aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/go/_std_1.22/src/net/netip/netip.go
blob: 7a189e8e16f4fb893557b9c08711495271ee42e5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package netip defines an IP address type that's a small value type.
// Building on that [Addr] type, the package also defines [AddrPort] (an
// IP address and a port) and [Prefix] (an IP address and a bit length
// prefix).
//
// Compared to the [net.IP] type, [Addr] type takes less memory, is immutable,
// and is comparable (supports == and being a map key).
package netip

import (
	"cmp"
	"errors"
	"math"
	"strconv"

	"internal/bytealg"
	"internal/intern"
	"internal/itoa"
)

// Sizes: (64-bit)
//   net.IP:     24 byte slice header + {4, 16} = 28 to 40 bytes
//   net.IPAddr: 40 byte slice header + {4, 16} = 44 to 56 bytes + zone length
//   netip.Addr: 24 bytes (zone is per-name singleton, shared across all users)

// Addr represents an IPv4 or IPv6 address (with or without a scoped
// addressing zone), similar to [net.IP] or [net.IPAddr].
//
// Unlike [net.IP] or [net.IPAddr], Addr is a comparable value
// type (it supports == and can be a map key) and is immutable.
//
// The zero Addr is not a valid IP address.
// Addr{} is distinct from both 0.0.0.0 and ::.
type Addr struct {
	// addr is the hi and lo bits of an IPv6 address. If z==z4,
	// hi and lo contain the IPv4-mapped IPv6 address.
	//
	// hi and lo are constructed by interpreting a 16-byte IPv6
	// address as a big-endian 128-bit number. The most significant
	// bits of that number go into hi, the rest into lo.
	//
	// For example, 0011:2233:4455:6677:8899:aabb:ccdd:eeff is stored as:
	//  addr.hi = 0x0011223344556677
	//  addr.lo = 0x8899aabbccddeeff
	//
	// We store IPs like this, rather than as [16]byte, because it
	// turns most operations on IPs into arithmetic and bit-twiddling
	// operations on 64-bit registers, which is much faster than
	// bytewise processing.
	addr uint128

	// z is a combination of the address family and the IPv6 zone.
	//
	// nil means invalid IP address (for a zero Addr).
	// z4 means an IPv4 address.
	// z6noz means an IPv6 address without a zone.
	//
	// Otherwise it's the interned zone name string.
	z *intern.Value
}

// z0, z4, and z6noz are sentinel Addr.z values.
// See the Addr type's field docs.
var (
	z0    = (*intern.Value)(nil)
	z4    = new(intern.Value)
	z6noz = new(intern.Value)
)

// IPv6LinkLocalAllNodes returns the IPv6 link-local all nodes multicast
// address ff02::1.
func IPv6LinkLocalAllNodes() Addr { return AddrFrom16([16]byte{0: 0xff, 1: 0x02, 15: 0x01}) }

// IPv6LinkLocalAllRouters returns the IPv6 link-local all routers multicast
// address ff02::2.
func IPv6LinkLocalAllRouters() Addr { return AddrFrom16([16]byte{0: 0xff, 1: 0x02, 15: 0x02}) }

// IPv6Loopback returns the IPv6 loopback address ::1.
func IPv6Loopback() Addr { return AddrFrom16([16]byte{15: 0x01}) }

// IPv6Unspecified returns the IPv6 unspecified address "::".
func IPv6Unspecified() Addr { return Addr{z: z6noz} }

// IPv4Unspecified returns the IPv4 unspecified address "0.0.0.0".
func IPv4Unspecified() Addr { return AddrFrom4([4]byte{}) }

// AddrFrom4 returns the address of the IPv4 address given by the bytes in addr.
func AddrFrom4(addr [4]byte) Addr {
	return Addr{
		addr: uint128{0, 0xffff00000000 | uint64(addr[0])<<24 | uint64(addr[1])<<16 | uint64(addr[2])<<8 | uint64(addr[3])},
		z:    z4,
	}
}

