1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
|
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build goexperiment.allocheaders
// Garbage collector: type and heap bitmaps.
//
// Stack, data, and bss bitmaps
//
// Stack frames and global variables in the data and bss sections are
// described by bitmaps with 1 bit per pointer-sized word. A "1" bit
// means the word is a live pointer to be visited by the GC (referred to
// as "pointer"). A "0" bit means the word should be ignored by GC
// (referred to as "scalar", though it could be a dead pointer value).
//
// Heap bitmaps
//
// The heap bitmap comprises 1 bit for each pointer-sized word in the heap,
// recording whether a pointer is stored in that word or not. This bitmap
// is stored at the end of a span for small objects and is unrolled at
// runtime from type metadata for all larger objects. Objects without
// pointers have neither a bitmap nor associated type metadata.
//
// Bits in all cases correspond to words in little-endian order.
//
// For small objects, if s is the mspan for the span starting at "start",
// then s.heapBits() returns a slice containing the bitmap for the whole span.
// That is, s.heapBits()[0] holds the goarch.PtrSize*8 bits for the first
// goarch.PtrSize*8 words from "start" through "start+63*ptrSize" in the span.
// On a related note, small objects are always small enough that their bitmap
// fits in goarch.PtrSize*8 bits, so writing out bitmap data takes two bitmap
// writes at most (because object boundaries don't generally lie on
// s.heapBits()[i] boundaries).
//
// For larger objects, if t is the type for the object starting at "start",
// within some span whose mspan is s, then the bitmap at t.GCData is "tiled"
// from "start" through "start+s.elemsize".
// Specifically, the first bit of t.GCData corresponds to the word at "start",
// the second to the word after "start", and so on up to t.PtrBytes. At t.PtrBytes,
// we skip to "start+t.Size_" and begin again from there. This process is
// repeated until we hit "start+s.elemsize".
// This tiling algorithm supports array data, since the type always refers to
// the element type of the array. Single objects are considered the same as
// single-element arrays.
// The tiling algorithm may scan data past the end of the compiler-recognized
// object, but any unused data within the allocation slot (i.e. within s.elemsize)
// is zeroed, so the GC just observes nil pointers.
// Note that this "tiled" bitmap isn't stored anywhere; it is generated on-the-fly.
//
// For objects without their own span, the type metadata is stored in the first
// word before the object at the beginning of the allocation slot. For objects
// with their own span, the type metadata is stored in the mspan.
//
// The bitmap for small unallocated objects in scannable spans is not maintained
// (can be junk).
package runtime
import (
"internal/abi"
"internal/goarch"
"runtime/internal/sys"
"unsafe"
)
const (
// A malloc header is functionally a single type pointer, but
// we need to use 8 here to ensure 8-byte alignment of allocations
// on 32-bit platforms. It's wasteful, but a lot of code relies on
// 8-byte alignment for 8-byte atomics.
mallocHeaderSize = 8
// The minimum object size that has a malloc header, exclusive.
//
// The size of this value controls overheads from the malloc header.
// The minimum size is bound by writeHeapBitsSmall, which assumes that the
// pointer bitmap for objects of a size smaller than this doesn't cross
// more than one pointer-word boundary. This sets an upper-bound on this
// value at the number of bits in a uintptr, multiplied by the pointer
// size in bytes.
//
// We choose a value here that has a natural cutover point in terms of memory
// overheads. This value just happens to be the maximum possible value this
// can be.
//
// A span with heap bits in it will have 128 bytes of heap bits on 64-bit
// platforms, and 256 bytes of heap bits on 32-bit platforms. The first size
// class where malloc headers match this overhead for 64-bit platforms is
// 512 bytes (8 KiB / 512 bytes * 8 bytes-per-header = 128 bytes of overhead).
// On 32-bit platforms, this same point is the 256 byte size class
// (8 KiB / 256 bytes * 8 bytes-per-header = 256 bytes of overhead).
//
// Guaranteed to be exactly at a size class boundary. The reason this value is
// an exclusive minimum is subtle. Suppose we're allocating a 504-byte object
// and its rounded up to 512 bytes for the size class. If minSizeForMallocHeader
// is 512 and an inclusive minimum, then a comparison against minSizeForMallocHeader
// by the two values would produce different results. In other words, the comparison
// would not be invariant to size-class rounding. Eschewing this property means a
// more complex check or possibly storing additional state to determine whether a
// span has malloc headers.
minSizeForMallocHeader = goarch.PtrSize * ptrBits
)
// heapBitsInSpan returns true if the size of an object implies its ptr/scalar
// data is stored at the end of the span, and is accessible via span.heapBits.
//
// Note: this works for both rounded-up sizes (span.elemsize) and unrounded
// type sizes because minSizeForMallocHeader is guaranteed to be at a size
// class boundary.
//
//go:nosplit
func heapBitsInSpan(userSize uintptr) bool {
// N.B. minSizeForMallocHeader is an exclusive minimum so that this function is
// invariant under size-class rounding on its input.
return userSize <= minSizeForMallocHeader
}
// heapArenaPtrScalar contains the per-heapArena pointer/scalar metadata for the GC.
type heapArenaPtrScalar struct {
// N.B. This is no longer necessary with allocation headers.
}
// typePointers is an iterator over the pointers in a heap object.
//
// Iteration through this type implements the tiling algorithm described at the
// top of this file.
type typePointers struct {
// elem is the address of the current array element of type typ being iterated over.
// Objects that are not arrays are treated as single-element arrays, in which case
// this value does not change.
elem uintptr
// addr is the address the iterator is currently working from and describes
// the address of the first word referenced by mask.
addr uintptr
// mask is a bitmask where each bit corresponds to pointer-words after addr.
// Bit 0 is the pointer-word at addr, Bit 1 is the next word, and so on.
// If a bit is 1, then there is a pointer at that word.
// nextFast and next mask out bits in this mask as their pointers are processed.
mask uintptr
// typ is a pointer to the type information for the heap object's type.
