aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/go/_std_1.22/src/runtime/asm_arm64.s
blob: 6d77b08a1b90d6db55b6876ff29862c67514c662 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "go_asm.h"
#include "go_tls.h"
#include "tls_arm64.h"
#include "funcdata.h"
#include "textflag.h"

TEXT runtime·rt0_go(SB),NOSPLIT|TOPFRAME,$0
	// SP = stack; R0 = argc; R1 = argv

	SUB	$32, RSP
	MOVW	R0, 8(RSP) // argc
	MOVD	R1, 16(RSP) // argv

#ifdef TLS_darwin
	// Initialize TLS.
	MOVD	ZR, g // clear g, make sure it's not junk.
	SUB	$32, RSP
	MRS_TPIDR_R0
	AND	$~7, R0
	MOVD	R0, 16(RSP)             // arg2: TLS base
	MOVD	$runtime·tls_g(SB), R2
	MOVD	R2, 8(RSP)              // arg1: &tlsg
	BL	·tlsinit(SB)
	ADD	$32, RSP
#endif

	// create istack out of the given (operating system) stack.
	// _cgo_init may update stackguard.
	MOVD	$runtime·g0(SB), g
	MOVD	RSP, R7
	MOVD	$(-64*1024)(R7), R0
	MOVD	R0, g_stackguard0(g)
	MOVD	R0, g_stackguard1(g)
	MOVD	R0, (g_stack+stack_lo)(g)
	MOVD	R7, (g_stack+stack_hi)(g)

	// if there is a _cgo_init, call it using the gcc ABI.
	MOVD	_cgo_init(SB), R12
	CBZ	R12, nocgo

#ifdef GOOS_android
	MRS_TPIDR_R0			// load TLS base pointer
	MOVD	R0, R3			// arg 3: TLS base pointer
	MOVD	$runtime·tls_g(SB), R2 	// arg 2: &tls_g
#else
	MOVD	$0, R2		        // arg 2: not used when using platform's TLS
#endif
	MOVD	$setg_gcc<>(SB), R1	// arg 1: setg
	MOVD	g, R0			// arg 0: G
	SUB	$16, RSP		// reserve 16 bytes for sp-8 where fp may be saved.
	BL	(R12)
	ADD	$16, RSP

nocgo:
	BL	runtime·save_g(SB)
	// update stackguard after _cgo_init
	MOVD	(g_stack+stack_lo)(g), R0
	ADD	$const_stackGuard, R0
	MOVD	R0, g_stackguard0(g)
	MOVD	R0, g_stackguard1(g)

	// set the per-goroutine and per-mach "registers"
	MOVD	$runtime·m0(SB), R0

	// save m->g0 = g0
	MOVD	g, m_g0(R0)
	// save m0 to g0->m
	MOVD	R0, g_m(g)

	BL	runtime·check(SB)

#ifdef GOOS_windows
	BL	runtime·wintls(SB)
#endif

	MOVW	8(RSP), R0	// copy argc
	MOVW	R0, -8(RSP)
	MOVD	16(RSP), R0		// copy argv
	MOVD	R0, 0(RSP)
	BL	runtime·args(SB)
	BL	runtime·osinit(SB)
	BL	runtime·schedinit(SB)

	// create a new goroutine to start program
	MOVD	$runtime·mainPC(SB), R0		// entry
	SUB	$16, RSP
	MOVD	R0, 8(RSP) // arg
	MOVD	$0, 0(RSP) // dummy LR
	BL	runtime·newproc(SB)
	ADD	$16, RSP

	// start this M
	BL	runtime·mstart(SB)

	// Prevent dead-code elimination of debugCallV2, which is
	// intended to be called by debuggers.
	MOVD	$runtime·debugCallV2<ABIInternal>(SB), R0

	MOVD	$0, R0
	MOVD	R0, (R0)	// boom
	UNDEF

DATA	runtime·mainPC+0(SB)/8,$runtime·main<ABIInternal>(SB)
GLOBL	runtime·mainPC(SB),RODATA,$8

// Windows ARM64 needs an immediate 0xf000 argument.
// See go.dev/issues/53837.
#define BREAK	\
#ifdef GOOS_windows	\
	BRK	$0xf000 	\
#else 				\
	BRK 			\
#endif 				\


TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0
	BREAK
	RET

TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0
	RET

TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME,$0
	BL	runtime·mstart0(SB)
	RET // not reached

/*
 *  go-routine
 */

// void gogo(Gobuf*)
// restore state from Gobuf; longjmp
TEXT runtime·gogo(SB), NOSPLIT|NOFRAME, $0-8
	MOVD	buf+0(FP), R5
	MOVD	gobuf_g(R5), R6
	MOVD	0(R6), R4	// make sure g != nil
	B	gogo<>(SB)

TEXT gogo<>(SB), NOSPLIT|NOFRAME, $0
	MOVD	R6, g
	BL	runtime·save_g(SB)

	MOVD	gobuf_sp(R5), R0
	MOVD	R0, RSP
	MOVD	gobuf_bp(R5), R29
	MOVD	gobuf_lr(R5), LR
	MOVD	gobuf_ret(R5), R0
	MOVD	gobuf_ctxt(R5), R26
	MOVD	$0, gobuf_sp(R5)
	MOVD	$0, gobuf_bp(R5)
	MOVD	$0, gobuf_ret(R5)
	MOVD	$0, gobuf_lr(R5)
	MOVD	$0, gobuf_ctxt(R5)
	CMP	ZR, ZR // set condition codes for == test, needed by stack split
	MOVD	gobuf_pc(R5), R6
	B	(R6)

// void mcall(fn func(*g))
// Switch to m->g0's stack, call fn(g).
// Fn must never return. It should gogo(&g->sched)
// to keep running g.
TEXT runtime·mcall<ABIInternal>(SB), NOSPLIT|NOFRAME, $0-8
	MOVD	R0, R26				// context

	// Save caller state in g->sched
	MOVD	RSP, R0
	MOVD	R0, (g_sched+gobuf_sp)(g)
	MOVD	R29, (g_sched+gobuf_bp)(g)
	MOVD	LR, (g_sched+gobuf_pc)(g)
	MOVD	$0, (g_sched+gobuf_lr)(g)

	// Switch to m->g0 & its stack, call fn.
	MOVD	g, R3
	MOVD	g_m(g), R8
	MOVD	m_g0(R8), g
	BL	runtime·save_g(SB)
	CMP	g, R3
	BNE	2(PC)
	B	runtime·badmcall(SB)

	MOVD	(g_sched+gobuf_sp)(g), R0
	MOVD	R0, RSP	// sp = m->g0->sched.sp
	MOVD	(g_sched+gobuf_bp)(g), R29
	MOVD	R3, R0				// arg = g
	MOVD	$0, -16(RSP)			// dummy LR
	SUB	$16, RSP
	MOVD	0(R26), R4			// code pointer
	BL	(R4)
	B	runtime·badmcall2(SB)

// systemstack_switch is a dummy routine that systemstack leaves at the bottom
// of the G stack. We need to distinguish the routine that
// lives at the bottom of the G stack from the one that lives
// at the top of the system stack because the one at the top of
// the system stack terminates the stack walk (see topofstack()).
TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
	UNDEF
	BL	(LR)	// make sure this function is not leaf
	RET

// func systemstack(fn func())
TEXT runtime·systemstack(SB), NOSPLIT, $0-8
	MOVD	fn+0(FP), R3	// R3 = fn
	MOVD	R3, R26		// context
	MOVD	g_m(g), R4	// R4 = m

	MOVD	m_gsignal(R4), R5	// R5 = gsignal
	CMP	g, R5
	BEQ	noswitch

	MOVD	m_g0(R4), R5	// R5 = g0
	CMP	g, R5
	BEQ	noswitch

	MOVD	m_curg(R4), R6
	CMP	g, R6
	BEQ	switch

	// Bad: g is not gsignal, not g0, not curg. What is it?
	// Hide call from linker nosplit analysis.
	MOVD	$runtime·badsystemstack(SB), R3
	BL	(R3)
	B	runtime·abort(SB)

switch:
	// save our state in g->sched. Pretend to
	// be systemstack_switch if the G stack is scanned.
	BL	gosave_systemstack_switch<>(SB)