// AddrFrom16 returns the IPv6 address given by the bytes in addr.
// An IPv4-mapped IPv6 address is left as an IPv6 address.
// (Use Unmap to convert them if needed.)
func AddrFrom16(addr [16]byte) Addr {
	return Addr{
		addr: uint128{
			beUint64(addr[:8]),
			beUint64(addr[8:]),
		},
		z: z6noz,
	}
}

// ParseAddr parses s as an IP address, returning the result. The string
// s can be in dotted decimal ("192.0.2.1"), IPv6 ("2001:db8::68"),
// or IPv6 with a scoped addressing zone ("fe80::1cc0:3e8c:119f:c2e1%ens18").
func ParseAddr(s string) (Addr, error) {
	for i := 0; i < len(s); i++ {
		switch s[i] {
		case '.':
			return parseIPv4(s)
		case ':':
			return parseIPv6(s)
		case '%':
			// Assume that this was trying to be an IPv6 address with
			// a zone specifier, but the address is missing.
			return Addr{}, parseAddrError{in: s, msg: "missing IPv6 address"}
		}
	}
	return Addr{}, parseAddrError{in: s, msg: "unable to parse IP"}
}

// MustParseAddr calls [ParseAddr](s) and panics on error.
// It is intended for use in tests with hard-coded strings.
func MustParseAddr(s string) Addr {
	ip, err := ParseAddr(s)
	if err != nil {
		panic(err)
	}
	return ip
}

type parseAddrError struct {
	in  string // the string given to ParseAddr
	msg string // an explanation of the parse failure
	at  string // optionally, the unparsed portion of in at which the error occurred.
}

func (err parseAddrError) Error() string {
	q := strconv.Quote
	if err.at != "" {
		return "ParseAddr(" + q(err.in) + "): " + err.msg + " (at " + q(err.at) + ")"
	}
	return "ParseAddr(" + q(err.in) + "): " + err.msg
}

// parseIPv4 parses s as an IPv4 address (in form "192.168.0.1").
func parseIPv4(s string) (ip Addr, err error) {
	var fields [4]uint8
	var val, pos int
	var digLen int // number of digits in current octet
	for i := 0; i < len(s); i++ {
		if s[i] >= '0' && s[i] <= '9' {
			if digLen == 1 && val == 0 {
				return Addr{}, parseAddrError{in: s, msg: "IPv4 field has octet with leading zero"}
			}
			val = val*10 + int(s[i]) - '0'
			digLen++
			if val > 255 {
				return Addr{}, parseAddrError{in: s, msg: "IPv4 field has value >255"}
			}
		} else if s[i] == '.' {
			// .1.2.3
			// 1.2.3.
			// 1..2.3
			if i == 0 || i == len(s)-1 || s[i-1] == '.' {
				return Addr{}, parseAddrError{in: s, msg: "IPv4 field must have at least one digit", at: s[i:]}
			}
			// 1.2.3.4.5
			if pos == 3 {
				return Addr{}, parseAddrError{in: s, msg: "IPv4 address too long"}
			}
			fields[pos] = uint8(val)
			pos++
			val = 0
			digLen = 0
		} else {
			return Addr{}, parseAddrError{in: s, msg: "unexpected character", at: s[i:]}
		}
	}
	if pos < 3 {
		return Addr{}, parseAddrError{in: s, msg: "IPv4 address too short"}
	}
	fields[3] = uint8(val)
	return AddrFrom4(fields), nil
}

// parseIPv6 parses s as an IPv6 address (in form "2001:db8::68").
func parseIPv6(in string) (Addr, error) {
	s := in