// This may be nil if the object is in a span where heapBitsInSpan(span.elemsize) is true.
typ *_type
}
// typePointersOf returns an iterator over all heap pointers in the range [addr, addr+size).
//
// addr and addr+size must be in the range [span.base(), span.limit).
//
// Note: addr+size must be passed as the limit argument to the iterator's next method on
// each iteration. This slightly awkward API is to allow typePointers to be destructured
// by the compiler.
//
// nosplit because it is used during write barriers and must not be preempted.
//
//go:nosplit
func (span *mspan) typePointersOf(addr, size uintptr) typePointers {
base := span.objBase(addr)
tp := span.typePointersOfUnchecked(base)
if base == addr && size == span.elemsize {
return tp
}
return tp.fastForward(addr-tp.addr, addr+size)
}
// typePointersOfUnchecked is like typePointersOf, but assumes addr is the base
// of an allocation slot in a span (the start of the object if no header, the
// header otherwise). It returns an iterator that generates all pointers
// in the range [addr, addr+span.elemsize).
//
// nosplit because it is used during write barriers and must not be preempted.
//
//go:nosplit
func (span *mspan) typePointersOfUnchecked(addr uintptr) typePointers {
const doubleCheck = false
if doubleCheck && span.objBase(addr) != addr {
print("runtime: addr=", addr, " base=", span.objBase(addr), "\n")
throw("typePointersOfUnchecked consisting of non-base-address for object")
}
spc := span.spanclass
if spc.noscan() {
return typePointers{}
}
if heapBitsInSpan(span.elemsize) {
// Handle header-less objects.
return typePointers{elem: addr, addr: addr, mask: span.heapBitsSmallForAddr(addr)}
}
// All of these objects have a header.
var typ *_type
if spc.sizeclass() != 0 {
// Pull the allocation header from the first word of the object.
typ = *(**_type)(unsafe.Pointer(addr))
addr += mallocHeaderSize
} else {
typ = span.largeType
}
gcdata := typ.GCData
return typePointers{elem: addr, addr: addr, mask: readUintptr(gcdata), typ: typ}
}
// typePointersOfType is like typePointersOf, but assumes addr points to one or more
// contiguous instances of the provided type. The provided type must not be nil and
// it must not have its type metadata encoded as a gcprog.
//
// It returns an iterator that tiles typ.GCData starting from addr. It's the caller's
// responsibility to limit iteration.
//
// nosplit because its callers are nosplit and require all their callees to be nosplit.
//
//go:nosplit
func (span *mspan) typePointersOfType(typ *abi.Type, addr uintptr) typePointers {
const doubleCheck = false
if doubleCheck && (typ == nil || typ.Kind_&kindGCProg != 0) {
throw("bad type passed to typePointersOfType")
}
if span.spanclass.noscan() {
return typePointers{}
}
// Since we have the type, pretend we have a header.
gcdata := typ.GCData
return typePointers{elem: addr, addr: addr, mask: readUintptr(gcdata), typ: typ}
}
// nextFast is the fast path of next. nextFast is written to be inlineable and,
// as the name implies, fast.
//
// Callers that are performance-critical should iterate using the following
// pattern:
//
// for {
// var addr uintptr
// if tp, addr = tp.nextFast(); addr == 0 {
// if tp, addr = tp.next(limit); addr == 0 {
// break
// }
// }
// // Use addr.
// ...
// }
//
// nosplit because it is used during write barriers and must not be preempted.
//
//go:nosplit
func (tp typePointers) nextFast() (typePointers, uintptr) {
// TESTQ/JEQ
if tp.mask == 0 {
return tp, 0
}
// BSFQ
var i int
if goarch.PtrSize == 8 {
i = sys.TrailingZeros64(uint64(tp.mask))
} else {
i = sys.TrailingZeros32(uint32(tp.mask))
}
// BTCQ
tp.mask ^= uintptr(1) << (i & (ptrBits - 1))
// LEAQ (XX)(XX*8)
return tp, tp.addr + uintptr(i)*goarch.PtrSize
}
// next advances the pointers iterator, returning the updated iterator and
// the address of the next pointer.
//
// limit must be the same each time it is passed to next.
//
// nosplit because it is used during write barriers and must not be preempted.
//
//go:nosplit
func (tp typePointers) next(limit uintptr) (typePointers, uintptr) {
for {
if tp.mask != 0 {
return tp.nextFast()
}
// Stop if we don't actually have type information.
if tp.typ == nil {
return typePointers{}, 0
}
// Advance to the next element if necessary.
if tp.addr+goarch.PtrSize*ptrBits >= tp.elem+tp.typ.PtrBytes {
tp.elem += tp.typ.Size_
tp.addr = tp.elem
} else {
tp.addr += ptrBits * goarch.PtrSize
}
// Check if we've exceeded the limit with the last update.
if tp.addr >= limit {
return typePointers{}, 0
}
// Grab more bits and try again.
tp.mask = readUintptr(addb(tp.typ.GCData, (tp.addr-tp.elem)/goarch.PtrSize/8))
if tp.addr+goarch.PtrSize*ptrBits > limit {
bits := (tp.addr + goarch.PtrSize*ptrBits - limit) / goarch.PtrSize
tp.mask &^= ((1 << (bits)) - 1) << (ptrBits - bits)
}
}
}
// fastForward moves the iterator forward by n bytes. n must be a multiple
// of goarch.PtrSize. limit must be the same limit passed to next for this
// iterator.
//
// nosplit because it is used during write barriers and must not be preempted.
//
//go:nosplit
func (tp typePointers) fastForward(n, limit uintptr) typePointers {
// Basic bounds check.
target := tp.addr + n
if target >= limit {
return typePointers{}
}
if tp.typ == nil {
// Handle small objects.
// Clear any bits before the target address.
tp.mask &^= (1 << ((target - tp.addr) / goarch.PtrSize)) - 1
// Clear any bits past the limit.
if tp.addr+goarch.PtrSize*ptrBits > limit {
bits := (tp.addr + goarch.PtrSize*ptrBits - limit) / goarch.PtrSize
tp.mask &^= ((1 << (bits)) - 1) << (ptrBits - bits)
}
return tp
}
// Move up elem and addr.