	// switch to g0
	MOVD	R5, g
	BL	runtime·save_g(SB)
	MOVD	(g_sched+gobuf_sp)(g), R3
	MOVD	R3, RSP
	MOVD	(g_sched+gobuf_bp)(g), R29

	// call target function
	MOVD	0(R26), R3	// code pointer
	BL	(R3)

	// switch back to g
	MOVD	g_m(g), R3
	MOVD	m_curg(R3), g
	BL	runtime·save_g(SB)
	MOVD	(g_sched+gobuf_sp)(g), R0
	MOVD	R0, RSP
	MOVD	(g_sched+gobuf_bp)(g), R29
	MOVD	$0, (g_sched+gobuf_sp)(g)
	MOVD	$0, (g_sched+gobuf_bp)(g)
	RET

noswitch:
	// already on m stack, just call directly
	// Using a tail call here cleans up tracebacks since we won't stop
	// at an intermediate systemstack.
	MOVD	0(R26), R3	// code pointer
	MOVD.P	16(RSP), R30	// restore LR
	SUB	$8, RSP, R29	// restore FP
	B	(R3)

// func switchToCrashStack0(fn func())
TEXT runtime·switchToCrashStack0<ABIInternal>(SB), NOSPLIT, $0-8
	MOVD	R0, R26    // context register
	MOVD	g_m(g), R1 // curm

	// set g to gcrash
	MOVD	$runtime·gcrash(SB), g // g = &gcrash
	BL	runtime·save_g(SB)         // clobbers R0
	MOVD	R1, g_m(g)             // g.m = curm
	MOVD	g, m_g0(R1)            // curm.g0 = g

	// switch to crashstack
	MOVD	(g_stack+stack_hi)(g), R1
	SUB	$(4*8), R1
	MOVD	R1, RSP

	// call target function
	MOVD	0(R26), R0
	CALL	(R0)

	// should never return
	CALL	runtime·abort(SB)
	UNDEF

/*
 * support for morestack
 */

// Called during function prolog when more stack is needed.
// Caller has already loaded:
// R3 prolog's LR (R30)
//
// The traceback routines see morestack on a g0 as being
// the top of a stack (for example, morestack calling newstack
// calling the scheduler calling newm calling gc), so we must
// record an argument size. For that purpose, it has no arguments.
TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
	// Cannot grow scheduler stack (m->g0).
	MOVD	g_m(g), R8
	MOVD	m_g0(R8), R4

	// Called from f.
	// Set g->sched to context in f
	MOVD	RSP, R0
	MOVD	R0, (g_sched+gobuf_sp)(g)
	MOVD	R29, (g_sched+gobuf_bp)(g)
	MOVD	LR, (g_sched+gobuf_pc)(g)
	MOVD	R3, (g_sched+gobuf_lr)(g)
	MOVD	R26, (g_sched+gobuf_ctxt)(g)

	CMP	g, R4
	BNE	3(PC)
	BL	runtime·badmorestackg0(SB)
	B	runtime·abort(SB)

	// Cannot grow signal stack (m->gsignal).
	MOVD	m_gsignal(R8), R4
	CMP	g, R4
	BNE	3(PC)
	BL	runtime·badmorestackgsignal(SB)
	B	runtime·abort(SB)

	// Called from f.
	// Set m->morebuf to f's callers.
	MOVD	R3, (m_morebuf+gobuf_pc)(R8)	// f's caller's PC
	MOVD	RSP, R0
	MOVD	R0, (m_morebuf+gobuf_sp)(R8)	// f's caller's RSP
	MOVD	g, (m_morebuf+gobuf_g)(R8)

	// Call newstack on m->g0's stack.
	MOVD	m_g0(R8), g
	BL	runtime·save_g(SB)
	MOVD	(g_sched+gobuf_sp)(g), R0
	MOVD	R0, RSP
	MOVD	(g_sched+gobuf_bp)(g), R29
	MOVD.W	$0, -16(RSP)	// create a call frame on g0 (saved LR; keep 16-aligned)
	BL	runtime·newstack(SB)

	// Not reached, but make sure the return PC from the call to newstack
	// is still in this function, and not the beginning of the next.
	UNDEF

TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0
	// Force SPWRITE. This function doesn't actually write SP,
	// but it is called with a special calling convention where
	// the caller doesn't save LR on stack but passes it as a
	// register (R3), and the unwinder currently doesn't understand.
	// Make it SPWRITE to stop unwinding. (See issue 54332)
	MOVD	RSP, RSP

	MOVW	$0, R26
	B runtime·morestack(SB)

// spillArgs stores return values from registers to a *internal/abi.RegArgs in R20.
TEXT ·spillArgs(SB),NOSPLIT,$0-0
	STP	(R0, R1), (0*8)(R20)
	STP	(R2, R3), (2*8)(R20)
	STP	(R4, R5), (4*8)(R20)
	STP	(R6, R7), (6*8)(R20)
	STP	(R8, R9), (8*8)(R20)
	STP	(R10, R11), (10*8)(R20)
	STP	(R12, R13), (12*8)(R20)
	STP	(R14, R15), (14*8)(R20)
	FSTPD	(F0, F1), (16*8)(R20)
	FSTPD	(F2, F3), (18*8)(R20)
	FSTPD	(F4, F5), (20*8)(R20)
	FSTPD	(F6, F7), (22*8)(R20)
	FSTPD	(F8, F9), (24*8)(R20)
	FSTPD	(F10, F11), (26*8)(R20)
	FSTPD	(F12, F13), (28*8)(R20)
	FSTPD	(F14, F15), (30*8)(R20)
	RET

// unspillArgs loads args into registers from a *internal/abi.RegArgs in R20.
TEXT ·unspillArgs(SB),NOSPLIT,$0-0
	LDP	(0*8)(R20), (R0, R1)
	LDP	(2*8)(R20), (R2, R3)
	LDP	(4*8)(R20), (R4, R5)
	LDP	(6*8)(R20), (R6, R7)
	LDP	(8*8)(R20), (R8, R9)
	LDP	(10*8)(R20), (R10, R11)
	LDP	(12*8)(R20), (R12, R13)
	LDP	(14*8)(R20), (R14, R15)
	FLDPD	(16*8)(R20), (F0, F1)
	FLDPD	(18*8)(R20), (F2, F3)
	FLDPD	(20*8)(R20), (F4, F5)
	FLDPD	(22*8)(R20), (F6, F7)
	FLDPD	(24*8)(R20), (F8, F9)
	FLDPD	(26*8)(R20), (F10, F11)
	FLDPD	(28*8)(R20), (F12, F13)
	FLDPD	(30*8)(R20), (F14, F15)
	RET

// reflectcall: call a function with the given argument list
// func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs).
// we don't have variable-sized frames, so we use a small number
// of constant-sized-frame functions to encode a few bits of size in the pc.
// Caution: ugly multiline assembly macros in your future!

#define DISPATCH(NAME,MAXSIZE)		\
	MOVD	$MAXSIZE, R27;		\
	CMP	R27, R16;		\
	BGT	3(PC);			\
	MOVD	$NAME(SB), R27;	\
	B	(R27)
// Note: can't just "B NAME(SB)" - bad inlining results.

TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-48
	MOVWU	frameSize+32(FP), R16
	DISPATCH(runtime·call16, 16)
	DISPATCH(runtime·call32, 32)
	DISPATCH(runtime·call64, 64)
	DISPATCH(runtime·call128, 128)
	DISPATCH(runtime·call256, 256)
	DISPATCH(runtime·call512, 512)
	DISPATCH(runtime·call1024, 1024)
	DISPATCH(runtime·call2048, 2048)
	DISPATCH(runtime·call4096, 4096)
	DISPATCH(runtime·call8192, 8192)
	DISPATCH(runtime·call16384, 16384)
	DISPATCH(runtime·call32768, 32768)
	DISPATCH(runtime·call65536, 65536)
	DISPATCH(runtime·call131072, 131072)
	DISPATCH(runtime·call262144, 262144)
	DISPATCH(runtime·call524288, 524288)
	DISPATCH(runtime·call1048576, 1048576)
	DISPATCH(runtime·call2097152, 2097152)
	DISPATCH(runtime·call4194304, 4194304)
	DISPATCH(runtime·call8388608, 8388608)
	DISPATCH(runtime·call16777216, 16777216)
	DISPATCH(runtime·call33554432, 33554432)
	DISPATCH(runtime·call67108864, 67108864)
	DISPATCH(runtime·call134217728, 134217728)
	DISPATCH(runtime·call268435456, 268435456)
	DISPATCH(runtime·call536870912, 536870912)
	DISPATCH(runtime·call1073741824, 1073741824)
	MOVD	$runtime·badreflectcall(SB), R0
	B	(R0)

#define CALLFN(NAME,MAXSIZE)			\
TEXT NAME(SB), WRAPPER, $MAXSIZE-48;		\
	NO_LOCAL_POINTERS;			\
	/* copy arguments to stack */		\
	MOVD	stackArgs+16(FP), R3;			\
	MOVWU	stackArgsSize+24(FP), R4;		\
	ADD	$8, RSP, R5;			\
	BIC	$0xf, R4, R6;			\
	CBZ	R6, 6(PC);			\
	/* if R6=(argsize&~15) != 0 */		\
	ADD	R6, R5, R6;			\
	/* copy 16 bytes a time */		\
	LDP.P	16(R3), (R7, R8);		\
	STP.P	(R7, R8), 16(R5);		\
	CMP	R5, R6;				\
	BNE	-3(PC);				\
	AND	$0xf, R4, R6;			\
	CBZ	R6, 6(PC);			\
	/* if R6=(argsize&15) != 0 */		\
	ADD	R6, R5, R6;			\
	/* copy 1 byte a time for the rest */	\
	MOVBU.P	1(R3), R7;			\
	MOVBU.P	R7, 1(R5);			\
	CMP	R5, R6;				\
	BNE	-3(PC);				\
	/* set up argument registers */		\
	MOVD	regArgs+40(FP), R20;		\
	CALL	·unspillArgs(SB);		\
	/* call function */			\
	MOVD	f+8(FP), R26;			\
	MOVD	(R26), R20;			\
	PCDATA	$PCDATA_StackMapIndex, $0;	\
	BL	(R20);				\
	/* copy return values back */		\
	MOVD	regArgs+40(FP), R20;		\
	CALL	·spillArgs(SB);		\
	MOVD	stackArgsType+0(FP), R7;		\
	MOVD	stackArgs+16(FP), R3;			\
	MOVWU	stackArgsSize+24(FP), R4;			\
	MOVWU	stackRetOffset+28(FP), R6;		\
	ADD	$8, RSP, R5;			\
	ADD	R6, R5; 			\
	ADD	R6, R3;				\
	SUB	R6, R4;				\
	BL	callRet<>(SB);			\
	RET

// callRet copies return values back at the end of call*. This is a
// separate function so it can allocate stack space for the arguments
// to reflectcallmove. It does not follow the Go ABI; it expects its
// arguments in registers.
TEXT callRet<>(SB), NOSPLIT, $48-0
	NO_LOCAL_POINTERS
	STP	(R7, R3), 8(RSP)
	STP	(R5, R4), 24(RSP)
	MOVD	R20, 40(RSP)
	BL	runtime·reflectcallmove(SB)
	RET

CALLFN(·call16, 16)
CALLFN(·call32, 32)
CALLFN(·call64, 64)
CALLFN(·call128, 128)
CALLFN(·call256, 256)
CALLFN(·call512, 512)
CALLFN(·call1024, 1024)
CALLFN(·call2048, 2048)
CALLFN(·call4096, 4096)
CALLFN(·call8192, 8192)
CALLFN(·call16384, 16384)
CALLFN(·call32768, 32768)
CALLFN(·call65536, 65536)
CALLFN(·call131072, 131072)
CALLFN(·call262144, 262144)
CALLFN(·call524288, 524288)
CALLFN(·call1048576, 1048576)
CALLFN(·call2097152, 2097152)
CALLFN(·call4194304, 4194304)
CALLFN(·call8388608, 8388608)
CALLFN(·call16777216, 16777216)
CALLFN(·call33554432, 33554432)
CALLFN(·call67108864, 67108864)
CALLFN(·call134217728, 134217728)
CALLFN(·call268435456, 268435456)
CALLFN(·call536870912, 536870912)
CALLFN(·call1073741824, 1073741824)

// func memhash32(p unsafe.Pointer, h uintptr) uintptr
TEXT runtime·memhash32<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24
	MOVB	runtime·useAeshash(SB), R10
	CBZ	R10, noaes
	MOVD	$runtime·aeskeysched+0(SB), R3

	VEOR	V0.B16, V0.B16, V0.B16
	VLD1	(R3), [V2.B16]
	VLD1	(R0), V0.S[1]
	VMOV	R1, V0.S[0]

	AESE	V2.B16, V0.B16
	AESMC	V0.B16, V0.B16
	AESE	V2.B16, V0.B16
	AESMC	V0.B16, V0.B16
	AESE	V2.B16, V0.B16

	VMOV	V0.D[0], R0
	RET
noaes:
	B	runtime·memhash32Fallback<ABIInternal>(SB)

// func memhash64(p unsafe.Pointer, h uintptr) uintptr
TEXT runtime·memhash64<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24
	MOVB	runtime·useAeshash(SB), R10
	CBZ	R10, noaes
	MOVD	$runtime·aeskeysched+0(SB), R3

	VEOR	V0.B16, V0.B16, V0.B16
	VLD1	(R3), [V2.B16]
	VLD1	(R0), V0.D[1]
	VMOV	R1, V0.D[0]

	AESE	V2.B16, V0.B16
	AESMC	V0.B16, V0.B16
	AESE	V2.B16, V0.B16
	AESMC	V0.B16, V0.B16
	AESE	V2.B16, V0.B16

	VMOV	V0.D[0], R0
	RET
noaes:
	B	runtime·memhash64Fallback<ABIInternal>(SB)

// func memhash(p unsafe.Pointer, h, size uintptr) uintptr
TEXT runtime·memhash<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-32
	MOVB	runtime·useAeshash(SB), R10
	CBZ	R10, noaes
	B	aeshashbody<>(SB)
noaes:
	B	runtime·memhashFallback<ABIInternal>(SB)

// func strhash(p unsafe.Pointer, h uintptr) uintptr
TEXT runtime·strhash<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24
	MOVB	runtime·useAeshash(SB), R10
	CBZ	R10, noaes
	LDP	(R0), (R0, R2)	// string data / length
	B	aeshashbody<>(SB)
noaes:
	B	runtime·strhashFallback<ABIInternal>(SB)

// R0: data
// R1: seed data
// R2: length
// At return, R0 = return value
TEXT aeshashbody<>(SB),NOSPLIT|NOFRAME,$0
	VEOR	V30.B16, V30.B16, V30.B16
	VMOV	R1, V30.D[0]
	VMOV	R2, V30.D[1] // load length into seed

	MOVD	$runtime·aeskeysched+0(SB), R4
	VLD1.P	16(R4), [V0.B16]
	AESE	V30.B16, V0.B16
	AESMC	V0.B16, V0.B16
	CMP	$16, R2
	BLO	aes0to15
	BEQ	aes16
	CMP	$32, R2
	BLS	aes17to32
	CMP	$64, R2
	BLS	aes33to64
	CMP	$128, R2
	BLS	aes65to128
	B	aes129plus

aes0to15:
	CBZ	R2, aes0
	VEOR	V2.B16, V2.B16, V2.B16
	TBZ	$3, R2, less_than_8
	VLD1.P	8(R0), V2.D[0]

less_than_8:
	TBZ	$2, R2, less_than_4
	VLD1.P	4(R0), V2.S[2]

less_than_4:
	TBZ	$1, R2, less_than_2
	VLD1.P	2(R0), V2.H[6]

less_than_2:
	TBZ	$0, R2, done
	VLD1	(R0), V2.B[14]
done:
	AESE	V0.B16, V2.B16
	AESMC	V2.B16, V2.B16
	AESE	V0.B16, V2.B16
	AESMC	V2.B16, V2.B16
	AESE	V0.B16, V2.B16
	AESMC	V2.B16, V2.B16

