsec outside the range [0, 999999999].
// Not all sec values have a corresponding time value. One such
// value is 1<<63-1 (the largest int64 value).
func Unix(sec int64, nsec int64) Time {
	if nsec < 0 || nsec >= 1e9 {
		n := nsec / 1e9
		sec += n
		nsec -= n * 1e9
		if nsec < 0 {
			nsec += 1e9
			sec--
		}
	}
	return unixTime(sec, int32(nsec))
}

// UnixMilli returns the local Time corresponding to the given Unix time,
// msec milliseconds since January 1, 1970 UTC.
func UnixMilli(msec int64) Time {
	return Unix(msec/1e3, (msec%1e3)*1e6)
}

// UnixMicro returns the local Time corresponding to the given Unix time,
// usec microseconds since January 1, 1970 UTC.
func UnixMicro(usec int64) Time {
	return Unix(usec/1e6, (usec%1e6)*1e3)
}

// IsDST reports whether the time in the configured location is in Daylight Savings Time.
func (t Time) IsDST() bool {
	_, _, _, _, isDST := t.loc.lookup(t.Unix())
	return isDST
}

func isLeap(year int) bool {
	// year%4 == 0 && (year%100 != 0 || year%400 == 0)
	// Bottom 2 bits must be clear.
	// For multiples of 25, bottom 4 bits must be clear.
	// Thanks to Cassio Neri for this trick.
	mask := 0xf
	if year%25 != 0 {
		mask = 3
	}
	return year&mask == 0
}

// norm returns nhi, nlo such that
//
//	hi * base + lo == nhi * base + nlo
//	0 <= nlo < base
func norm(hi, lo, base int) (nhi, nlo int) {
	if lo < 0 {
		n := (-lo-1)/base + 1
		hi -= n
		lo += n * base
	}
	if lo >= base {
		n := lo / base
		hi += n
		lo -= n * base
	}
	return hi, lo
}

// Date returns the Time corresponding to
//
//	yyyy-mm-dd hh:mm:ss + nsec nanoseconds
//
// in the appropriate zone for that time in the given location.
//
// The month, day, hour, min, sec, and nsec values may be outside
// their usual ranges and will be normalized during the conversion.
// For example, October 32 converts to November 1.
//
// A daylight savings time transition skips or repeats times.
// For example, in the United States, March 13, 2011 2:15am never occurred,
// while November 6, 2011 1:15am occurred twice. In such cases, the
// choice of time zone, and therefore the time, is not well-defined.
// Date returns a time that is correct in one of the two zones involved
// in the transition, but it does not guarantee which.
//
// Date panics if loc is nil.
func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time {
	if loc == nil {
		panic("time: missing Location in call to Date")
	}

	// Normalize month, overflowing into year.
	m := int(month) - 1
	year, m = norm(year, m, 12)
	month = Month(m) + 1

	// Normalize nsec, sec, min, hour, overflowing into day.
	sec, nsec = norm(sec, nsec, 1e9)
	min, sec = norm(min, sec, 60)
	hour, min = norm(hour, min, 60)
	day, hour = norm(day, hour, 24)

	// Convert to absolute time and then Unix time.
	unix := int64(dateToAbsDays(int64(year), month, day))*secondsPerDay +
		int64(hour*secondsPerHour+min*secondsPerMinute+sec) +
		absoluteToUnix

	// Look for zone offset for expected time, so we can adjust to UTC.
	// The lookup function expects UTC, so first we pass unix in the
	// hope that it will not be too close to a zone transition,
	// and then adjust if it is.
	_, offset, start, end, _ := loc.lookup(unix)
	if offset != 0 {
		utc := unix - int64(offset)
		// If utc is valid for the time zone we found, then we have the right offset.
		// If not, we get the correct offset by looking up utc in the location.
		if utc < start || utc >= end {
			_, offset, _, _, _ = loc.lookup(utc)
		}
		unix -= int64(offset)
	}

	t := unixTime(unix, int32(nsec))
	t.setLoc(loc)
	return t
}

// Truncate returns the result of rounding t down to a multiple of d (since the zero time).
// If d <= 0, Truncate returns t stripped of any monotonic clock reading but otherwise unchanged.
//
// Truncate operates on the time as an absolute duration since the
// zero time; it does not operate on the presentation form of the
// time. Thus, Truncate(Hour) may return a time with a non-zero
// minute, depending on the time's Location.
func (t Time) Truncate(d Duration) Time {
	t.stripMono()
	if d <= 0 {
		return t
	}
	_, r := div(t, d)
	return t.Add(-r)
}