// Offsets within an element are always at a ptrBits*goarch.PtrSize boundary.
if n >= tp.typ.Size_ {
// elem needs to be moved to the element containing
// tp.addr + n.
oldelem := tp.elem
tp.elem += (tp.addr - tp.elem + n) / tp.typ.Size_ * tp.typ.Size_
tp.addr = tp.elem + alignDown(n-(tp.elem-oldelem), ptrBits*goarch.PtrSize)
} else {
tp.addr += alignDown(n, ptrBits*goarch.PtrSize)
}
if tp.addr-tp.elem >= tp.typ.PtrBytes {
// We're starting in the non-pointer area of an array.
// Move up to the next element.
tp.elem += tp.typ.Size_
tp.addr = tp.elem
tp.mask = readUintptr(tp.typ.GCData)
// We may have exceeded the limit after this. Bail just like next does.
if tp.addr >= limit {
return typePointers{}
}
} else {
// Grab the mask, but then clear any bits before the target address and any
// bits over the limit.
tp.mask = readUintptr(addb(tp.typ.GCData, (tp.addr-tp.elem)/goarch.PtrSize/8))
tp.mask &^= (1 << ((target - tp.addr) / goarch.PtrSize)) - 1
}
if tp.addr+goarch.PtrSize*ptrBits > limit {
bits := (tp.addr + goarch.PtrSize*ptrBits - limit) / goarch.PtrSize
tp.mask &^= ((1 << (bits)) - 1) << (ptrBits - bits)
}
return tp
}
// objBase returns the base pointer for the object containing addr in span.
//
// Assumes that addr points into a valid part of span (span.base() <= addr < span.limit).
//
//go:nosplit
func (span *mspan) objBase(addr uintptr) uintptr {
return span.base() + span.objIndex(addr)*span.elemsize
}
// bulkBarrierPreWrite executes a write barrier
// for every pointer slot in the memory range [src, src+size),
// using pointer/scalar information from [dst, dst+size).
// This executes the write barriers necessary before a memmove.
// src, dst, and size must be pointer-aligned.
// The range [dst, dst+size) must lie within a single object.
// It does not perform the actual writes.
//
// As a special case, src == 0 indicates that this is being used for a
// memclr. bulkBarrierPreWrite will pass 0 for the src of each write
// barrier.
//
// Callers should call bulkBarrierPreWrite immediately before
// calling memmove(dst, src, size). This function is marked nosplit
// to avoid being preempted; the GC must not stop the goroutine
// between the memmove and the execution of the barriers.
// The caller is also responsible for cgo pointer checks if this
// may be writing Go pointers into non-Go memory.
//
// Pointer data is not maintained for allocations containing
// no pointers at all; any caller of bulkBarrierPreWrite must first
// make sure the underlying allocation contains pointers, usually
// by checking typ.PtrBytes.
//
// The typ argument is the type of the space at src and dst (and the
// element type if src and dst refer to arrays) and it is optional.
// If typ is nil, the barrier will still behave as expected and typ
// is used purely as an optimization. However, it must be used with
// care.
//
// If typ is not nil, then src and dst must point to one or more values
// of type typ. The caller must ensure that the ranges [src, src+size)
// and [dst, dst+size) refer to one or more whole values of type src and
// dst (leaving off the pointerless tail of the space is OK). If this
// precondition is not followed, this function will fail to scan the
// right pointers.
//
// When in doubt, pass nil for typ. That is safe and will always work.
//
// Callers must perform cgo checks if goexperiment.CgoCheck2.
//
//go:nosplit
func bulkBarrierPreWrite(dst, src, size uintptr, typ *abi.Type) {
if (dst|src|size)&(goarch.PtrSize-1) != 0 {
throw("bulkBarrierPreWrite: unaligned arguments")
}
if !writeBarrier.enabled {
return
}
s := spanOf(dst)
if s == nil {
// If dst is a global, use the data or BSS bitmaps to
// execute write barriers.
for _, datap := range activeModules() {
if datap.data <= dst && dst < datap.edata {
bulkBarrierBitmap(dst, src, size, dst-datap.data, datap.gcdatamask.bytedata)
return
}
}
for _, datap := range activeModules() {
if datap.bss <= dst && dst < datap.ebss {
bulkBarrierBitmap(dst, src, size, dst-datap.bss, datap.gcbssmask.bytedata)
return
}
}
return
} else if s.state.get() != mSpanInUse || dst < s.base() || s.limit <= dst {
// dst was heap memory at some point, but isn't now.
// It can't be a global. It must be either our stack,
// or in the case of direct channel sends, it could be
// another stack. Either way, no need for barriers.
// This will also catch if dst is in a freed span,
// though that should never have.
return
}
buf := &getg().m.p.ptr().wbBuf
// Double-check that the bitmaps generated in the two possible paths match.
const doubleCheck = false
if doubleCheck {
doubleCheckTypePointersOfType(s, typ, dst, size)
}
var tp typePointers
if typ != nil && typ.Kind_&kindGCProg == 0 {
tp = s.typePointersOfType(typ, dst)
} else {
tp = s.typePointersOf(dst, size)
}
if src == 0 {
for {
var addr uintptr
if tp, addr = tp.next(dst + size); addr == 0 {
break
}
dstx := (*uintptr)(unsafe.Pointer(addr))
p := buf.get1()
p[0] = *dstx
}
} else {
for {
var addr uintptr
if tp, addr = tp.next(dst + size); addr == 0 {
break
}
dstx := (*uintptr)(unsafe.Pointer(addr))
srcx := (*uintptr)(unsafe.Pointer(src + (addr - dst)))
p := buf.get2()
p[0] = *dstx
p[1] = *srcx
}
}
}
// bulkBarrierPreWriteSrcOnly is like bulkBarrierPreWrite but
// does not execute write barriers for [dst, dst+size).