	VMOV	V2.D[0], R0
	RET

aes0:
	VMOV	V0.D[0], R0
	RET

aes16:
	VLD1	(R0), [V2.B16]
	B	done

aes17to32:
	// make second seed
	VLD1	(R4), [V1.B16]
	AESE	V30.B16, V1.B16
	AESMC	V1.B16, V1.B16
	SUB	$16, R2, R10
	VLD1.P	(R0)(R10), [V2.B16]
	VLD1	(R0), [V3.B16]

	AESE	V0.B16, V2.B16
	AESMC	V2.B16, V2.B16
	AESE	V1.B16, V3.B16
	AESMC	V3.B16, V3.B16

	AESE	V0.B16, V2.B16
	AESMC	V2.B16, V2.B16
	AESE	V1.B16, V3.B16
	AESMC	V3.B16, V3.B16

	AESE	V0.B16, V2.B16
	AESE	V1.B16, V3.B16

	VEOR	V3.B16, V2.B16, V2.B16

	VMOV	V2.D[0], R0
	RET

aes33to64:
	VLD1	(R4), [V1.B16, V2.B16, V3.B16]
	AESE	V30.B16, V1.B16
	AESMC	V1.B16, V1.B16
	AESE	V30.B16, V2.B16
	AESMC	V2.B16, V2.B16
	AESE	V30.B16, V3.B16
	AESMC	V3.B16, V3.B16
	SUB	$32, R2, R10

	VLD1.P	(R0)(R10), [V4.B16, V5.B16]
	VLD1	(R0), [V6.B16, V7.B16]

	AESE	V0.B16, V4.B16
	AESMC	V4.B16, V4.B16
	AESE	V1.B16, V5.B16
	AESMC	V5.B16, V5.B16
	AESE	V2.B16, V6.B16
	AESMC	V6.B16, V6.B16
	AESE	V3.B16, V7.B16
	AESMC	V7.B16, V7.B16

	AESE	V0.B16, V4.B16
	AESMC	V4.B16, V4.B16
	AESE	V1.B16, V5.B16
	AESMC	V5.B16, V5.B16
	AESE	V2.B16, V6.B16
	AESMC	V6.B16, V6.B16
	AESE	V3.B16, V7.B16
	AESMC	V7.B16, V7.B16

	AESE	V0.B16, V4.B16
	AESE	V1.B16, V5.B16
	AESE	V2.B16, V6.B16
	AESE	V3.B16, V7.B16

	VEOR	V6.B16, V4.B16, V4.B16
	VEOR	V7.B16, V5.B16, V5.B16
	VEOR	V5.B16, V4.B16, V4.B16

	VMOV	V4.D[0], R0
	RET

aes65to128:
	VLD1.P	64(R4), [V1.B16, V2.B16, V3.B16, V4.B16]
	VLD1	(R4), [V5.B16, V6.B16, V7.B16]
	AESE	V30.B16, V1.B16
	AESMC	V1.B16, V1.B16
	AESE	V30.B16, V2.B16
	AESMC	V2.B16, V2.B16
	AESE	V30.B16, V3.B16
	AESMC	V3.B16, V3.B16
	AESE	V30.B16, V4.B16
	AESMC	V4.B16, V4.B16
	AESE	V30.B16, V5.B16
	AESMC	V5.B16, V5.B16
	AESE	V30.B16, V6.B16
	AESMC	V6.B16, V6.B16
	AESE	V30.B16, V7.B16
	AESMC	V7.B16, V7.B16

	SUB	$64, R2, R10
	VLD1.P	(R0)(R10), [V8.B16, V9.B16, V10.B16, V11.B16]
	VLD1	(R0), [V12.B16, V13.B16, V14.B16, V15.B16]
	AESE	V0.B16,	 V8.B16
	AESMC	V8.B16,  V8.B16
	AESE	V1.B16,	 V9.B16
	AESMC	V9.B16,  V9.B16
	AESE	V2.B16, V10.B16
	AESMC	V10.B16,  V10.B16
	AESE	V3.B16, V11.B16
	AESMC	V11.B16,  V11.B16
	AESE	V4.B16, V12.B16
	AESMC	V12.B16,  V12.B16
	AESE	V5.B16, V13.B16
	AESMC	V13.B16,  V13.B16
	AESE	V6.B16, V14.B16
	AESMC	V14.B16,  V14.B16
	AESE	V7.B16, V15.B16
	AESMC	V15.B16,  V15.B16

	AESE	V0.B16,	 V8.B16
	AESMC	V8.B16,  V8.B16
	AESE	V1.B16,	 V9.B16
	AESMC	V9.B16,  V9.B16
	AESE	V2.B16, V10.B16
	AESMC	V10.B16,  V10.B16
	AESE	V3.B16, V11.B16
	AESMC	V11.B16,  V11.B16
	AESE	V4.B16, V12.B16
	AESMC	V12.B16,  V12.B16
	AESE	V5.B16, V13.B16
	AESMC	V13.B16,  V13.B16
	AESE	V6.B16, V14.B16
	AESMC	V14.B16,  V14.B16
	AESE	V7.B16, V15.B16
	AESMC	V15.B16,  V15.B16

	AESE	V0.B16,	 V8.B16
	AESE	V1.B16,	 V9.B16
	AESE	V2.B16, V10.B16
	AESE	V3.B16, V11.B16
	AESE	V4.B16, V12.B16
	AESE	V5.B16, V13.B16
	AESE	V6.B16, V14.B16
	AESE	V7.B16, V15.B16

	VEOR	V12.B16, V8.B16, V8.B16
	VEOR	V13.B16, V9.B16, V9.B16
	VEOR	V14.B16, V10.B16, V10.B16
	VEOR	V15.B16, V11.B16, V11.B16
	VEOR	V10.B16, V8.B16, V8.B16
	VEOR	V11.B16, V9.B16, V9.B16
	VEOR	V9.B16, V8.B16, V8.B16

	VMOV	V8.D[0], R0
	RET

aes129plus:
	PRFM (R0), PLDL1KEEP
	VLD1.P	64(R4), [V1.B16, V2.B16, V3.B16, V4.B16]
	VLD1	(R4), [V5.B16, V6.B16, V7.B16]
	AESE	V30.B16, V1.B16
	AESMC	V1.B16, V1.B16
	AESE	V30.B16, V2.B16
	AESMC	V2.B16, V2.B16
	AESE	V30.B16, V3.B16
	AESMC	V3.B16, V3.B16
	AESE	V30.B16, V4.B16
	AESMC	V4.B16, V4.B16
	AESE	V30.B16, V5.B16
	AESMC	V5.B16, V5.B16
	AESE	V30.B16, V6.B16
	AESMC	V6.B16, V6.B16
	AESE	V30.B16, V7.B16
	AESMC	V7.B16, V7.B16
	ADD	R0, R2, R10
	SUB	$128, R10, R10
	VLD1.P	64(R10), [V8.B16, V9.B16, V10.B16, V11.B16]
	VLD1	(R10), [V12.B16, V13.B16, V14.B16, V15.B16]
	SUB	$1, R2, R2
	LSR	$7, R2, R2

aesloop:
	AESE	V8.B16,	 V0.B16
	AESMC	V0.B16,  V0.B16
	AESE	V9.B16,	 V1.B16
	AESMC	V1.B16,  V1.B16
	AESE	V10.B16, V2.B16
	AESMC	V2.B16,  V2.B16
	AESE	V11.B16, V3.B16
	AESMC	V3.B16,  V3.B16
	AESE	V12.B16, V4.B16
	AESMC	V4.B16,  V4.B16
	AESE	V13.B16, V5.B16
	AESMC	V5.B16,  V5.B16
	AESE	V14.B16, V6.B16
	AESMC	V6.B16,  V6.B16
	AESE	V15.B16, V7.B16
	AESMC	V7.B16,  V7.B16

	VLD1.P	64(R0), [V8.B16, V9.B16, V10.B16, V11.B16]
	AESE	V8.B16,	 V0.B16
	AESMC	V0.B16,  V0.B16
	AESE	V9.B16,	 V1.B16
	AESMC	V1.B16,  V1.B16
	AESE	V10.B16, V2.B16
	AESMC	V2.B16,  V2.B16
	AESE	V11.B16, V3.B16
	AESMC	V3.B16,  V3.B16

