1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
|
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package regexp
import (
"regexp/syntax"
"sort"
"strings"
"unicode"
"unicode/utf8"
)
// "One-pass" regexp execution.
// Some regexps can be analyzed to determine that they never need
// backtracking: they are guaranteed to run in one pass over the string
// without bothering to save all the usual NFA state.
// Detect those and execute them more quickly.
// A onePassProg is a compiled one-pass regular expression program.
// It is the same as syntax.Prog except for the use of onePassInst.
type onePassProg struct {
Inst []onePassInst
Start int // index of start instruction
NumCap int // number of InstCapture insts in re
}
// A onePassInst is a single instruction in a one-pass regular expression program.
// It is the same as syntax.Inst except for the new 'Next' field.
type onePassInst struct {
syntax.Inst
Next []uint32
}
// onePassPrefix returns a literal string that all matches for the
// regexp must start with. Complete is true if the prefix
// is the entire match. Pc is the index of the last rune instruction
// in the string. The onePassPrefix skips over the mandatory
// EmptyBeginText.
func onePassPrefix(p *syntax.Prog) (prefix string, complete bool, pc uint32) {
i := &p.Inst[p.Start]
if i.Op != syntax.InstEmptyWidth || (syntax.EmptyOp(i.Arg))&syntax.EmptyBeginText == 0 {
return "", i.Op == syntax.InstMatch, uint32(p.Start)
}
pc = i.Out
i = &p.Inst[pc]
for i.Op == syntax.InstNop {
pc = i.Out
i = &p.Inst[pc]
}
// Avoid allocation of buffer if prefix is empty.
if iop(i) != syntax.InstRune || len(i.Rune) != 1 {
return "", i.Op == syntax.InstMatch, uint32(p.Start)
}
// Have prefix; gather characters.
var buf strings.Builder
for iop(i) == syntax.InstRune && len(i.Rune) == 1 && syntax.Flags(i.Arg)&syntax.FoldCase == 0 && i.Rune[0] != utf8.RuneError {
buf.WriteRune(i.Rune[0])
pc, i = i.Out, &p.Inst[i.Out]
}
if i.Op == syntax.InstEmptyWidth &&
syntax.EmptyOp(i.Arg)&syntax.EmptyEndText != 0 &&
p.Inst[i.Out].Op == syntax.InstMatch {
complete = true
}
return buf.String(), complete, pc
}
// onePassNext selects the next actionable state of the prog, based on the input character.
// It should only be called when i.Op == InstAlt or InstAltMatch, and from the one-pass machine.
// One of the alternates may ultimately lead without input to end of line. If the instruction
// is InstAltMatch the path to the InstMatch is in i.Out, the normal node in i.Next.
func onePassNext(i *onePassInst, r rune) uint32 {
next := i.MatchRunePos(r)
if next >= 0 {
return i.Next[next]
}
if i.Op == syntax.InstAltMatch {
return i.Out
}
return 0
}
func iop(i *syntax.Inst) syntax.InstOp {
op := i.Op
switch op {
case syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
op = syntax.InstRune
}
return op
}
// Sparse Array implementation is used as a queueOnePass.
type queueOnePass struct {
sparse []uint32
dense []uint32
size, nextIndex uint32
}
func (q *queueOnePass) empty() bool {
return q.nextIndex >= q.size
}
func (q *queueOnePass) next() (n uint32) {
n = q.dense[q.nextIndex]
q.nextIndex++
return
}
func (q *queueOnePass) clear() {
q.size = 0
q.nextIndex = 0
}
func (q *queueOnePass) contains(u uint32) bool {
if u >= uint32(len(q.sparse)) {
return false
}
return q.sparse[u] < q.size && q.dense[q.sparse[u]] == u
}
func (q *queueOnePass) insert(u uint32) {
if !q.contains(u) {
q.insertNew(u)
}
}
func (q *queueOnePass) insertNew(u uint32) {
if u >= uint32(len(q.sparse)) {
return
}
q.sparse[u] = q.size
q.dense[q.size] = u
q.size++
}
func newQueue(size int) (q *queueOnePass) {
return &queueOnePass{
sparse: make([]uint32, size),
dense: make([]uint32, size),
}
}
// mergeRuneSets merges two non-intersecting runesets, and returns the merged result,
// and a NextIp array. The idea is that if a rune matches the OnePassRunes at index
// i, NextIp[i/2] is the target. If the input sets intersect, an empty runeset and a
// NextIp array with the single element mergeFailed is returned.