	// Split off the zone right from the start. Yes it's a second scan
	// of the string, but trying to handle it inline makes a bunch of
	// other inner loop conditionals more expensive, and it ends up
	// being slower.
	zone := ""
	i := bytealg.IndexByteString(s, '%')
	if i != -1 {
		s, zone = s[:i], s[i+1:]
		if zone == "" {
			// Not allowed to have an empty zone if explicitly specified.
			return Addr{}, parseAddrError{in: in, msg: "zone must be a non-empty string"}
		}
	}

	var ip [16]byte
	ellipsis := -1 // position of ellipsis in ip

	// Might have leading ellipsis
	if len(s) >= 2 && s[0] == ':' && s[1] == ':' {
		ellipsis = 0
		s = s[2:]
		// Might be only ellipsis
		if len(s) == 0 {
			return IPv6Unspecified().WithZone(zone), nil
		}
	}

	// Loop, parsing hex numbers followed by colon.
	i = 0
	for i < 16 {
		// Hex number. Similar to parseIPv4, inlining the hex number
		// parsing yields a significant performance increase.
		off := 0
		acc := uint32(0)
		for ; off < len(s); off++ {
			c := s[off]
			if c >= '0' && c <= '9' {
				acc = (acc << 4) + uint32(c-'0')
			} else if c >= 'a' && c <= 'f' {
				acc = (acc << 4) + uint32(c-'a'+10)
			} else if c >= 'A' && c <= 'F' {
				acc = (acc << 4) + uint32(c-'A'+10)
			} else {
				break
			}
			if acc > math.MaxUint16 {
				// Overflow, fail.
				return Addr{}, parseAddrError{in: in, msg: "IPv6 field has value >=2^16", at: s}
			}
		}
		if off == 0 {
			// No digits found, fail.
			return Addr{}, parseAddrError{in: in, msg: "each colon-separated field must have at least one digit", at: s}
		}

		// If followed by dot, might be in trailing IPv4.
		if off < len(s) && s[off] == '.' {
			if ellipsis < 0 && i != 12 {
				// Not the right place.
				return Addr{}, parseAddrError{in: in, msg: "embedded IPv4 address must replace the final 2 fields of the address", at: s}
			}
			if i+4 > 16 {
				// Not enough room.
				return Addr{}, parseAddrError{in: in, msg: "too many hex fields to fit an embedded IPv4 at the end of the address", at: s}
			}
			// TODO: could make this a bit faster by having a helper
			// that parses to a [4]byte, and have both parseIPv4 and
			// parseIPv6 use it.
			ip4, err := parseIPv4(s)
			if err != nil {
				return Addr{}, parseAddrError{in: in, msg: err.Error(), at: s}
			}
			ip[i] = ip4.v4(0)
			ip[i+1] = ip4.v4(1)
			ip[i+2] = ip4.v4(2)
			ip[i+3] = ip4.v4(3)
			s = ""
			i += 4
			break
		}

		// Save this 16-bit chunk.
		ip[i] = byte(acc >> 8)
		ip[i+1] = byte(acc)
		i += 2

		// Stop at end of string.
		s = s[off:]
		if len(s) == 0 {
			break
		}

		// Otherwise must be followed by colon and more.
		if s[0] != ':' {
			return Addr{}, parseAddrError{in: in, msg: "unexpected character, want colon", at: s}
		} else if len(s) == 1 {
			return Addr{}, parseAddrError{in: in, msg: "colon must be followed by more characters", at: s}
		}
		s = s[1:]

		// Look for ellipsis.
		if s[0] == ':' {
			if ellipsis >= 0 { // already have one
				return Addr{}, parseAddrError{in: in, msg: "multiple :: in address", at: s}
			}
			ellipsis = i
			s = s[1:]
			if len(s) == 0 { // can be at end
				break
			}
		}
	}

	// Must have used entire string.
	if len(s) != 0 {
		return Addr{}, parseAddrError{in: in, msg: "trailing garbage after address", at: s}
	}