	VLD1.P	64(R0), [V12.B16, V13.B16, V14.B16, V15.B16]
	AESE	V12.B16, V4.B16
	AESMC	V4.B16,  V4.B16
	AESE	V13.B16, V5.B16
	AESMC	V5.B16,  V5.B16
	AESE	V14.B16, V6.B16
	AESMC	V6.B16,  V6.B16
	AESE	V15.B16, V7.B16
	AESMC	V7.B16,  V7.B16
	SUB	$1, R2, R2
	CBNZ	R2, aesloop

	AESE	V8.B16,	 V0.B16
	AESMC	V0.B16,  V0.B16
	AESE	V9.B16,	 V1.B16
	AESMC	V1.B16,  V1.B16
	AESE	V10.B16, V2.B16
	AESMC	V2.B16,  V2.B16
	AESE	V11.B16, V3.B16
	AESMC	V3.B16,  V3.B16
	AESE	V12.B16, V4.B16
	AESMC	V4.B16,  V4.B16
	AESE	V13.B16, V5.B16
	AESMC	V5.B16,  V5.B16
	AESE	V14.B16, V6.B16
	AESMC	V6.B16,  V6.B16
	AESE	V15.B16, V7.B16
	AESMC	V7.B16,  V7.B16

	AESE	V8.B16,	 V0.B16
	AESMC	V0.B16,  V0.B16
	AESE	V9.B16,	 V1.B16
	AESMC	V1.B16,  V1.B16
	AESE	V10.B16, V2.B16
	AESMC	V2.B16,  V2.B16
	AESE	V11.B16, V3.B16
	AESMC	V3.B16,  V3.B16
	AESE	V12.B16, V4.B16
	AESMC	V4.B16,  V4.B16
	AESE	V13.B16, V5.B16
	AESMC	V5.B16,  V5.B16
	AESE	V14.B16, V6.B16
	AESMC	V6.B16,  V6.B16
	AESE	V15.B16, V7.B16
	AESMC	V7.B16,  V7.B16

	AESE	V8.B16,	 V0.B16
	AESE	V9.B16,	 V1.B16
	AESE	V10.B16, V2.B16
	AESE	V11.B16, V3.B16
	AESE	V12.B16, V4.B16
	AESE	V13.B16, V5.B16
	AESE	V14.B16, V6.B16
	AESE	V15.B16, V7.B16

	VEOR	V0.B16, V1.B16, V0.B16
	VEOR	V2.B16, V3.B16, V2.B16
	VEOR	V4.B16, V5.B16, V4.B16
	VEOR	V6.B16, V7.B16, V6.B16
	VEOR	V0.B16, V2.B16, V0.B16
	VEOR	V4.B16, V6.B16, V4.B16
	VEOR	V4.B16, V0.B16, V0.B16

	VMOV	V0.D[0], R0
	RET

TEXT runtime·procyield(SB),NOSPLIT,$0-0
	MOVWU	cycles+0(FP), R0
again:
	YIELD
	SUBW	$1, R0
	CBNZ	R0, again
	RET

// Save state of caller into g->sched,
// but using fake PC from systemstack_switch.
// Must only be called from functions with no locals ($0)
// or else unwinding from systemstack_switch is incorrect.
// Smashes R0.
TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0
	MOVD	$runtime·systemstack_switch(SB), R0
	ADD	$8, R0	// get past prologue
	MOVD	R0, (g_sched+gobuf_pc)(g)
	MOVD	RSP, R0
	MOVD	R0, (g_sched+gobuf_sp)(g)
	MOVD	R29, (g_sched+gobuf_bp)(g)
	MOVD	$0, (g_sched+gobuf_lr)(g)
	MOVD	$0, (g_sched+gobuf_ret)(g)
	// Assert ctxt is zero. See func save.
	MOVD	(g_sched+gobuf_ctxt)(g), R0
	CBZ	R0, 2(PC)
	CALL	runtime·abort(SB)
	RET

// func asmcgocall_no_g(fn, arg unsafe.Pointer)
// Call fn(arg) aligned appropriately for the gcc ABI.
// Called on a system stack, and there may be no g yet (during needm).
TEXT ·asmcgocall_no_g(SB),NOSPLIT,$0-16
	MOVD	fn+0(FP), R1
	MOVD	arg+8(FP), R0
	SUB	$16, RSP	// skip over saved frame pointer below RSP
	BL	(R1)
	ADD	$16, RSP	// skip over saved frame pointer below RSP
	RET

// func asmcgocall(fn, arg unsafe.Pointer) int32
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.go for more details.
TEXT ·asmcgocall(SB),NOSPLIT,$0-20
	MOVD	fn+0(FP), R1
	MOVD	arg+8(FP), R0

	MOVD	RSP, R2		// save original stack pointer
	CBZ	g, nosave
	MOVD	g, R4

	// Figure out if we need to switch to m->g0 stack.
	// We get called to create new OS threads too, and those
	// come in on the m->g0 stack already. Or we might already
	// be on the m->gsignal stack.
	MOVD	g_m(g), R8
	MOVD	m_gsignal(R8), R3
	CMP	R3, g
	BEQ	nosave
	MOVD	m_g0(R8), R3
	CMP	R3, g
	BEQ	nosave

	// Switch to system stack.
	MOVD	R0, R9	// gosave_systemstack_switch<> and save_g might clobber R0
	BL	gosave_systemstack_switch<>(SB)
	MOVD	R3, g
	BL	runtime·save_g(SB)
	MOVD	(g_sched+gobuf_sp)(g), R0
	MOVD	R0, RSP
	MOVD	(g_sched+gobuf_bp)(g), R29
	MOVD	R9, R0

	// Now on a scheduling stack (a pthread-created stack).
	// Save room for two of our pointers /*, plus 32 bytes of callee
	// save area that lives on the caller stack. */
	MOVD	RSP, R13
	SUB	$16, R13
	MOVD	R13, RSP
	MOVD	R4, 0(RSP)	// save old g on stack
	MOVD	(g_stack+stack_hi)(R4), R4
	SUB	R2, R4
	MOVD	R4, 8(RSP)	// save depth in old g stack (can't just save SP, as stack might be copied during a callback)
	BL	(R1)
	MOVD	R0, R9

	// Restore g, stack pointer. R0 is errno, so don't touch it
	MOVD	0(RSP), g
	BL	runtime·save_g(SB)
	MOVD	(g_stack+stack_hi)(g), R5
	MOVD	8(RSP), R6
	SUB	R6, R5
	MOVD	R9, R0
	MOVD	R5, RSP

	MOVW	R0, ret+16(FP)
	RET

nosave:
	// Running on a system stack, perhaps even without a g.
	// Having no g can happen during thread creation or thread teardown
	// (see needm/dropm on Solaris, for example).
	// This code is like the above sequence but without saving/restoring g
	// and without worrying about the stack moving out from under us
	// (because we're on a system stack, not a goroutine stack).
	// The above code could be used directly if already on a system stack,
	// but then the only path through this code would be a rare case on Solaris.
	// Using this code for all "already on system stack" calls exercises it more,
	// which should help keep it correct.
	MOVD	RSP, R13
	SUB	$16, R13
	MOVD	R13, RSP
	MOVD	$0, R4
	MOVD	R4, 0(RSP)	// Where above code stores g, in case someone looks during debugging.
	MOVD	R2, 8(RSP)	// Save original stack pointer.
	BL	(R1)
	// Restore stack pointer.
	MOVD	8(RSP), R2
	MOVD	R2, RSP
	MOVD	R0, ret+16(FP)
	RET

// cgocallback(fn, frame unsafe.Pointer, ctxt uintptr)
// See cgocall.go for more details.
TEXT ·cgocallback(SB),NOSPLIT,$24-24
	NO_LOCAL_POINTERS

	// Skip cgocallbackg, just dropm when fn is nil, and frame is the saved g.
	// It is used to dropm while thread is exiting.
	MOVD	fn+0(FP), R1
	CBNZ	R1, loadg
	// Restore the g from frame.
	MOVD	frame+8(FP), g
	B	dropm

loadg:
	// Load g from thread-local storage.
	BL	runtime·load_g(SB)