// The code assumes that both inputs contain ordered and non-intersecting rune pairs.
const mergeFailed = uint32(0xffffffff)
var (
noRune = []rune{}
noNext = []uint32{mergeFailed}
)
func mergeRuneSets(leftRunes, rightRunes *[]rune, leftPC, rightPC uint32) ([]rune, []uint32) {
leftLen := len(*leftRunes)
rightLen := len(*rightRunes)
if leftLen&0x1 != 0 || rightLen&0x1 != 0 {
panic("mergeRuneSets odd length []rune")
}
var (
lx, rx int
)
merged := make([]rune, 0)
next := make([]uint32, 0)
ok := true
defer func() {
if !ok {
merged = nil
next = nil
}
}()
ix := -1
extend := func(newLow *int, newArray *[]rune, pc uint32) bool {
if ix > 0 && (*newArray)[*newLow] <= merged[ix] {
return false
}
merged = append(merged, (*newArray)[*newLow], (*newArray)[*newLow+1])
*newLow += 2
ix += 2
next = append(next, pc)
return true
}
for lx < leftLen || rx < rightLen {
switch {
case rx >= rightLen:
ok = extend(&lx, leftRunes, leftPC)
case lx >= leftLen:
ok = extend(&rx, rightRunes, rightPC)
case (*rightRunes)[rx] < (*leftRunes)[lx]:
ok = extend(&rx, rightRunes, rightPC)
default:
ok = extend(&lx, leftRunes, leftPC)
}
if !ok {
return noRune, noNext
}
}
return merged, next
}
// cleanupOnePass drops working memory, and restores certain shortcut instructions.
func cleanupOnePass(prog *onePassProg, original *syntax.Prog) {
for ix, instOriginal := range original.Inst {
switch instOriginal.Op {
case syntax.InstAlt, syntax.InstAltMatch, syntax.InstRune:
case syntax.InstCapture, syntax.InstEmptyWidth, syntax.InstNop, syntax.InstMatch, syntax.InstFail:
prog.Inst[ix].Next = nil
case syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
prog.Inst[ix].Next = nil
prog.Inst[ix] = onePassInst{Inst: instOriginal}
}
}
}
// onePassCopy creates a copy of the original Prog, as we'll be modifying it.
func onePassCopy(prog *syntax.Prog) *onePassProg {
p := &onePassProg{
Start: prog.Start,
NumCap: prog.NumCap,
Inst: make([]onePassInst, len(prog.Inst)),
}
for i, inst := range prog.Inst {
p.Inst[i] = onePassInst{Inst: inst}
}
// rewrites one or more common Prog constructs that enable some otherwise
// non-onepass Progs to be onepass. A:BD (for example) means an InstAlt at
// ip A, that points to ips B & C.
// A:BC + B:DA => A:BC + B:CD
// A:BC + B:DC => A:DC + B:DC
for pc := range p.Inst {
switch p.Inst[pc].Op {
default:
continue
case syntax.InstAlt, syntax.InstAltMatch:
// A:Bx + B:Ay
p_A_Other := &p.Inst[pc].Out
p_A_Alt := &p.Inst[pc].Arg
// make sure a target is another Alt
instAlt := p.Inst[*p_A_Alt]
if !(instAlt.Op == syntax.InstAlt || instAlt.Op == syntax.InstAltMatch) {
p_A_Alt, p_A_Other = p_A_Other, p_A_Alt
instAlt = p.Inst[*p_A_Alt]
if !(instAlt.Op == syntax.InstAlt || instAlt.Op == syntax.InstAltMatch) {
continue
}
}
instOther := p.Inst[*p_A_Other]
// Analyzing both legs pointing to Alts is for another day
if instOther.Op == syntax.InstAlt || instOther.Op == syntax.InstAltMatch {
// too complicated
continue
}
// simple empty transition loop
// A:BC + B:DA => A:BC + B:DC
p_B_Alt := &p.Inst[*p_A_Alt].Out
p_B_Other := &p.Inst[*p_A_Alt].Arg
patch := false
if instAlt.Out == uint32(pc) {
patch = true
} else if instAlt.Arg == uint32(pc) {
patch = true
p_B_Alt, p_B_Other = p_B_Other, p_B_Alt
}
if patch {
*p_B_Alt = *p_A_Other
}
// empty transition to common target
// A:BC + B:DC => A:DC + B:DC
if *p_A_Other == *p_B_Alt {
*p_A_Alt = *p_B_Other
}
}
}
return p
}
// runeSlice exists to permit sorting the case-folded rune sets.