//
// In addition to the requirements of bulkBarrierPreWrite
// callers need to ensure [dst, dst+size) is zeroed.
//
// This is used for special cases where e.g. dst was just
// created and zeroed with malloc.
//
// The type of the space can be provided purely as an optimization.
// See bulkBarrierPreWrite's comment for more details -- use this
// optimization with great care.
//
//go:nosplit
func bulkBarrierPreWriteSrcOnly(dst, src, size uintptr, typ *abi.Type) {
if (dst|src|size)&(goarch.PtrSize-1) != 0 {
throw("bulkBarrierPreWrite: unaligned arguments")
}
if !writeBarrier.enabled {
return
}
buf := &getg().m.p.ptr().wbBuf
s := spanOf(dst)
// Double-check that the bitmaps generated in the two possible paths match.
const doubleCheck = false
if doubleCheck {
doubleCheckTypePointersOfType(s, typ, dst, size)
}
var tp typePointers
if typ != nil && typ.Kind_&kindGCProg == 0 {
tp = s.typePointersOfType(typ, dst)
} else {
tp = s.typePointersOf(dst, size)
}
for {
var addr uintptr
if tp, addr = tp.next(dst + size); addr == 0 {
break
}
srcx := (*uintptr)(unsafe.Pointer(addr - dst + src))
p := buf.get1()
p[0] = *srcx
}
}
// initHeapBits initializes the heap bitmap for a span.
//
// TODO(mknyszek): This should set the heap bits for single pointer
// allocations eagerly to avoid calling heapSetType at allocation time,
// just to write one bit.
func (s *mspan) initHeapBits(forceClear bool) {
if (!s.spanclass.noscan() && heapBitsInSpan(s.elemsize)) || s.isUserArenaChunk {
b := s.heapBits()
for i := range b {
b[i] = 0
}
}
}
// bswapIfBigEndian swaps the byte order of the uintptr on goarch.BigEndian platforms,
// and leaves it alone elsewhere.
func bswapIfBigEndian(x uintptr) uintptr {
if goarch.BigEndian {
if goarch.PtrSize == 8 {
return uintptr(sys.Bswap64(uint64(x)))
}
return uintptr(sys.Bswap32(uint32(x)))
}
return x
}
type writeUserArenaHeapBits struct {
offset uintptr // offset in span that the low bit of mask represents the pointer state of.
mask uintptr // some pointer bits starting at the address addr.
valid uintptr // number of bits in buf that are valid (including low)
low uintptr // number of low-order bits to not overwrite
}
func (s *mspan) writeUserArenaHeapBits(addr uintptr) (h writeUserArenaHeapBits) {
offset := addr - s.base()
// We start writing bits maybe in the middle of a heap bitmap word.
// Remember how many bits into the word we started, so we can be sure
// not to overwrite the previous bits.
h.low = offset / goarch.PtrSize % ptrBits
// round down to heap word that starts the bitmap word.
h.offset = offset - h.low*goarch.PtrSize
// We don't have any bits yet.
h.mask = 0
h.valid = h.low
return
}
// write appends the pointerness of the next valid pointer slots
// using the low valid bits of bits. 1=pointer, 0=scalar.
func (h writeUserArenaHeapBits) write(s *mspan, bits, valid uintptr) writeUserArenaHeapBits {
if h.valid+valid <= ptrBits {
// Fast path - just accumulate the bits.
h.mask |= bits << h.valid
h.valid += valid
return h
}
// Too many bits to fit in this word. Write the current word
// out and move on to the next word.
data := h.mask | bits<<h.valid // mask for this word
h.mask = bits >> (ptrBits - h.valid) // leftover for next word
h.valid += valid - ptrBits // have h.valid+valid bits, writing ptrBits of them
// Flush mask to the memory bitmap.
idx := h.offset / (ptrBits * goarch.PtrSize)
m := uintptr(1)<<h.low - 1
bitmap := s.heapBits()
bitmap[idx] = bswapIfBigEndian(bswapIfBigEndian(bitmap[idx])&m | data)
// Note: no synchronization required for this write because
// the allocator has exclusive access to the page, and the bitmap
// entries are all for a single page. Also, visibility of these
// writes is guaranteed by the publication barrier in mallocgc.
// Move to next word of bitmap.
h.offset += ptrBits * goarch.PtrSize
h.low = 0
return h
}
// Add padding of size bytes.
func (h writeUserArenaHeapBits) pad(s *mspan, size uintptr) writeUserArenaHeapBits {
if size == 0 {
return h
}
words := size / goarch.PtrSize
for words > ptrBits {
h = h.write(s, 0, ptrBits)
words -= ptrBits
}
return h.write(s, 0, words)
}
// Flush the bits that have been written, and add zeros as needed
// to cover the full object [addr, addr+size).
func (h writeUserArenaHeapBits) flush(s *mspan, addr, size uintptr) {
offset := addr - s.base()
// zeros counts the number of bits needed to represent the object minus the
// number of bits we've already written. This is the number of 0 bits
// that need to be added.
zeros := (offset+size-h.offset)/goarch.PtrSize - h.valid
// Add zero bits up to the bitmap word boundary
if zeros > 0 {
z := ptrBits - h.valid
if z > zeros {
z = zeros
}
h.valid += z
zeros -= z
}
// Find word in bitmap that we're going to write.
bitmap := s.heapBits()
idx := h.offset / (ptrBits * goarch.PtrSize)
// Write remaining bits.
if h.valid != h.low {
m := uintptr(1)<<h.low - 1 // don't clear existing bits below "low"
m |= ^(uintptr(1)<<h.valid - 1) // don't clear existing bits above "valid"
bitmap[idx] = bswapIfBigEndian(bswapIfBigEndian(bitmap[idx])&m | h.mask)
}
if zeros == 0 {
return
}
// Advance to next bitmap word.
h.offset += ptrBits * goarch.PtrSize
// Continue on writing zeros for the rest of the object.