	// If g is nil, Go did not create the current thread,
	// or if this thread never called into Go on pthread platforms.
	// Call needm to obtain one for temporary use.
	// In this case, we're running on the thread stack, so there's
	// lots of space, but the linker doesn't know. Hide the call from
	// the linker analysis by using an indirect call.
	CBZ	g, needm

	MOVD	g_m(g), R8
	MOVD	R8, savedm-8(SP)
	B	havem

needm:
	MOVD	g, savedm-8(SP) // g is zero, so is m.
	MOVD	$runtime·needAndBindM(SB), R0
	BL	(R0)

	// Set m->g0->sched.sp = SP, so that if a panic happens
	// during the function we are about to execute, it will
	// have a valid SP to run on the g0 stack.
	// The next few lines (after the havem label)
	// will save this SP onto the stack and then write
	// the same SP back to m->sched.sp. That seems redundant,
	// but if an unrecovered panic happens, unwindm will
	// restore the g->sched.sp from the stack location
	// and then systemstack will try to use it. If we don't set it here,
	// that restored SP will be uninitialized (typically 0) and
	// will not be usable.
	MOVD	g_m(g), R8
	MOVD	m_g0(R8), R3
	MOVD	RSP, R0
	MOVD	R0, (g_sched+gobuf_sp)(R3)
	MOVD	R29, (g_sched+gobuf_bp)(R3)

havem:
	// Now there's a valid m, and we're running on its m->g0.
	// Save current m->g0->sched.sp on stack and then set it to SP.
	// Save current sp in m->g0->sched.sp in preparation for
	// switch back to m->curg stack.
	// NOTE: unwindm knows that the saved g->sched.sp is at 16(RSP) aka savedsp-16(SP).
	// Beware that the frame size is actually 32+16.
	MOVD	m_g0(R8), R3
	MOVD	(g_sched+gobuf_sp)(R3), R4
	MOVD	R4, savedsp-16(SP)
	MOVD	RSP, R0
	MOVD	R0, (g_sched+gobuf_sp)(R3)

	// Switch to m->curg stack and call runtime.cgocallbackg.
	// Because we are taking over the execution of m->curg
	// but *not* resuming what had been running, we need to
	// save that information (m->curg->sched) so we can restore it.
	// We can restore m->curg->sched.sp easily, because calling
	// runtime.cgocallbackg leaves SP unchanged upon return.
	// To save m->curg->sched.pc, we push it onto the curg stack and
	// open a frame the same size as cgocallback's g0 frame.
	// Once we switch to the curg stack, the pushed PC will appear
	// to be the return PC of cgocallback, so that the traceback
	// will seamlessly trace back into the earlier calls.
	MOVD	m_curg(R8), g
	BL	runtime·save_g(SB)
	MOVD	(g_sched+gobuf_sp)(g), R4 // prepare stack as R4
	MOVD	(g_sched+gobuf_pc)(g), R5
	MOVD	R5, -48(R4)
	MOVD	(g_sched+gobuf_bp)(g), R5
	MOVD	R5, -56(R4)
	// Gather our arguments into registers.
	MOVD	fn+0(FP), R1
	MOVD	frame+8(FP), R2
	MOVD	ctxt+16(FP), R3
	MOVD	$-48(R4), R0 // maintain 16-byte SP alignment
	MOVD	R0, RSP	// switch stack
	MOVD	R1, 8(RSP)
	MOVD	R2, 16(RSP)
	MOVD	R3, 24(RSP)
	MOVD	$runtime·cgocallbackg(SB), R0
	CALL	(R0) // indirect call to bypass nosplit check. We're on a different stack now.

	// Restore g->sched (== m->curg->sched) from saved values.
	MOVD	0(RSP), R5
	MOVD	R5, (g_sched+gobuf_pc)(g)
	MOVD	RSP, R4
	ADD	$48, R4, R4
	MOVD	R4, (g_sched+gobuf_sp)(g)

	// Switch back to m->g0's stack and restore m->g0->sched.sp.
	// (Unlike m->curg, the g0 goroutine never uses sched.pc,
	// so we do not have to restore it.)
	MOVD	g_m(g), R8
	MOVD	m_g0(R8), g
	BL	runtime·save_g(SB)
	MOVD	(g_sched+gobuf_sp)(g), R0
	MOVD	R0, RSP
	MOVD	savedsp-16(SP), R4
	MOVD	R4, (g_sched+gobuf_sp)(g)

	// If the m on entry was nil, we called needm above to borrow an m,
	// 1. for the duration of the call on non-pthread platforms,
	// 2. or the duration of the C thread alive on pthread platforms.
	// If the m on entry wasn't nil,
	// 1. the thread might be a Go thread,
	// 2. or it wasn't the first call from a C thread on pthread platforms,
	//    since then we skip dropm to reuse the m in the first call.
	MOVD	savedm-8(SP), R6
	CBNZ	R6, droppedm

	// Skip dropm to reuse it in the next call, when a pthread key has been created.
	MOVD	_cgo_pthread_key_created(SB), R6
	// It means cgo is disabled when _cgo_pthread_key_created is a nil pointer, need dropm.
	CBZ	R6, dropm
	MOVD	(R6), R6
	CBNZ	R6, droppedm

dropm:
	MOVD	$runtime·dropm(SB), R0
	BL	(R0)
droppedm:

	// Done!
	RET

// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
// Must obey the gcc calling convention.
TEXT _cgo_topofstack(SB),NOSPLIT,$24
	// g (R28) and REGTMP (R27)  might be clobbered by load_g. They
	// are callee-save in the gcc calling convention, so save them.
	MOVD	R27, savedR27-8(SP)
	MOVD	g, saveG-16(SP)

	BL	runtime·load_g(SB)
	MOVD	g_m(g), R0
	MOVD	m_curg(R0), R0
	MOVD	(g_stack+stack_hi)(R0), R0

	MOVD	saveG-16(SP), g
	MOVD	savedR28-8(SP), R27
	RET

// void setg(G*); set g. for use by needm.
TEXT runtime·setg(SB), NOSPLIT, $0-8
	MOVD	gg+0(FP), g
	// This only happens if iscgo, so jump straight to save_g
	BL	runtime·save_g(SB)
	RET

// void setg_gcc(G*); set g called from gcc
TEXT setg_gcc<>(SB),NOSPLIT,$8
	MOVD	R0, g
	MOVD	R27, savedR27-8(SP)
	BL	runtime·save_g(SB)
	MOVD	savedR27-8(SP), R27
	RET

TEXT runtime·emptyfunc(SB),0,$0-0
	RET

TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0
	MOVD	ZR, R0
	MOVD	(R0), R0
	UNDEF

TEXT runtime·return0(SB), NOSPLIT, $0
	MOVW	$0, R0
	RET

// The top-most function running on a goroutine
// returns to goexit+PCQuantum.
TEXT runtime·goexit(SB),NOSPLIT|NOFRAME|TOPFRAME,$0-0
	MOVD	R0, R0	// NOP
	BL	runtime·goexit1(SB)	// does not return

// This is called from .init_array and follows the platform, not Go, ABI.
TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0
	SUB	$0x10, RSP
	MOVD	R27, 8(RSP) // The access to global variables below implicitly uses R27, which is callee-save
	MOVD	runtime·lastmoduledatap(SB), R1
	MOVD	R0, moduledata_next(R1)
	MOVD	R0, runtime·lastmoduledatap(SB)
	MOVD	8(RSP), R27
	ADD	$0x10, RSP
	RET