type runeSlice []rune
func (p runeSlice) Len() int { return len(p) }
func (p runeSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p runeSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
var anyRuneNotNL = []rune{0, '\n' - 1, '\n' + 1, unicode.MaxRune}
var anyRune = []rune{0, unicode.MaxRune}
// makeOnePass creates a onepass Prog, if possible. It is possible if at any alt,
// the match engine can always tell which branch to take. The routine may modify
// p if it is turned into a onepass Prog. If it isn't possible for this to be a
// onepass Prog, the Prog nil is returned. makeOnePass is recursive
// to the size of the Prog.
func makeOnePass(p *onePassProg) *onePassProg {
// If the machine is very long, it's not worth the time to check if we can use one pass.
if len(p.Inst) >= 1000 {
return nil
}
var (
instQueue = newQueue(len(p.Inst))
visitQueue = newQueue(len(p.Inst))
check func(uint32, []bool) bool
onePassRunes = make([][]rune, len(p.Inst))
)
// check that paths from Alt instructions are unambiguous, and rebuild the new
// program as a onepass program
check = func(pc uint32, m []bool) (ok bool) {
ok = true
inst := &p.Inst[pc]
if visitQueue.contains(pc) {
return
}
visitQueue.insert(pc)
switch inst.Op {
case syntax.InstAlt, syntax.InstAltMatch:
ok = check(inst.Out, m) && check(inst.Arg, m)
// check no-input paths to InstMatch
matchOut := m[inst.Out]
matchArg := m[inst.Arg]
if matchOut && matchArg {
ok = false
break
}
// Match on empty goes in inst.Out
if matchArg {
inst.Out, inst.Arg = inst.Arg, inst.Out
matchOut, matchArg = matchArg, matchOut
}
if matchOut {
m[pc] = true
inst.Op = syntax.InstAltMatch
}
// build a dispatch operator from the two legs of the alt.
onePassRunes[pc], inst.Next = mergeRuneSets(
&onePassRunes[inst.Out], &onePassRunes[inst.Arg], inst.Out, inst.Arg)
if len(inst.Next) > 0 && inst.Next[0] == mergeFailed {
ok = false
break
}
case syntax.InstCapture, syntax.InstNop:
ok = check(inst.Out, m)
m[pc] = m[inst.Out]
// pass matching runes back through these no-ops.
onePassRunes[pc] = append([]rune{}, onePassRunes[inst.Out]...)
inst.Next = make([]uint32, len(onePassRunes[pc])/2+1)
for i := range inst.Next {
inst.Next[i] = inst.Out
}
case syntax.InstEmptyWidth:
ok = check(inst.Out, m)
m[pc] = m[inst.Out]
onePassRunes[pc] = append([]rune{}, onePassRunes[inst.Out]...)
inst.Next = make([]uint32, len(onePassRunes[pc])/2+1)
for i := range inst.Next {
inst.Next[i] = inst.Out
}
case syntax.InstMatch, syntax.InstFail:
m[pc] = inst.Op == syntax.InstMatch
case syntax.InstRune:
m[pc] = false
if len(inst.Next) > 0 {
break
}
instQueue.insert(inst.Out)
if len(inst.Rune) == 0 {
onePassRunes[pc] = []rune{}
inst.Next = []uint32{inst.Out}
break
}
runes := make([]rune, 0)
if len(inst.Rune) == 1 && syntax.Flags(inst.Arg)&syntax.FoldCase != 0 {
r0 := inst.Rune[0]
runes = append(runes, r0, r0)
for r1 := unicode.SimpleFold(r0); r1 != r0; r1 = unicode.SimpleFold(r1) {
runes = append(runes, r1, r1)
}
sort.Sort(runeSlice(runes))
} else {
runes = append(runes, inst.Rune...)