// For standard use of the ptr bits this is not required, as
// the bits are read from the beginning of the object. Some uses,
// like noscan spans, oblets, bulk write barriers, and cgocheck, might
// start mid-object, so these writes are still required.
for {
// Write zero bits.
idx := h.offset / (ptrBits * goarch.PtrSize)
if zeros < ptrBits {
bitmap[idx] = bswapIfBigEndian(bswapIfBigEndian(bitmap[idx]) &^ (uintptr(1)<<zeros - 1))
break
} else if zeros == ptrBits {
bitmap[idx] = 0
break
} else {
bitmap[idx] = 0
zeros -= ptrBits
}
h.offset += ptrBits * goarch.PtrSize
}
}
// heapBits returns the heap ptr/scalar bits stored at the end of the span for
// small object spans and heap arena spans.
//
// Note that the uintptr of each element means something different for small object
// spans and for heap arena spans. Small object spans are easy: they're never interpreted
// as anything but uintptr, so they're immune to differences in endianness. However, the
// heapBits for user arena spans is exposed through a dummy type descriptor, so the byte
// ordering needs to match the same byte ordering the compiler would emit. The compiler always
// emits the bitmap data in little endian byte ordering, so on big endian platforms these
// uintptrs will have their byte orders swapped from what they normally would be.
//
// heapBitsInSpan(span.elemsize) or span.isUserArenaChunk must be true.
//
//go:nosplit
func (span *mspan) heapBits() []uintptr {
const doubleCheck = false
if doubleCheck && !span.isUserArenaChunk {
if span.spanclass.noscan() {
throw("heapBits called for noscan")
}
if span.elemsize > minSizeForMallocHeader {
throw("heapBits called for span class that should have a malloc header")
}
}
// Find the bitmap at the end of the span.
//
// Nearly every span with heap bits is exactly one page in size. Arenas are the only exception.
if span.npages == 1 {
// This will be inlined and constant-folded down.
return heapBitsSlice(span.base(), pageSize)
}
return heapBitsSlice(span.base(), span.npages*pageSize)
}
// Helper for constructing a slice for the span's heap bits.
//
//go:nosplit
func heapBitsSlice(spanBase, spanSize uintptr) []uintptr {
bitmapSize := spanSize / goarch.PtrSize / 8
elems := int(bitmapSize / goarch.PtrSize)
var sl notInHeapSlice
sl = notInHeapSlice{(*notInHeap)(unsafe.Pointer(spanBase + spanSize - bitmapSize)), elems, elems}
return *(*[]uintptr)(unsafe.Pointer(&sl))
}
// heapBitsSmallForAddr loads the heap bits for the object stored at addr from span.heapBits.
//
// addr must be the base pointer of an object in the span. heapBitsInSpan(span.elemsize)
// must be true.
//
//go:nosplit
func (span *mspan) heapBitsSmallForAddr(addr uintptr) uintptr {
spanSize := span.npages * pageSize
bitmapSize := spanSize / goarch.PtrSize / 8
hbits := (*byte)(unsafe.Pointer(span.base() + spanSize - bitmapSize))
// These objects are always small enough that their bitmaps
// fit in a single word, so just load the word or two we need.
//
// Mirrors mspan.writeHeapBitsSmall.
//
// We should be using heapBits(), but unfortunately it introduces
// both bounds checks panics and throw which causes us to exceed
// the nosplit limit in quite a few cases.
i := (addr - span.base()) / goarch.PtrSize / ptrBits
j := (addr - span.base()) / goarch.PtrSize % ptrBits
bits := span.elemsize / goarch.PtrSize
word0 := (*uintptr)(unsafe.Pointer(addb(hbits, goarch.PtrSize*(i+0))))
word1 := (*uintptr)(unsafe.Pointer(addb(hbits, goarch.PtrSize*(i+1))))
var read uintptr
if j+bits > ptrBits {
// Two reads.
bits0 := ptrBits - j
bits1 := bits - bits0
read = *word0 >> j
read |= (*word1 & ((1 << bits1) - 1)) << bits0
} else {
// One read.
read = (*word0 >> j) & ((1 << bits) - 1)
}
return read
}
// writeHeapBitsSmall writes the heap bits for small objects whose ptr/scalar data is
// stored as a bitmap at the end of the span.
//
// Assumes dataSize is <= ptrBits*goarch.PtrSize. x must be a pointer into the span.
// heapBitsInSpan(dataSize) must be true. dataSize must be >= typ.Size_.
//
//go:nosplit
func (span *mspan) writeHeapBitsSmall(x, dataSize uintptr, typ *_type) (scanSize uintptr) {
// The objects here are always really small, so a single load is sufficient.
src0 := readUintptr(typ.GCData)
// Create repetitions of the bitmap if we have a small array.
bits := span.elemsize / goarch.PtrSize
scanSize = typ.PtrBytes
src := src0
switch typ.Size_ {
case goarch.PtrSize:
src = (1 << (dataSize / goarch.PtrSize)) - 1
default:
for i := typ.Size_; i < dataSize; i += typ.Size_ {
src |= src0 << (i / goarch.PtrSize)
scanSize += typ.Size_
}
}
// Since we're never writing more than one uintptr's worth of bits, we're either going
// to do one or two writes.
dst := span.heapBits()
o := (x - span.base()) / goarch.PtrSize
i := o / ptrBits
j := o % ptrBits
if j+bits > ptrBits {
// Two writes.
bits0 := ptrBits - j
bits1 := bits - bits0
dst[i+0] = dst[i+0]&(^uintptr(0)>>bits0) | (src << j)
dst[i+1] = dst[i+1]&^((1<<bits1)-1) | (src >> bits0)
} else {
// One write.
dst[i] = (dst[i] &^ (((1 << bits) - 1) << j)) | (src << j)
}
const doubleCheck = false
if doubleCheck {
srcRead := span.heapBitsSmallForAddr(x)
if srcRead != src {
print("runtime: x=", hex(x), " i=", i, " j=", j, " bits=", bits, "\n")
print("runtime: dataSize=", dataSize, " typ.Size_=", typ.Size_, " typ.PtrBytes=", typ.PtrBytes, "\n")
print("runtime: src0=", hex(src0), " src=", hex(src), " srcRead=", hex(srcRead), "\n")
throw("bad pointer bits written for small object")
}
}
return
}
// For !goexperiment.AllocHeaders.
func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
}
// heapSetType records that the new allocation [x, x+size)
// holds in [x, x+dataSize) one or more values of type typ.
