1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
|
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"runtime/internal/atomic"
"unsafe"
)
// A Pinner is a set of Go objects each pinned to a fixed location in memory. The
// [Pinner.Pin] method pins one object, while [Pinner.Unpin] unpins all pinned
// objects. See their comments for more information.
type Pinner struct {
*pinner
}
// Pin pins a Go object, preventing it from being moved or freed by the garbage
// collector until the [Pinner.Unpin] method has been called.
//
// A pointer to a pinned object can be directly stored in C memory or can be
// contained in Go memory passed to C functions. If the pinned object itself
// contains pointers to Go objects, these objects must be pinned separately if they
// are going to be accessed from C code.
//
// The argument must be a pointer of any type or an [unsafe.Pointer].
// It's safe to call Pin on non-Go pointers, in which case Pin will do nothing.
func (p *Pinner) Pin(pointer any) {
if p.pinner == nil {
// Check the pinner cache first.
mp := acquirem()
if pp := mp.p.ptr(); pp != nil {
p.pinner = pp.pinnerCache
pp.pinnerCache = nil
}
releasem(mp)
if p.pinner == nil {
// Didn't get anything from the pinner cache.
p.pinner = new(pinner)
p.refs = p.refStore[:0]
// We set this finalizer once and never clear it. Thus, if the
// pinner gets cached, we'll reuse it, along with its finalizer.
// This lets us avoid the relatively expensive SetFinalizer call
// when reusing from the cache. The finalizer however has to be
// resilient to an empty pinner being finalized, which is done
// by checking p.refs' length.
SetFinalizer(p.pinner, func(i *pinner) {
if len(i.refs) != 0 {
i.unpin() // only required to make the test idempotent
pinnerLeakPanic()
}
})
}
}
ptr := pinnerGetPtr(&pointer)
if setPinned(ptr, true) {
p.refs = append(p.refs, ptr)
}
}
// Unpin unpins all pinned objects of the [Pinner].
func (p *Pinner) Unpin() {
p.pinner.unpin()
mp := acquirem()
if pp := mp.p.ptr(); pp != nil && pp.pinnerCache == nil {
// Put the pinner back in the cache, but only if the
// cache is empty. If application code is reusing Pinners
// on its own, we want to leave the backing store in place
// so reuse is more efficient.
pp.pinnerCache = p.pinner
p.pinner = nil
}
releasem(mp)
}
const (
pinnerSize = 64
pinnerRefStoreSize = (pinnerSize - unsafe.Sizeof([]unsafe.Pointer{})) / unsafe.Sizeof(unsafe.Pointer(nil))
)
type pinner struct {
refs []unsafe.Pointer
refStore [pinnerRefStoreSize]unsafe.Pointer
}
func (p *pinner) unpin() {
if p == nil || p.refs == nil {
return
}
for i := range p.refs {
setPinned(p.refs[i], false)
}
// The following two lines make all pointers to references
// in p.refs unreachable, either by deleting them or dropping
// p.refs' backing store (if it was not backed by refStore).
p.refStore = [pinnerRefStoreSize]unsafe.Pointer{}
p.refs = p.refStore[:0]
}
func pinnerGetPtr(i *any) unsafe.Pointer {
e := efaceOf(i)
etyp := e._type
if etyp == nil {
panic(errorString("runtime.Pinner: argument is nil"))
}
if kind := etyp.Kind_ & kindMask; kind != kindPtr && kind != kindUnsafePointer {
panic(errorString("runtime.Pinner: argument is not a pointer: " + toRType(etyp).string()))
}
if inUserArenaChunk(uintptr(e.data)) {
// Arena-allocated objects are not eligible for pinning.
panic(errorString("runtime.Pinner: object was allocated into an arena"))
}
return e.data
}
// isPinned checks if a Go pointer is pinned.
// nosplit, because it's called from nosplit code in cgocheck.