}
onePassRunes[pc] = runes
inst.Next = make([]uint32, len(onePassRunes[pc])/2+1)
for i := range inst.Next {
inst.Next[i] = inst.Out
}
inst.Op = syntax.InstRune
case syntax.InstRune1:
m[pc] = false
if len(inst.Next) > 0 {
break
}
instQueue.insert(inst.Out)
runes := []rune{}
// expand case-folded runes
if syntax.Flags(inst.Arg)&syntax.FoldCase != 0 {
r0 := inst.Rune[0]
runes = append(runes, r0, r0)
for r1 := unicode.SimpleFold(r0); r1 != r0; r1 = unicode.SimpleFold(r1) {
runes = append(runes, r1, r1)
}
sort.Sort(runeSlice(runes))
} else {
runes = append(runes, inst.Rune[0], inst.Rune[0])
}
onePassRunes[pc] = runes
inst.Next = make([]uint32, len(onePassRunes[pc])/2+1)
for i := range inst.Next {
inst.Next[i] = inst.Out
}
inst.Op = syntax.InstRune
case syntax.InstRuneAny:
m[pc] = false
if len(inst.Next) > 0 {
break
}
instQueue.insert(inst.Out)
onePassRunes[pc] = append([]rune{}, anyRune...)
inst.Next = []uint32{inst.Out}
case syntax.InstRuneAnyNotNL:
m[pc] = false
if len(inst.Next) > 0 {
break
}
instQueue.insert(inst.Out)
onePassRunes[pc] = append([]rune{}, anyRuneNotNL...)
inst.Next = make([]uint32, len(onePassRunes[pc])/2+1)
for i := range inst.Next {
inst.Next[i] = inst.Out
}
}
return
}
instQueue.clear()
instQueue.insert(uint32(p.Start))
m := make([]bool, len(p.Inst))
for !instQueue.empty() {
visitQueue.clear()
pc := instQueue.next()
if !check(pc, m) {
p = nil
break
}
}
if p != nil {
for i := range p.Inst {
p.Inst[i].Rune = onePassRunes[i]
}
}
return p
}
// compileOnePass returns a new *syntax.Prog suitable for onePass execution if the original Prog
// can be recharacterized as a one-pass regexp program, or syntax.nil if the
// Prog cannot be converted. For a one pass prog, the fundamental condition that must
// be true is: at any InstAlt, there must be no ambiguity about what branch to take.
func compileOnePass(prog *syntax.Prog) (p *onePassProg) {
if prog.Start == 0 {
return nil
}
// onepass regexp is anchored
if prog.Inst[prog.Start].Op != syntax.InstEmptyWidth ||
syntax.EmptyOp(prog.Inst[prog.Start].Arg)&syntax.EmptyBeginText != syntax.EmptyBeginText {
return nil
}
// every instruction leading to InstMatch must be EmptyEndText
for _, inst := range prog.Inst {
opOut := prog.Inst[inst.Out].Op
switch inst.Op {
default:
if opOut == syntax.InstMatch {
return nil
}
case syntax.InstAlt, syntax.InstAltMatch:
if opOut == syntax.InstMatch || prog.Inst[inst.Arg].Op == syntax.InstMatch {
return nil
}
case syntax.InstEmptyWidth:
if opOut == syntax.InstMatch {
if syntax.EmptyOp(inst.Arg)&syntax.EmptyEndText == syntax.EmptyEndText {
continue
}
return nil
}
}
}
// Creates a slightly optimized copy of the original Prog
// that cleans up some Prog idioms that block valid onepass programs
p = onePassCopy(prog)
// checkAmbiguity on InstAlts, build onepass Prog if possible
p = makeOnePass(p)
if p != nil {
cleanupOnePass(p, prog)
}
return p
}
|