TEXT ·checkASM(SB),NOSPLIT,$0-1
	MOVW	$1, R3
	MOVB	R3, ret+0(FP)
	RET

// gcWriteBarrier informs the GC about heap pointer writes.
//
// gcWriteBarrier does NOT follow the Go ABI. It accepts the
// number of bytes of buffer needed in R25, and returns a pointer
// to the buffer space in R25.
// It clobbers condition codes.
// It does not clobber any general-purpose registers except R27,
// but may clobber others (e.g., floating point registers)
// The act of CALLing gcWriteBarrier will clobber R30 (LR).
TEXT gcWriteBarrier<>(SB),NOSPLIT,$200
	// Save the registers clobbered by the fast path.
	STP	(R0, R1), 184(RSP)
retry:
	MOVD	g_m(g), R0
	MOVD	m_p(R0), R0
	MOVD	(p_wbBuf+wbBuf_next)(R0), R1
	MOVD	(p_wbBuf+wbBuf_end)(R0), R27
	// Increment wbBuf.next position.
	ADD	R25, R1
	// Is the buffer full?
	CMP	R27, R1
	BHI	flush
	// Commit to the larger buffer.
	MOVD	R1, (p_wbBuf+wbBuf_next)(R0)
	// Make return value (the original next position)
	SUB	R25, R1, R25
	// Restore registers.
	LDP	184(RSP), (R0, R1)
	RET

flush:
	// Save all general purpose registers since these could be
	// clobbered by wbBufFlush and were not saved by the caller.
	// R0 and R1 already saved
	STP	(R2, R3), 1*8(RSP)
	STP	(R4, R5), 3*8(RSP)
	STP	(R6, R7), 5*8(RSP)
	STP	(R8, R9), 7*8(RSP)
	STP	(R10, R11), 9*8(RSP)
	STP	(R12, R13), 11*8(RSP)
	STP	(R14, R15), 13*8(RSP)
	// R16, R17 may be clobbered by linker trampoline
	// R18 is unused.
	STP	(R19, R20), 15*8(RSP)
	STP	(R21, R22), 17*8(RSP)
	STP	(R23, R24), 19*8(RSP)
	STP	(R25, R26), 21*8(RSP)
	// R27 is temp register.
	// R28 is g.
	// R29 is frame pointer (unused).
	// R30 is LR, which was saved by the prologue.
	// R31 is SP.

	CALL	runtime·wbBufFlush(SB)
	LDP	1*8(RSP), (R2, R3)
	LDP	3*8(RSP), (R4, R5)
	LDP	5*8(RSP), (R6, R7)
	LDP	7*8(RSP), (R8, R9)
	LDP	9*8(RSP), (R10, R11)
	LDP	11*8(RSP), (R12, R13)
	LDP	13*8(RSP), (R14, R15)
	LDP	15*8(RSP), (R19, R20)
	LDP	17*8(RSP), (R21, R22)
	LDP	19*8(RSP), (R23, R24)
	LDP	21*8(RSP), (R25, R26)
	JMP	retry

TEXT runtime·gcWriteBarrier1<ABIInternal>(SB),NOSPLIT,$0
	MOVD	$8, R25
	JMP	gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier2<ABIInternal>(SB),NOSPLIT,$0
	MOVD	$16, R25
	JMP	gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier3<ABIInternal>(SB),NOSPLIT,$0
	MOVD	$24, R25
	JMP	gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier4<ABIInternal>(SB),NOSPLIT,$0
	MOVD	$32, R25
	JMP	gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier5<ABIInternal>(SB),NOSPLIT,$0
	MOVD	$40, R25
	JMP	gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier6<ABIInternal>(SB),NOSPLIT,$0
	MOVD	$48, R25
	JMP	gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier7<ABIInternal>(SB),NOSPLIT,$0
	MOVD	$56, R25
	JMP	gcWriteBarrier<>(SB)
TEXT runtime·gcWriteBarrier8<ABIInternal>(SB),NOSPLIT,$0
	MOVD	$64, R25
	JMP	gcWriteBarrier<>(SB)

DATA	debugCallFrameTooLarge<>+0x00(SB)/20, $"call frame too large"
GLOBL	debugCallFrameTooLarge<>(SB), RODATA, $20	// Size duplicated below

// debugCallV2 is the entry point for debugger-injected function
// calls on running goroutines. It informs the runtime that a
// debug call has been injected and creates a call frame for the
// debugger to fill in.
//
// To inject a function call, a debugger should:
// 1. Check that the goroutine is in state _Grunning and that
//    there are at least 288 bytes free on the stack.
// 2. Set SP as SP-16.
// 3. Store the current LR in (SP) (using the SP after step 2).
// 4. Store the current PC in the LR register.
// 5. Write the desired argument frame size at SP-16
// 6. Save all machine registers (including flags and fpsimd registers)
//    so they can be restored later by the debugger.
// 7. Set the PC to debugCallV2 and resume execution.
//
// If the goroutine is in state _Grunnable, then it's not generally
// safe to inject a call because it may return out via other runtime
// operations. Instead, the debugger should unwind the stack to find
// the return to non-runtime code, add a temporary breakpoint there,
// and inject the call once that breakpoint is hit.
//
// If the goroutine is in any other state, it's not safe to inject a call.
//
// This function communicates back to the debugger by setting R20 and
// invoking BRK to raise a breakpoint signal. Note that the signal PC of
// the signal triggered by the BRK instruction is the PC where the signal
// is trapped, not the next PC, so to resume execution, the debugger needs
// to set the signal PC to PC+4. See the comments in the implementation for
// the protocol the debugger is expected to follow. InjectDebugCall in the
// runtime tests demonstrates this protocol.
//
// The debugger must ensure that any pointers passed to the function
// obey escape analysis requirements. Specifically, it must not pass
// a stack pointer to an escaping argument. debugCallV2 cannot check
// this invariant.
//
// This is ABIInternal because Go code injects its PC directly into new
// goroutine stacks.
TEXT runtime·debugCallV2<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-0
	STP	(R29, R30), -280(RSP)
	SUB	$272, RSP, RSP
	SUB	$8, RSP, R29
	// Save all registers that may contain pointers so they can be
	// conservatively scanned.
	//
	// We can't do anything that might clobber any of these
	// registers before this.
	STP	(R27, g), (30*8)(RSP)
	STP	(R25, R26), (28*8)(RSP)
	STP	(R23, R24), (26*8)(RSP)
	STP	(R21, R22), (24*8)(RSP)
	STP	(R19, R20), (22*8)(RSP)
	STP	(R16, R17), (20*8)(RSP)
	STP	(R14, R15), (18*8)(RSP)
	STP	(R12, R13), (16*8)(RSP)
	STP	(R10, R11), (14*8)(RSP)
	STP	(R8, R9), (12*8)(RSP)
	STP	(R6, R7), (10*8)(RSP)
	STP	(R4, R5), (8*8)(RSP)
	STP	(R2, R3), (6*8)(RSP)
	STP	(R0, R1), (4*8)(RSP)

	// Perform a safe-point check.
	MOVD	R30, 8(RSP) // Caller's PC
	CALL	runtime·debugCallCheck(SB)
	MOVD	16(RSP), R0
	CBZ	R0, good

	// The safety check failed. Put the reason string at the top
	// of the stack.
	MOVD	R0, 8(RSP)
	MOVD	24(RSP), R0
	MOVD	R0, 16(RSP)

	// Set R20 to 8 and invoke BRK. The debugger should get the
	// reason a call can't be injected from SP+8 and resume execution.
	MOVD	$8, R20
	BREAK
	JMP	restore

good:
	// Registers are saved and it's safe to make a call.
	// Open up a call frame, moving the stack if necessary.
	//
	// Once the frame is allocated, this will set R20 to 0 and
	// invoke BRK. The debugger should write the argument
	// frame for the call at SP+8, set up argument registers,
	// set the LR as the signal PC + 4, set the PC to the function
	// to call, set R26 to point to the closure (if a closure call),
	// and resume execution.
	//
	// If the function returns, this will set R20 to 1 and invoke
	// BRK. The debugger can then inspect any return value saved
	// on the stack at SP+8 and in registers. To resume execution,
	// the debugger should restore the LR from (SP).
	//
	// If the function panics, this will set R20 to 2 and invoke BRK.
	// The interface{} value of the panic will be at SP+8. The debugger
	// can inspect the panic value and resume execution again.
#define DEBUG_CALL_DISPATCH(NAME,MAXSIZE)	\
	CMP	$MAXSIZE, R0;			\
	BGT	5(PC);				\
	MOVD	$NAME(SB), R0;			\
	MOVD	R0, 8(RSP);			\
	CALL	runtime·debugCallWrap(SB);	\
	JMP	restore