	// If didn't parse enough, expand ellipsis.
	if i < 16 {
		if ellipsis < 0 {
			return Addr{}, parseAddrError{in: in, msg: "address string too short"}
		}
		n := 16 - i
		for j := i - 1; j >= ellipsis; j-- {
			ip[j+n] = ip[j]
		}
		for j := ellipsis + n - 1; j >= ellipsis; j-- {
			ip[j] = 0
		}
	} else if ellipsis >= 0 {
		// Ellipsis must represent at least one 0 group.
		return Addr{}, parseAddrError{in: in, msg: "the :: must expand to at least one field of zeros"}
	}
	return AddrFrom16(ip).WithZone(zone), nil
}

// AddrFromSlice parses the 4- or 16-byte byte slice as an IPv4 or IPv6 address.
// Note that a [net.IP] can be passed directly as the []byte argument.
// If slice's length is not 4 or 16, AddrFromSlice returns [Addr]{}, false.
func AddrFromSlice(slice []byte) (ip Addr, ok bool) {
	switch len(slice) {
	case 4:
		return AddrFrom4([4]byte(slice)), true
	case 16:
		return AddrFrom16([16]byte(slice)), true
	}
	return Addr{}, false
}

// v4 returns the i'th byte of ip. If ip is not an IPv4, v4 returns
// unspecified garbage.
func (ip Addr) v4(i uint8) uint8 {
	return uint8(ip.addr.lo >> ((3 - i) * 8))
}

// v6 returns the i'th byte of ip. If ip is an IPv4 address, this
// accesses the IPv4-mapped IPv6 address form of the IP.
func (ip Addr) v6(i uint8) uint8 {
	return uint8(*(ip.addr.halves()[(i/8)%2]) >> ((7 - i%8) * 8))
}

// v6u16 returns the i'th 16-bit word of ip. If ip is an IPv4 address,
// this accesses the IPv4-mapped IPv6 address form of the IP.
func (ip Addr) v6u16(i uint8) uint16 {
	return uint16(*(ip.addr.halves()[(i/4)%2]) >> ((3 - i%4) * 16))
}

// isZero reports whether ip is the zero value of the IP type.
// The zero value is not a valid IP address of any type.
//
// Note that "0.0.0.0" and "::" are not the zero value. Use IsUnspecified to
// check for these values instead.
func (ip Addr) isZero() bool {
	// Faster than comparing ip == Addr{}, but effectively equivalent,
	// as there's no way to make an IP with a nil z from this package.
	return ip.z == z0
}

// IsValid reports whether the [Addr] is an initialized address (not the zero Addr).
//
// Note that "0.0.0.0" and "::" are both valid values.
func (ip Addr) IsValid() bool { return ip.z != z0 }

// BitLen returns the number of bits in the IP address:
// 128 for IPv6, 32 for IPv4, and 0 for the zero [Addr].
//
// Note that IPv4-mapped IPv6 addresses are considered IPv6 addresses
// and therefore have bit length 128.
func (ip Addr) BitLen() int {
	switch ip.z {
	case z0:
		return 0
	case z4:
		return 32
	}
	return 128
}

// Zone returns ip's IPv6 scoped addressing zone, if any.
func (ip Addr) Zone() string {
	if ip.z == nil {
		return ""
	}
	zone, _ := ip.z.Get().(string)
	return zone
}

// Compare returns an integer comparing two IPs.
// The result will be 0 if ip == ip2, -1 if ip < ip2, and +1 if ip > ip2.
// The definition of "less than" is the same as the [Addr.Less] method.
func (ip Addr) Compare(ip2 Addr) int {
	f1, f2 := ip.BitLen(), ip2.BitLen()
	if f1 < f2 {
		return -1
	}
	if f1 > f2 {
		return 1
	}
	hi1, hi2 := ip.addr.hi, ip2.addr.hi
	if hi1 < hi2 {
		return -1
	}
	if hi1 > hi2 {
		return 1
	}
	lo1, lo2 := ip.addr.lo, ip2.addr.lo
	if lo1 < lo2 {
		return -1
	}
	if lo1 > lo2 {
		return 1
	}
	if ip.Is6() {
		za, zb := ip.Zone(), ip2.Zone()
		if za < zb {
			return -1
		}
		if za > zb {
			return 1
		}
	}
	return 0
}