// Round returns the result of rounding t to the nearest multiple of d (since the zero time).
// The rounding behavior for halfway values is to round up.
// If d <= 0, Round returns t stripped of any monotonic clock reading but otherwise unchanged.
//
// Round operates on the time as an absolute duration since the
// zero time; it does not operate on the presentation form of the
// time. Thus, Round(Hour) may return a time with a non-zero
// minute, depending on the time's Location.
func (t Time) Round(d Duration) Time {
	t.stripMono()
	if d <= 0 {
		return t
	}
	_, r := div(t, d)
	if lessThanHalf(r, d) {
		return t.Add(-r)
	}
	return t.Add(d - r)
}

// div divides t by d and returns the quotient parity and remainder.
// We don't use the quotient parity anymore (round half up instead of round to even)
// but it's still here in case we change our minds.
func div(t Time, d Duration) (qmod2 int, r Duration) {
	neg := false
	nsec := t.nsec()
	sec := t.sec()
	if sec < 0 {
		// Operate on absolute value.
		neg = true
		sec = -sec
		nsec = -nsec
		if nsec < 0 {
			nsec += 1e9
			sec-- // sec >= 1 before the -- so safe
		}
	}

	switch {
	// Special case: 2d divides 1 second.
	case d < Second && Second%(d+d) == 0:
		qmod2 = int(nsec/int32(d)) & 1
		r = Duration(nsec % int32(d))

	// Special case: d is a multiple of 1 second.
	case d%Second == 0:
		d1 := int64(d / Second)
		qmod2 = int(sec/d1) & 1
		r = Duration(sec%d1)*Second + Duration(nsec)

	// General case.
	// This could be faster if more cleverness were applied,
	// but it's really only here to avoid special case restrictions in the API.
	// No one will care about these cases.
	default:
		// Compute nanoseconds as 128-bit number.
		sec := uint64(sec)
		tmp := (sec >> 32) * 1e9
		u1 := tmp >> 32
		u0 := tmp << 32
		tmp = (sec & 0xFFFFFFFF) * 1e9
		u0x, u0 := u0, u0+tmp
		if u0 < u0x {
			u1++
		}
		u0x, u0 = u0, u0+uint64(nsec)
		if u0 < u0x {
			u1++
		}

		// Compute remainder by subtracting r<<k for decreasing k.
		// Quotient parity is whether we subtract on last round.
		d1 := uint64(d)
		for d1>>63 != 1 {
			d1 <<= 1
		}
		d0 := uint64(0)
		for {
			qmod2 = 0
			if u1 > d1 || u1 == d1 && u0 >= d0 {
				// subtract
				qmod2 = 1
				u0x, u0 = u0, u0-d0
				if u0 > u0x {
					u1--
				}
				u1 -= d1
			}
			if d1 == 0 && d0 == uint64(d) {
				break
			}
			d0 >>= 1
			d0 |= (d1 & 1) << 63
			d1 >>= 1
		}
		r = Duration(u0)
	}

	if neg && r != 0 {
		// If input was negative and not an exact multiple of d, we computed q, r such that
		//	q*d + r = -t
		// But the right answers are given by -(q-1), d-r:
		//	q*d + r = -t
		//	-q*d - r = t
		//	-(q-1)*d + (d - r) = t
		qmod2 ^= 1
		r = d - r
	}
	return
}

// Regrettable Linkname Compatibility
//
// timeAbs, absDate, and absClock mimic old internal details, no longer used.
// Widely used packages linknamed these to get “faster” time routines.
// Notable members of the hall of shame include:
//   - gitee.com/quant1x/gox
//   - github.com/phuslu/log
//
// phuslu hard-coded 'Unix time + 9223372028715321600' [sic]
// as the input to absDate and absClock, using the old Jan 1-based
// absolute times.
// quant1x linknamed the time.Time.abs method and passed the
// result of that method to absDate and absClock.
//
// Keeping both of these working forces us to provide these three
// routines here, operating on the old Jan 1-based epoch instead
// of the new March 1-based epoch. And the fact that time.Time.abs
// was linknamed means that we have to call the current abs method
// something different (time.Time.absSec, defined above) to make it
// possible to provide this simulation of the old routines here.
//
// None of this code is linked into the binary if not referenced by
// these linkname-happy packages. In particular, despite its name,
// time.Time.abs does not appear in the time.Time method table.
//
// Do not remove these routines or their linknames, or change the
// type signature or meaning of arguments.

//go:linkname legacyTimeTimeAbs time.Time.abs
func legacyTimeTimeAbs(t Time) uint64 {
	return uint64(t.absSec() - marchThruDecember*secondsPerDay)
}

//go:linkname legacyAbsClock time.absClock
func legacyAbsClock(abs uint64) (hour, min, sec int) {
	return absSeconds(abs + marchThruDecember*secondsPerDay).clock()
}

//go:linkname legacyAbsDate time.absDate
func legacyAbsDate(abs uint64, full bool) (year int, month Month, day int, yday int) {
	d := absSeconds(abs + marchThruDecember*secondsPerDay).days()
	year, month, day = d.date()
	_, yday = d.yearYday()
	yday-- // yearYday is 1-based, old API was 0-based
	return
}