//
//go:nosplit
func isPinned(ptr unsafe.Pointer) bool {
span := spanOfHeap(uintptr(ptr))
if span == nil {
// this code is only called for Go pointer, so this must be a
// linker-allocated global object.
return true
}
pinnerBits := span.getPinnerBits()
// these pinnerBits might get unlinked by a concurrently running sweep, but
// that's OK because gcBits don't get cleared until the following GC cycle
// (nextMarkBitArenaEpoch)
if pinnerBits == nil {
return false
}
objIndex := span.objIndex(uintptr(ptr))
pinState := pinnerBits.ofObject(objIndex)
KeepAlive(ptr) // make sure ptr is alive until we are done so the span can't be freed
return pinState.isPinned()
}
// setPinned marks or unmarks a Go pointer as pinned, when the ptr is a Go pointer.
// It will be ignored while try to pin a non-Go pointer,
// and it will be panic while try to unpin a non-Go pointer,
// which should not happen in normal usage.
func setPinned(ptr unsafe.Pointer, pin bool) bool {
span := spanOfHeap(uintptr(ptr))
if span == nil {
if !pin {
panic(errorString("tried to unpin non-Go pointer"))
}
// This is a linker-allocated, zero size object or other object,
// nothing to do, silently ignore it.
return false
}
// ensure that the span is swept, b/c sweeping accesses the specials list
// w/o locks.
mp := acquirem()
span.ensureSwept()
KeepAlive(ptr) // make sure ptr is still alive after span is swept
objIndex := span.objIndex(uintptr(ptr))
lock(&span.speciallock) // guard against concurrent calls of setPinned on same span
pinnerBits := span.getPinnerBits()
if pinnerBits == nil {
pinnerBits = span.newPinnerBits()
span.setPinnerBits(pinnerBits)
}
pinState := pinnerBits.ofObject(objIndex)
if pin {
if pinState.isPinned() {
// multiple pins on same object, set multipin bit
pinState.setMultiPinned(true)
// and increase the pin counter
// TODO(mknyszek): investigate if systemstack is necessary here
systemstack(func() {
offset := objIndex * span.elemsize
span.incPinCounter(offset)
})
} else {
// set pin bit
pinState.setPinned(true)
}
} else {
// unpin
if pinState.isPinned() {
if pinState.isMultiPinned() {
var exists bool
// TODO(mknyszek): investigate if systemstack is necessary here
systemstack(func() {
offset := objIndex * span.elemsize
exists = span.decPinCounter(offset)
})
if !exists {
// counter is 0, clear multipin bit
pinState.setMultiPinned(false)
}
} else {
// no multipins recorded. unpin object.
pinState.setPinned(false)
}
} else {
// unpinning unpinned object, bail out
throw("runtime.Pinner: object already unpinned")
}
}
unlock(&span.speciallock)
releasem(mp)
return true
}
type pinState struct {
bytep *uint8
byteVal uint8
mask uint8
}
// nosplit, because it's called by isPinned, which is nosplit
//
//go:nosplit
func (v *pinState) isPinned() bool {
return (v.byteVal & v.mask) != 0
}
func (v *pinState) isMultiPinned() bool {
return (v.byteVal & (v.mask << 1)) != 0
}
func (v *pinState) setPinned(val bool) {
v.set(val, false)
}
func (v *pinState) setMultiPinned(val bool) {
v.set(val, true)
}
// set sets the pin bit of the pinState to val. If multipin is true, it
// sets/unsets the multipin bit instead.
func (v *pinState) set(val bool, multipin bool) {
mask := v.mask
if multipin {
mask <<= 1
}
if val {
atomic.Or8(v.bytep, mask)
} else {
atomic.And8(v.bytep, ^mask)
}
}
// pinnerBits is the same type as gcBits but has different methods.
type pinnerBits gcBits
// ofObject returns the pinState of the n'th object.
// nosplit, because it's called by isPinned, which is nosplit
//
//go:nosplit
func (p *pinnerBits) ofObject(n uintptr) pinState {
bytep, mask := (*gcBits)(p).bitp(n * 2)
byteVal := atomic.Load8(bytep)
return pinState{bytep, byteVal, mask}
}
func (s *mspan) pinnerBitSize() uintptr {
return divRoundUp(uintptr(s.nelems)*2, 8)
}
// newPinnerBits returns a pointer to 8 byte aligned bytes to be used for this
// span's pinner bits. newPinneBits is used to mark objects that are pinned.