// Less reports whether ip sorts before ip2.
// IP addresses sort first by length, then their address.
// IPv6 addresses with zones sort just after the same address without a zone.
func (ip Addr) Less(ip2 Addr) bool { return ip.Compare(ip2) == -1 }

// Is4 reports whether ip is an IPv4 address.
//
// It returns false for IPv4-mapped IPv6 addresses. See [Addr.Unmap].
func (ip Addr) Is4() bool {
	return ip.z == z4
}

// Is4In6 reports whether ip is an IPv4-mapped IPv6 address.
func (ip Addr) Is4In6() bool {
	return ip.Is6() && ip.addr.hi == 0 && ip.addr.lo>>32 == 0xffff
}

// Is6 reports whether ip is an IPv6 address, including IPv4-mapped
// IPv6 addresses.
func (ip Addr) Is6() bool {
	return ip.z != z0 && ip.z != z4
}

// Unmap returns ip with any IPv4-mapped IPv6 address prefix removed.
//
// That is, if ip is an IPv6 address wrapping an IPv4 address, it
// returns the wrapped IPv4 address. Otherwise it returns ip unmodified.
func (ip Addr) Unmap() Addr {
	if ip.Is4In6() {
		ip.z = z4
	}
	return ip
}

// WithZone returns an IP that's the same as ip but with the provided
// zone. If zone is empty, the zone is removed. If ip is an IPv4
// address, WithZone is a no-op and returns ip unchanged.
func (ip Addr) WithZone(zone string) Addr {
	if !ip.Is6() {
		return ip
	}
	if zone == "" {
		ip.z = z6noz
		return ip
	}
	ip.z = intern.GetByString(zone)
	return ip
}

// withoutZone unconditionally strips the zone from ip.
// It's similar to WithZone, but small enough to be inlinable.
func (ip Addr) withoutZone() Addr {
	if !ip.Is6() {
		return ip
	}
	ip.z = z6noz
	return ip
}

// hasZone reports whether ip has an IPv6 zone.
func (ip Addr) hasZone() bool {
	return ip.z != z0 && ip.z != z4 && ip.z != z6noz
}

// IsLinkLocalUnicast reports whether ip is a link-local unicast address.
func (ip Addr) IsLinkLocalUnicast() bool {
	// Dynamic Configuration of IPv4 Link-Local Addresses
	// https://datatracker.ietf.org/doc/html/rfc3927#section-2.1
	if ip.Is4() {
		return ip.v4(0) == 169 && ip.v4(1) == 254
	}
	// IP Version 6 Addressing Architecture (2.4 Address Type Identification)
	// https://datatracker.ietf.org/doc/html/rfc4291#section-2.4
	if ip.Is6() {
		return ip.v6u16(0)&0xffc0 == 0xfe80
	}
	return false // zero value
}

// IsLoopback reports whether ip is a loopback address.
func (ip Addr) IsLoopback() bool {
	// Requirements for Internet Hosts -- Communication Layers (3.2.1.3 Addressing)
	// https://datatracker.ietf.org/doc/html/rfc1122#section-3.2.1.3
	if ip.Is4() {
		return ip.v4(0) == 127
	}
	// IP Version 6 Addressing Architecture (2.4 Address Type Identification)
	// https://datatracker.ietf.org/doc/html/rfc4291#section-2.4
	if ip.Is6() {
		return ip.addr.hi == 0 && ip.addr.lo == 1
	}
	return false // zero value
}