// (The number of values is given by dataSize / typ.Size.)
// If dataSize < size, the fragment [x+dataSize, x+size) is
// recorded as non-pointer data.
// It is known that the type has pointers somewhere;
// malloc does not call heapSetType when there are no pointers.
//
// There can be read-write races between heapSetType and things
// that read the heap metadata like scanobject. However, since
// heapSetType is only used for objects that have not yet been
// made reachable, readers will ignore bits being modified by this
// function. This does mean this function cannot transiently modify
// shared memory that belongs to neighboring objects. Also, on weakly-ordered
// machines, callers must execute a store/store (publication) barrier
// between calling this function and making the object reachable.
func heapSetType(x, dataSize uintptr, typ *_type, header **_type, span *mspan) (scanSize uintptr) {
const doubleCheck = false
gctyp := typ
if header == nil {
if doubleCheck && (!heapBitsInSpan(dataSize) || !heapBitsInSpan(span.elemsize)) {
throw("tried to write heap bits, but no heap bits in span")
}
// Handle the case where we have no malloc header.
scanSize = span.writeHeapBitsSmall(x, dataSize, typ)
} else {
if typ.Kind_&kindGCProg != 0 {
// Allocate space to unroll the gcprog. This space will consist of
// a dummy _type value and the unrolled gcprog. The dummy _type will
// refer to the bitmap, and the mspan will refer to the dummy _type.
if span.spanclass.sizeclass() != 0 {
throw("GCProg for type that isn't large")
}
spaceNeeded := alignUp(unsafe.Sizeof(_type{}), goarch.PtrSize)
heapBitsOff := spaceNeeded
spaceNeeded += alignUp(typ.PtrBytes/goarch.PtrSize/8, goarch.PtrSize)
npages := alignUp(spaceNeeded, pageSize) / pageSize
var progSpan *mspan
systemstack(func() {
progSpan = mheap_.allocManual(npages, spanAllocPtrScalarBits)
memclrNoHeapPointers(unsafe.Pointer(progSpan.base()), progSpan.npages*pageSize)
})
// Write a dummy _type in the new space.
//
// We only need to write size, PtrBytes, and GCData, since that's all
// the GC cares about.
gctyp = (*_type)(unsafe.Pointer(progSpan.base()))
gctyp.Size_ = typ.Size_
gctyp.PtrBytes = typ.PtrBytes
gctyp.GCData = (*byte)(add(unsafe.Pointer(progSpan.base()), heapBitsOff))
gctyp.TFlag = abi.TFlagUnrolledBitmap
// Expand the GC program into space reserved at the end of the new span.
runGCProg(addb(typ.GCData, 4), gctyp.GCData)
}
// Write out the header.
*header = gctyp
scanSize = span.elemsize
}
if doubleCheck {
doubleCheckHeapPointers(x, dataSize, gctyp, header, span)
// To exercise the less common path more often, generate
// a random interior pointer and make sure iterating from
// that point works correctly too.
maxIterBytes := span.elemsize
if header == nil {
maxIterBytes = dataSize
}
off := alignUp(uintptr(cheaprand())%dataSize, goarch.PtrSize)
size := dataSize - off
if size == 0 {
off -= goarch.PtrSize
size += goarch.PtrSize
}
interior := x + off
size -= alignDown(uintptr(cheaprand())%size, goarch.PtrSize)
if size == 0 {
size = goarch.PtrSize
}
// Round up the type to the size of the type.
size = (size + gctyp.Size_ - 1) / gctyp.Size_ * gctyp.Size_
if interior+size > x+maxIterBytes {
size = x + maxIterBytes - interior
}
doubleCheckHeapPointersInterior(x, interior, size, dataSize, gctyp, header, span)
}
return
}
func doubleCheckHeapPointers(x, dataSize uintptr, typ *_type, header **_type, span *mspan) {
// Check that scanning the full object works.
tp := span.typePointersOfUnchecked(span.objBase(x))
maxIterBytes := span.elemsize
if header == nil {
maxIterBytes = dataSize
}
bad := false
for i := uintptr(0); i < maxIterBytes; i += goarch.PtrSize {
// Compute the pointer bit we want at offset i.
want := false
if i < span.elemsize {
off := i % typ.Size_
if off < typ.PtrBytes {
j := off / goarch.PtrSize
want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0
}
}
if want {
var addr uintptr
tp, addr = tp.next(x + span.elemsize)
if addr == 0 {
println("runtime: found bad iterator")
}
if addr != x+i {
print("runtime: addr=", hex(addr), " x+i=", hex(x+i), "\n")
bad = true
}
}
}
if !bad {
var addr uintptr
tp, addr = tp.next(x + span.elemsize)
if addr == 0 {
return
}
println("runtime: extra pointer:", hex(addr))
}
print("runtime: hasHeader=", header != nil, " typ.Size_=", typ.Size_, " hasGCProg=", typ.Kind_&kindGCProg != 0, "\n")
print("runtime: x=", hex(x), " dataSize=", dataSize, " elemsize=", span.elemsize, "\n")
print("runtime: typ=", unsafe.Pointer(typ), " typ.PtrBytes=", typ.PtrBytes, "\n")
print("runtime: limit=", hex(x+span.elemsize), "\n")
tp = span.typePointersOfUnchecked(x)
dumpTypePointers(tp)
for {
var addr uintptr
if tp, addr = tp.next(x + span.elemsize); addr == 0 {
println("runtime: would've stopped here")
dumpTypePointers(tp)
break
}
print("runtime: addr=", hex(addr), "\n")
dumpTypePointers(tp)
}
throw("heapSetType: pointer entry not correct")
}
func doubleCheckHeapPointersInterior(x, interior, size, dataSize uintptr, typ *_type, header **_type, span *mspan) {
bad := false
if interior < x {
print("runtime: interior=", hex(interior), " x=", hex(x), "\n")
throw("found bad interior pointer")
}
off := interior - x
tp := span.typePointersOf(interior, size)
for i := off; i < off+size; i += goarch.PtrSize {
// Compute the pointer bit we want at offset i.