	MOVD	256(RSP), R0 // the argument frame size
	DEBUG_CALL_DISPATCH(debugCall32<>, 32)
	DEBUG_CALL_DISPATCH(debugCall64<>, 64)
	DEBUG_CALL_DISPATCH(debugCall128<>, 128)
	DEBUG_CALL_DISPATCH(debugCall256<>, 256)
	DEBUG_CALL_DISPATCH(debugCall512<>, 512)
	DEBUG_CALL_DISPATCH(debugCall1024<>, 1024)
	DEBUG_CALL_DISPATCH(debugCall2048<>, 2048)
	DEBUG_CALL_DISPATCH(debugCall4096<>, 4096)
	DEBUG_CALL_DISPATCH(debugCall8192<>, 8192)
	DEBUG_CALL_DISPATCH(debugCall16384<>, 16384)
	DEBUG_CALL_DISPATCH(debugCall32768<>, 32768)
	DEBUG_CALL_DISPATCH(debugCall65536<>, 65536)
	// The frame size is too large. Report the error.
	MOVD	$debugCallFrameTooLarge<>(SB), R0
	MOVD	R0, 8(RSP)
	MOVD	$20, R0
	MOVD	R0, 16(RSP) // length of debugCallFrameTooLarge string
	MOVD	$8, R20
	BREAK
	JMP	restore

restore:
	// Calls and failures resume here.
	//
	// Set R20 to 16 and invoke BRK. The debugger should restore
	// all registers except for PC and RSP and resume execution.
	MOVD	$16, R20
	BREAK
	// We must not modify flags after this point.

	// Restore pointer-containing registers, which may have been
	// modified from the debugger's copy by stack copying.
	LDP	(30*8)(RSP), (R27, g)
	LDP	(28*8)(RSP), (R25, R26)
	LDP	(26*8)(RSP), (R23, R24)
	LDP	(24*8)(RSP), (R21, R22)
	LDP	(22*8)(RSP), (R19, R20)
	LDP	(20*8)(RSP), (R16, R17)
	LDP	(18*8)(RSP), (R14, R15)
	LDP	(16*8)(RSP), (R12, R13)
	LDP	(14*8)(RSP), (R10, R11)
	LDP	(12*8)(RSP), (R8, R9)
	LDP	(10*8)(RSP), (R6, R7)
	LDP	(8*8)(RSP), (R4, R5)
	LDP	(6*8)(RSP), (R2, R3)
	LDP	(4*8)(RSP), (R0, R1)

	LDP	-8(RSP), (R29, R27)
	ADD	$288, RSP, RSP // Add 16 more bytes, see saveSigContext
	MOVD	-16(RSP), R30 // restore old lr
	JMP	(R27)

// runtime.debugCallCheck assumes that functions defined with the
// DEBUG_CALL_FN macro are safe points to inject calls.
#define DEBUG_CALL_FN(NAME,MAXSIZE)		\
TEXT NAME(SB),WRAPPER,$MAXSIZE-0;		\
	NO_LOCAL_POINTERS;		\
	MOVD	$0, R20;		\
	BREAK;		\
	MOVD	$1, R20;		\
	BREAK;		\
	RET
DEBUG_CALL_FN(debugCall32<>, 32)
DEBUG_CALL_FN(debugCall64<>, 64)
DEBUG_CALL_FN(debugCall128<>, 128)
DEBUG_CALL_FN(debugCall256<>, 256)
DEBUG_CALL_FN(debugCall512<>, 512)
DEBUG_CALL_FN(debugCall1024<>, 1024)
DEBUG_CALL_FN(debugCall2048<>, 2048)
DEBUG_CALL_FN(debugCall4096<>, 4096)
DEBUG_CALL_FN(debugCall8192<>, 8192)
DEBUG_CALL_FN(debugCall16384<>, 16384)
DEBUG_CALL_FN(debugCall32768<>, 32768)
DEBUG_CALL_FN(debugCall65536<>, 65536)

// func debugCallPanicked(val interface{})
TEXT runtime·debugCallPanicked(SB),NOSPLIT,$16-16
	// Copy the panic value to the top of stack at SP+8.
	MOVD	val_type+0(FP), R0
	MOVD	R0, 8(RSP)
	MOVD	val_data+8(FP), R0
	MOVD	R0, 16(RSP)
	MOVD	$2, R20
	BREAK
	RET

// Note: these functions use a special calling convention to save generated code space.
// Arguments are passed in registers, but the space for those arguments are allocated
// in the caller's stack frame. These stubs write the args into that stack space and
// then tail call to the corresponding runtime handler.
// The tail call makes these stubs disappear in backtraces.
//
// Defined as ABIInternal since the compiler generates ABIInternal
// calls to it directly and it does not use the stack-based Go ABI.
TEXT runtime·panicIndex<ABIInternal>(SB),NOSPLIT,$0-16
	JMP	runtime·goPanicIndex<ABIInternal>(SB)
TEXT runtime·panicIndexU<ABIInternal>(SB),NOSPLIT,$0-16
	JMP	runtime·goPanicIndexU<ABIInternal>(SB)
TEXT runtime·panicSliceAlen<ABIInternal>(SB),NOSPLIT,$0-16
	MOVD	R1, R0
	MOVD	R2, R1
	JMP	runtime·goPanicSliceAlen<ABIInternal>(SB)
TEXT runtime·panicSliceAlenU<ABIInternal>(SB),NOSPLIT,$0-16
	MOVD	R1, R0
	MOVD	R2, R1
	JMP	runtime·goPanicSliceAlenU<ABIInternal>(SB)
TEXT runtime·panicSliceAcap<ABIInternal>(SB),NOSPLIT,$0-16
	MOVD	R1, R0
	MOVD	R2, R1
	JMP	runtime·goPanicSliceAcap<ABIInternal>(SB)
TEXT runtime·panicSliceAcapU<ABIInternal>(SB),NOSPLIT,$0-16
	MOVD	R1, R0
	MOVD	R2, R1
	JMP	runtime·goPanicSliceAcapU<ABIInternal>(SB)
TEXT runtime·panicSliceB<ABIInternal>(SB),NOSPLIT,$0-16
	JMP	runtime·goPanicSliceB<ABIInternal>(SB)
TEXT runtime·panicSliceBU<ABIInternal>(SB),NOSPLIT,$0-16
	JMP	runtime·goPanicSliceBU<ABIInternal>(SB)
TEXT runtime·panicSlice3Alen<ABIInternal>(SB),NOSPLIT,$0-16
	MOVD	R2, R0
	MOVD	R3, R1
	JMP	runtime·goPanicSlice3Alen<ABIInternal>(SB)
TEXT runtime·panicSlice3AlenU<ABIInternal>(SB),NOSPLIT,$0-16
	MOVD	R2, R0
	MOVD	R3, R1
	JMP	runtime·goPanicSlice3AlenU<ABIInternal>(SB)
TEXT runtime·panicSlice3Acap<ABIInternal>(SB),NOSPLIT,$0-16
	MOVD	R2, R0
	MOVD	R3, R1
	JMP	runtime·goPanicSlice3Acap<ABIInternal>(SB)
TEXT runtime·panicSlice3AcapU<ABIInternal>(SB),NOSPLIT,$0-16
	MOVD	R2, R0
	MOVD	R3, R1
	JMP	runtime·goPanicSlice3AcapU<ABIInternal>(SB)
TEXT runtime·panicSlice3B<ABIInternal>(SB),NOSPLIT,$0-16
	MOVD	R1, R0
	MOVD	R2, R1
	JMP	runtime·goPanicSlice3B<ABIInternal>(SB)
TEXT runtime·panicSlice3BU<ABIInternal>(SB),NOSPLIT,$0-16
	MOVD	R1, R0
	MOVD	R2, R1
	JMP	runtime·goPanicSlice3BU<ABIInternal>(SB)
TEXT runtime·panicSlice3C<ABIInternal>(SB),NOSPLIT,$0-16
	JMP	runtime·goPanicSlice3C<ABIInternal>(SB)
TEXT runtime·panicSlice3CU<ABIInternal>(SB),NOSPLIT,$0-16
	JMP	runtime·goPanicSlice3CU<ABIInternal>(SB)
TEXT runtime·panicSliceConvert<ABIInternal>(SB),NOSPLIT,$0-16
	MOVD	R2, R0
	MOVD	R3, R1
	JMP	runtime·goPanicSliceConvert<ABIInternal>(SB)

TEXT ·getfp<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
	MOVD R29, R0
	RET