1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
// Inferno's libkern/vlrt-arm.c
// https://bitbucket.org/inferno-os/inferno-os/src/master/libkern/vlrt-arm.c
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Revisions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com). All rights reserved.
// Portions Copyright 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//go:build arm || 386 || mips || mipsle
package runtime
import "unsafe"
const (
sign32 = 1 << (32 - 1)
sign64 = 1 << (64 - 1)
)
func float64toint64(d float64) (y uint64) {
_d2v(&y, d)
return
}
func float64touint64(d float64) (y uint64) {
_d2v(&y, d)
return
}
func int64tofloat64(y int64) float64 {
if y < 0 {
return -uint64tofloat64(-uint64(y))
}
return uint64tofloat64(uint64(y))
}
func uint64tofloat64(y uint64) float64 {
hi := float64(uint32(y >> 32))
lo := float64(uint32(y))
d := hi*(1<<32) + lo
return d
}
func int64tofloat32(y int64) float32 {
if y < 0 {
return -uint64tofloat32(-uint64(y))
}
return uint64tofloat32(uint64(y))
}
func uint64tofloat32(y uint64) float32 {
// divide into top 18, mid 23, and bottom 23 bits.
// (23-bit integers fit into a float32 without loss.)
top := uint32(y >> 46)
mid := uint32(y >> 23 & (1<<23 - 1))
bot := uint32(y & (1<<23 - 1))
if top == 0 {
return float32(mid)*(1<<23) + float32(bot)
}
if bot != 0 {
// Top is not zero, so the bits in bot
// won't make it into the final mantissa.
// In fact, the bottom bit of mid won't
// make it into the mantissa either.
// We only need to make sure that if top+mid
// is about to round down in a round-to-even
// scenario, and bot is not zero, we make it
// round up instead.
mid |= 1
}
return float32(top)*(1<<46) + float32(mid)*(1<<23)
}
func _d2v(y *uint64, d float64) {
x := *(*uint64)(unsafe.Pointer(&d))
xhi := uint32(x>>32)&0xfffff | 0x100000
xlo := uint32(x)
sh := 1075 - int32(uint32(x>>52)&0x7ff)
var ylo, yhi uint32
if sh >= 0 {
sh := uint32(sh)
/* v = (hi||lo) >> sh */
if sh < 32 {
if sh == 0 {
ylo = xlo
yhi = xhi
} else {
ylo = xlo>>sh | xhi<<(32-sh)
yhi = xhi >> sh
}
} else {
if sh == 32 {
ylo = xhi
} else if sh < 64 {
ylo = xhi >> (sh - 32)
}
}
} else {
/* v = (hi||lo) << -sh */
sh := uint32(-sh)
if sh <= 11 {
ylo = xlo << sh
yhi = xhi<<sh | xlo>>(32-sh)
} else {
/* overflow */
yhi = uint32(d) /* causes something awful */
}
}
if x&sign64 != 0 {
if ylo != 0 {
ylo = -ylo
yhi = ^yhi
} else {
yhi = -yhi
}
}
*y = uint64(yhi)<<32 | uint64(ylo)
}
func uint64div(n, d uint64) uint64 {
// Check for 32 bit operands
if uint32(n>>32) == 0 && uint32(d>>32) == 0 {
if uint32(d) == 0 {
panicdivide()
}
return uint64(uint32(n) / uint32(d))
}
q, _ := dodiv(n, d)
return q
}
func uint64mod(n, d uint64) uint64 {
// Check for 32 bit operands
if uint32(n>>32) == 0 && uint32(d>>32) == 0 {
if uint32(d) == 0 {
panicdivide()
}
return uint64(uint32(n) % uint32(d))
}
_, r := dodiv(n, d)
return r
}
func int64div(n, d int64) int64 {
// Check for 32 bit operands
if int64(int32(n)) == n && int64(int32(d)) == d {
if int32(n) == -0x80000000 && int32(d) == -1 {
// special case: 32-bit -0x80000000 / -1 = -0x80000000,
// but 64-bit -0x80000000 / -1 = 0x80000000.
return 0x80000000
}
if int32(d) == 0 {
panicdivide()
}
return int64(int32(n) / int32(d))
}
nneg := n < 0
dneg := d < 0
if nneg {
n = -n
}
if dneg {
d = -d
}
uq, _ := dodiv(uint64(n), uint64(d))
q := int64(uq)
if nneg != dneg {
q = -q
}
return q
}
//go:nosplit
func int64mod(n, d int64) int64 {
// Check for 32 bit operands
if int64(int32(n)) == n && int64(int32(d)) == d {
if int32(d) == 0 {
panicdivide()
}
return int64(int32(n) % int32(d))
}
nneg := n < 0
if nneg {
n = -n
}
if d < 0 {
d = -d
}
_, ur := dodiv(uint64(n), uint64(d))
r := int64(ur)
if nneg {
r = -r
}
return r
}
//go:noescape
func _mul64by32(lo64 *uint64, a uint64, b uint32) (hi32 uint32)
//go:noescape
func _div64by32(a uint64, b uint32, r *uint32) (q uint32)
//go:nosplit
func dodiv(n, d uint64) (q, r uint64) {
if GOARCH == "arm" {
// arm doesn't have a division instruction, so
// slowdodiv is the best that we can do.
return slowdodiv(n, d)
}
if GOARCH == "mips" || GOARCH == "mipsle" {
// No _div64by32 on mips and using only _mul64by32 doesn't bring much benefit
return slowdodiv(n, d)
}
if d > n {
return 0, n
}
if uint32(d>>32) != 0 {
t := uint32(n>>32) / uint32(d>>32)
var lo64 uint64
hi32 := _mul64by32(&lo64, d, t)
if hi32 != 0 || lo64 > n {
return slowdodiv(n, d)
}
return uint64(t), n - lo64
}
// d is 32 bit
var qhi uint32
if uint32(n>>32) >= uint32(d) {
if uint32(d) == 0 {
panicdivide()
}
qhi = uint32(n>>32) / uint32(d)
n -= uint64(uint32(d)*qhi) << 32
} else {
qhi = 0
}
var rlo uint32
qlo := _div64by32(n, uint32(d), &rlo)
return uint64(qhi)<<32 + uint64(qlo), uint64(rlo)
}
//go:nosplit
func slowdodiv(n, d uint64) (q, r uint64) {
if d == 0 {
panicdivide()
}
// Set up the divisor and find the number of iterations needed.
capn := n
if n >= sign64 {
capn = sign64
}
i := 0
for d < capn {
d <<= 1
i++
}
for ; i >= 0; i-- {
q <<= 1
if n >= d {
n -= d
q |= 1
}
d >>= 1
}
return q, n
}
// Floating point control word values.
// Bits 0-5 are bits to disable floating-point exceptions.
// Bits 8-9 are the precision control:
//
// 0 = single precision a.k.a. float32
// 2 = double precision a.k.a. float64
//
// Bits 10-11 are the rounding mode:
//
// 0 = round to nearest (even on a tie)
// 3 = round toward zero
var (
controlWord64 uint16 = 0x3f + 2<<8 + 0<<10
controlWord64trunc uint16 = 0x3f + 2<<8 + 3<<10
)
|