// IsMulticast reports whether ip is a multicast address.
func (ip Addr) IsMulticast() bool {
	// Host Extensions for IP Multicasting (4. HOST GROUP ADDRESSES)
	// https://datatracker.ietf.org/doc/html/rfc1112#section-4
	if ip.Is4() {
		return ip.v4(0)&0xf0 == 0xe0
	}
	// IP Version 6 Addressing Architecture (2.4 Address Type Identification)
	// https://datatracker.ietf.org/doc/html/rfc4291#section-2.4
	if ip.Is6() {
		return ip.addr.hi>>(64-8) == 0xff // ip.v6(0) == 0xff
	}
	return false // zero value
}

// IsInterfaceLocalMulticast reports whether ip is an IPv6 interface-local
// multicast address.
func (ip Addr) IsInterfaceLocalMulticast() bool {
	// IPv6 Addressing Architecture (2.7.1. Pre-Defined Multicast Addresses)
	// https://datatracker.ietf.org/doc/html/rfc4291#section-2.7.1
	if ip.Is6() {
		return ip.v6u16(0)&0xff0f == 0xff01
	}
	return false // zero value
}

// IsLinkLocalMulticast reports whether ip is a link-local multicast address.
func (ip Addr) IsLinkLocalMulticast() bool {
	// IPv4 Multicast Guidelines (4. Local Network Control Block (224.0.0/24))
	// https://datatracker.ietf.org/doc/html/rfc5771#section-4
	if ip.Is4() {
		return ip.v4(0) == 224 && ip.v4(1) == 0 && ip.v4(2) == 0
	}
	// IPv6 Addressing Architecture (2.7.1. Pre-Defined Multicast Addresses)
	// https://datatracker.ietf.org/doc/html/rfc4291#section-2.7.1
	if ip.Is6() {
		return ip.v6u16(0)&0xff0f == 0xff02
	}
	return false // zero value
}

// IsGlobalUnicast reports whether ip is a global unicast address.
//
// It returns true for IPv6 addresses which fall outside of the current
// IANA-allocated 2000::/3 global unicast space, with the exception of the
// link-local address space. It also returns true even if ip is in the IPv4
// private address space or IPv6 unique local address space.
// It returns false for the zero [Addr].
//
// For reference, see RFC 1122, RFC 4291, and RFC 4632.
func (ip Addr) IsGlobalUnicast() bool {
	if ip.z == z0 {
		// Invalid or zero-value.
		return false
	}

	// Match package net's IsGlobalUnicast logic. Notably private IPv4 addresses
	// and ULA IPv6 addresses are still considered "global unicast".
	if ip.Is4() && (ip == IPv4Unspecified() || ip == AddrFrom4([4]byte{255, 255, 255, 255})) {
		return false
	}

	return ip != IPv6Unspecified() &&
		!ip.IsLoopback() &&
		!ip.IsMulticast() &&
		!ip.IsLinkLocalUnicast()
}

// IsPrivate reports whether ip is a private address, according to RFC 1918
// (IPv4 addresses) and RFC 4193 (IPv6 addresses). That is, it reports whether
// ip is in 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16, or fc00::/7. This is the
// same as [net.IP.IsPrivate].
func (ip Addr) IsPrivate() bool {
	// Match the stdlib's IsPrivate logic.
	if ip.Is4() {
		// RFC 1918 allocates 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16 as
		// private IPv4 address subnets.
		return ip.v4(0) == 10 ||
			(ip.v4(0) == 172 && ip.v4(1)&0xf0 == 16) ||
			(ip.v4(0) == 192 && ip.v4(1) == 168)
	}

	if ip.Is6() {
		// RFC 4193 allocates fc00::/7 as the unique local unicast IPv6 address
		// subnet.
		return ip.v6(0)&0xfe == 0xfc
	}

	return false // zero value
}

// IsUnspecified reports whether ip is an unspecified address, either the IPv4
// address "0.0.0.0" or the IPv6 address "::".
//
// Note that the zero [Addr] is not an unspecified address.
func (ip Addr) IsUnspecified() bool {
	return ip == IPv4Unspecified() || ip == IPv6Unspecified()
}