want := false
if i < span.elemsize {
off := i % typ.Size_
if off < typ.PtrBytes {
j := off / goarch.PtrSize
want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0
}
}
if want {
var addr uintptr
tp, addr = tp.next(interior + size)
if addr == 0 {
println("runtime: found bad iterator")
bad = true
}
if addr != x+i {
print("runtime: addr=", hex(addr), " x+i=", hex(x+i), "\n")
bad = true
}
}
}
if !bad {
var addr uintptr
tp, addr = tp.next(interior + size)
if addr == 0 {
return
}
println("runtime: extra pointer:", hex(addr))
}
print("runtime: hasHeader=", header != nil, " typ.Size_=", typ.Size_, "\n")
print("runtime: x=", hex(x), " dataSize=", dataSize, " elemsize=", span.elemsize, " interior=", hex(interior), " size=", size, "\n")
print("runtime: limit=", hex(interior+size), "\n")
tp = span.typePointersOf(interior, size)
dumpTypePointers(tp)
for {
var addr uintptr
if tp, addr = tp.next(interior + size); addr == 0 {
println("runtime: would've stopped here")
dumpTypePointers(tp)
break
}
print("runtime: addr=", hex(addr), "\n")
dumpTypePointers(tp)
}
print("runtime: want: ")
for i := off; i < off+size; i += goarch.PtrSize {
// Compute the pointer bit we want at offset i.
want := false
if i < dataSize {
off := i % typ.Size_
if off < typ.PtrBytes {
j := off / goarch.PtrSize
want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0
}
}
if want {
print("1")
} else {
print("0")
}
}
println()
throw("heapSetType: pointer entry not correct")
}
//go:nosplit
func doubleCheckTypePointersOfType(s *mspan, typ *_type, addr, size uintptr) {
if typ == nil || typ.Kind_&kindGCProg != 0 {
return
}
if typ.Kind_&kindMask == kindInterface {
// Interfaces are unfortunately inconsistently handled
// when it comes to the type pointer, so it's easy to
// produce a lot of false positives here.
return
}
tp0 := s.typePointersOfType(typ, addr)
tp1 := s.typePointersOf(addr, size)
failed := false
for {
var addr0, addr1 uintptr
tp0, addr0 = tp0.next(addr + size)
tp1, addr1 = tp1.next(addr + size)
if addr0 != addr1 {
failed = true
break
}
if addr0 == 0 {
break
}
}
if failed {
tp0 := s.typePointersOfType(typ, addr)
tp1 := s.typePointersOf(addr, size)
print("runtime: addr=", hex(addr), " size=", size, "\n")
print("runtime: type=", toRType(typ).string(), "\n")
dumpTypePointers(tp0)
dumpTypePointers(tp1)
for {
var addr0, addr1 uintptr
tp0, addr0 = tp0.next(addr + size)
tp1, addr1 = tp1.next(addr + size)
print("runtime: ", hex(addr0), " ", hex(addr1), "\n")
if addr0 == 0 && addr1 == 0 {
break
}
}
throw("mismatch between typePointersOfType and typePointersOf")
}
}
func dumpTypePointers(tp typePointers) {
print("runtime: tp.elem=", hex(tp.elem), " tp.typ=", unsafe.Pointer(tp.typ), "\n")
print("runtime: tp.addr=", hex(tp.addr), " tp.mask=")
for i := uintptr(0); i < ptrBits; i++ {
if tp.mask&(uintptr(1)<<i) != 0 {
print("1")
} else {
print("0")
}
}
println()
}
// Testing.
// Returns GC type info for the pointer stored in ep for testing.
// If ep points to the stack, only static live information will be returned
// (i.e. not for objects which are only dynamically live stack objects).
func getgcmask(ep any) (mask []byte) {
e := *efaceOf(&ep)
p := e.data
t := e._type
var et *_type
if t.Kind_&kindMask != kindPtr {
throw("bad argument to getgcmask: expected type to be a pointer to the value type whose mask is being queried")
}
et = (*ptrtype)(unsafe.Pointer(t)).Elem
// data or bss
for _, datap := range activeModules() {
// data
if datap.data <= uintptr(p) && uintptr(p) < datap.edata {
bitmap := datap.gcdatamask.bytedata
n := et.Size_
mask = make([]byte, n/goarch.PtrSize)
for i := uintptr(0); i < n; i += goarch.PtrSize {
off := (uintptr(p) + i - datap.data) / goarch.PtrSize
mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
}
return
}
// bss
if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss {
bitmap := datap.gcbssmask.bytedata
n := et.Size_
mask = make([]byte, n/goarch.PtrSize)
for i := uintptr(0); i < n; i += goarch.PtrSize {
off := (uintptr(p) + i - datap.bss) / goarch.PtrSize
mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
}
return
}
}
// heap
if base, s, _ := findObject(uintptr(p), 0, 0); base != 0 {
if s.spanclass.noscan() {
return nil
}
limit := base + s.elemsize
// Move the base up to the iterator's start, because
// we want to hide evidence of a malloc header from the
// caller.
tp := s.typePointersOfUnchecked(base)
base = tp.addr
// Unroll the full bitmap the GC would actually observe.
maskFromHeap := make([]byte, (limit-base)/goarch.PtrSize)
for {
var addr uintptr
if tp, addr = tp.next(limit); addr == 0 {
break
}
maskFromHeap[(addr-base)/goarch.PtrSize] = 1
}
// Double-check that every part of the ptr/scalar we're not
// showing the caller is zeroed. This keeps us honest that
// that information is actually irrelevant.