// They are copied when the span is swept.
func (s *mspan) newPinnerBits() *pinnerBits {
return (*pinnerBits)(newMarkBits(uintptr(s.nelems) * 2))
}
// nosplit, because it's called by isPinned, which is nosplit
//
//go:nosplit
func (s *mspan) getPinnerBits() *pinnerBits {
return (*pinnerBits)(atomic.Loadp(unsafe.Pointer(&s.pinnerBits)))
}
func (s *mspan) setPinnerBits(p *pinnerBits) {
atomicstorep(unsafe.Pointer(&s.pinnerBits), unsafe.Pointer(p))
}
// refreshPinnerBits replaces pinnerBits with a fresh copy in the arenas for the
// next GC cycle. If it does not contain any pinned objects, pinnerBits of the
// span is set to nil.
func (s *mspan) refreshPinnerBits() {
p := s.getPinnerBits()
if p == nil {
return
}
hasPins := false
bytes := alignUp(s.pinnerBitSize(), 8)
// Iterate over each 8-byte chunk and check for pins. Note that
// newPinnerBits guarantees that pinnerBits will be 8-byte aligned, so we
// don't have to worry about edge cases, irrelevant bits will simply be
// zero.
for _, x := range unsafe.Slice((*uint64)(unsafe.Pointer(&p.x)), bytes/8) {
if x != 0 {
hasPins = true
break
}
}
if hasPins {
newPinnerBits := s.newPinnerBits()
memmove(unsafe.Pointer(&newPinnerBits.x), unsafe.Pointer(&p.x), bytes)
s.setPinnerBits(newPinnerBits)
} else {
s.setPinnerBits(nil)
}
}
// incPinCounter is only called for multiple pins of the same object and records
// the _additional_ pins.
func (span *mspan) incPinCounter(offset uintptr) {
var rec *specialPinCounter
ref, exists := span.specialFindSplicePoint(offset, _KindSpecialPinCounter)
if !exists {
lock(&mheap_.speciallock)
rec = (*specialPinCounter)(mheap_.specialPinCounterAlloc.alloc())
unlock(&mheap_.speciallock)
// splice in record, fill in offset.
rec.special.offset = uint16(offset)
rec.special.kind = _KindSpecialPinCounter
rec.special.next = *ref
*ref = (*special)(unsafe.Pointer(rec))
spanHasSpecials(span)
} else {
rec = (*specialPinCounter)(unsafe.Pointer(*ref))
}
rec.counter++
}
// decPinCounter decreases the counter. If the counter reaches 0, the counter
// special is deleted and false is returned. Otherwise true is returned.
func (span *mspan) decPinCounter(offset uintptr) bool {
ref, exists := span.specialFindSplicePoint(offset, _KindSpecialPinCounter)
if !exists {
throw("runtime.Pinner: decreased non-existing pin counter")
}
counter := (*specialPinCounter)(unsafe.Pointer(*ref))
counter.counter--
if counter.counter == 0 {
*ref = counter.special.next
if span.specials == nil {
spanHasNoSpecials(span)
}
lock(&mheap_.speciallock)
mheap_.specialPinCounterAlloc.free(unsafe.Pointer(counter))
unlock(&mheap_.speciallock)
return false
}
return true
}
// only for tests
func pinnerGetPinCounter(addr unsafe.Pointer) *uintptr {
_, span, objIndex := findObject(uintptr(addr), 0, 0)
offset := objIndex * span.elemsize
t, exists := span.specialFindSplicePoint(offset, _KindSpecialPinCounter)
if !exists {
return nil
}
counter := (*specialPinCounter)(unsafe.Pointer(*t))
return &counter.counter
}
// to be able to test that the GC panics when a pinned pointer is leaking, this
// panic function is a variable, that can be overwritten by a test.
var pinnerLeakPanic = func() {
panic(errorString("runtime.Pinner: found leaking pinned pointer; forgot to call Unpin()?"))
}
|