for i := limit; i < s.elemsize; i++ {
if *(*byte)(unsafe.Pointer(i)) != 0 {
throw("found non-zeroed tail of allocation")
}
}
// Callers (and a check we're about to run) expects this mask
// to end at the last pointer.
for len(maskFromHeap) > 0 && maskFromHeap[len(maskFromHeap)-1] == 0 {
maskFromHeap = maskFromHeap[:len(maskFromHeap)-1]
}
if et.Kind_&kindGCProg == 0 {
// Unroll again, but this time from the type information.
maskFromType := make([]byte, (limit-base)/goarch.PtrSize)
tp = s.typePointersOfType(et, base)
for {
var addr uintptr
if tp, addr = tp.next(limit); addr == 0 {
break
}
maskFromType[(addr-base)/goarch.PtrSize] = 1
}
// Validate that the prefix of maskFromType is equal to
// maskFromHeap. maskFromType may contain more pointers than
// maskFromHeap produces because maskFromHeap may be able to
// get exact type information for certain classes of objects.
// With maskFromType, we're always just tiling the type bitmap
// through to the elemsize.
//
// It's OK if maskFromType has pointers in elemsize that extend
// past the actual populated space; we checked above that all
// that space is zeroed, so just the GC will just see nil pointers.
differs := false
for i := range maskFromHeap {
if maskFromHeap[i] != maskFromType[i] {
differs = true
break
}
}
if differs {
print("runtime: heap mask=")
for _, b := range maskFromHeap {
print(b)
}
println()
print("runtime: type mask=")
for _, b := range maskFromType {
print(b)
}
println()
print("runtime: type=", toRType(et).string(), "\n")
throw("found two different masks from two different methods")
}
}
// Select the heap mask to return. We may not have a type mask.
mask = maskFromHeap
// Make sure we keep ep alive. We may have stopped referencing
// ep's data pointer sometime before this point and it's possible
// for that memory to get freed.
KeepAlive(ep)
return
}
// stack
if gp := getg(); gp.m.curg.stack.lo <= uintptr(p) && uintptr(p) < gp.m.curg.stack.hi {
found := false
var u unwinder
for u.initAt(gp.m.curg.sched.pc, gp.m.curg.sched.sp, 0, gp.m.curg, 0); u.valid(); u.next() {
if u.frame.sp <= uintptr(p) && uintptr(p) < u.frame.varp {
found = true
break
}
}
if found {
locals, _, _ := u.frame.getStackMap(false)
if locals.n == 0 {
return
}
size := uintptr(locals.n) * goarch.PtrSize
n := (*ptrtype)(unsafe.Pointer(t)).Elem.Size_
mask = make([]byte, n/goarch.PtrSize)
for i := uintptr(0); i < n; i += goarch.PtrSize {
off := (uintptr(p) + i - u.frame.varp + size) / goarch.PtrSize
mask[i/goarch.PtrSize] = locals.ptrbit(off)
}
}
return
}
// otherwise, not something the GC knows about.
// possibly read-only data, like malloc(0).
// must not have pointers
return
}
// userArenaHeapBitsSetType is the equivalent of heapSetType but for
// non-slice-backing-store Go values allocated in a user arena chunk. It
// sets up the type metadata for the value with type typ allocated at address ptr.
// base is the base address of the arena chunk.
func userArenaHeapBitsSetType(typ *_type, ptr unsafe.Pointer, s *mspan) {
base := s.base()
h := s.writeUserArenaHeapBits(uintptr(ptr))
p := typ.GCData // start of 1-bit pointer mask (or GC program)
var gcProgBits uintptr
if typ.Kind_&kindGCProg != 0 {
// Expand gc program, using the object itself for storage.
gcProgBits = runGCProg(addb(p, 4), (*byte)(ptr))
p = (*byte)(ptr)
}
nb := typ.PtrBytes / goarch.PtrSize
for i := uintptr(0); i < nb; i += ptrBits {
k := nb - i
if k > ptrBits {
k = ptrBits
}
// N.B. On big endian platforms we byte swap the data that we
// read from GCData, which is always stored in little-endian order
// by the compiler. writeUserArenaHeapBits handles data in
// a platform-ordered way for efficiency, but stores back the
// data in little endian order, since we expose the bitmap through
// a dummy type.
h = h.write(s, readUintptr(addb(p, i/8)), k)
}
// Note: we call pad here to ensure we emit explicit 0 bits
// for the pointerless tail of the object. This ensures that
// there's only a single noMorePtrs mark for the next object
// to clear. We don't need to do this to clear stale noMorePtrs
// markers from previous uses because arena chunk pointer bitmaps
// are always fully cleared when reused.
h = h.pad(s, typ.Size_-typ.PtrBytes)
h.flush(s, uintptr(ptr), typ.Size_)
if typ.Kind_&kindGCProg != 0 {
// Zero out temporary ptrmask buffer inside object.
memclrNoHeapPointers(ptr, (gcProgBits+7)/8)
}
// Update the PtrBytes value in the type information. After this
// point, the GC will observe the new bitmap.
s.largeType.PtrBytes = uintptr(ptr) - base + typ.PtrBytes
// Double-check that the bitmap was written out correctly.
const doubleCheck = false
if doubleCheck {
doubleCheckHeapPointersInterior(uintptr(ptr), uintptr(ptr), typ.Size_, typ.Size_, typ, &s.largeType, s)
}
}
// For !goexperiment.AllocHeaders, to pass TestIntendedInlining.
func writeHeapBitsForAddr() {
panic("not implemented")
}
// For !goexperiment.AllocHeaders.
type heapBits struct {
}
// For !goexperiment.AllocHeaders.
//
//go:nosplit
func heapBitsForAddr(addr, size uintptr) heapBits {
panic("not implemented")
}
// For !goexperiment.AllocHeaders.
//
//go:nosplit
func (h heapBits) next() (heapBits, uintptr) {
panic("not implemented")
}
// For !goexperiment.AllocHeaders.
//
//go:nosplit
func (h heapBits) nextFast() (heapBits, uintptr) {
panic("not implemented")
}
|