// Prefix keeps only the top b bits of IP, producing a Prefix
// of the specified length.
// If ip is a zero [Addr], Prefix always returns a zero Prefix and a nil error.
// Otherwise, if bits is less than zero or greater than ip.BitLen(),
// Prefix returns an error.
func (ip Addr) Prefix(b int) (Prefix, error) {
	if b < 0 {
		return Prefix{}, errors.New("negative Prefix bits")
	}
	effectiveBits := b
	switch ip.z {
	case z0:
		return Prefix{}, nil
	case z4:
		if b > 32 {
			return Prefix{}, errors.New("prefix length " + itoa.Itoa(b) + " too large for IPv4")
		}
		effectiveBits += 96
	default:
		if b > 128 {
			return Prefix{}, errors.New("prefix length " + itoa.Itoa(b) + " too large for IPv6")
		}
	}
	ip.addr = ip.addr.and(mask6(effectiveBits))
	return PrefixFrom(ip, b), nil
}

// As16 returns the IP address in its 16-byte representation.
// IPv4 addresses are returned as IPv4-mapped IPv6 addresses.
// IPv6 addresses with zones are returned without their zone (use the
// [Addr.Zone] method to get it).
// The ip zero value returns all zeroes.
func (ip Addr) As16() (a16 [16]byte) {
	bePutUint64(a16[:8], ip.addr.hi)
	bePutUint64(a16[8:], ip.addr.lo)
	return a16
}

// As4 returns an IPv4 or IPv4-in-IPv6 address in its 4-byte representation.
// If ip is the zero [Addr] or an IPv6 address, As4 panics.
// Note that 0.0.0.0 is not the zero Addr.
func (ip Addr) As4() (a4 [4]byte) {
	if ip.z == z4 || ip.Is4In6() {
		bePutUint32(a4[:], uint32(ip.addr.lo))
		return a4
	}
	if ip.z == z0 {
		panic("As4 called on IP zero value")
	}
	panic("As4 called on IPv6 address")
}

// AsSlice returns an IPv4 or IPv6 address in its respective 4-byte or 16-byte representation.
func (ip Addr) AsSlice() []byte {
	switch ip.z {
	case z0:
		return nil
	case z4:
		var ret [4]byte
		bePutUint32(ret[:], uint32(ip.addr.lo))
		return ret[:]
	default:
		var ret [16]byte
		bePutUint64(ret[:8], ip.addr.hi)
		bePutUint64(ret[8:], ip.addr.lo)
		return ret[:]
	}
}

// Next returns the address following ip.
// If there is none, it returns the zero [Addr].
func (ip Addr) Next() Addr {
	ip.addr = ip.addr.addOne()
	if ip.Is4() {
		if uint32(ip.addr.lo) == 0 {
			// Overflowed.
			return Addr{}
		}
	} else {
		if ip.addr.isZero() {
			// Overflowed
			return Addr{}
		}
	}
	return ip
}

// Prev returns the IP before ip.
// If there is none, it returns the IP zero value.
func (ip Addr) Prev() Addr {
	if ip.Is4() {
		if uint32(ip.addr.lo) == 0 {
			return Addr{}
		}
	} else if ip.addr.isZero() {
		return Addr{}
	}
	ip.addr = ip.addr.subOne()
	return ip
}

// String returns the string form of the IP address ip.
// It returns one of 5 forms:
//
//   - "invalid IP", if ip is the zero [Addr]
//   - IPv4 dotted decimal ("192.0.2.1")
//   - IPv6 ("2001:db8::1")
//   - "::ffff:1.2.3.4" (if [Addr.Is4In6])
//   - IPv6 with zone ("fe80:db8::1%eth0")
//
// Note that unlike package net's IP.String method,
// IPv4-mapped IPv6 addresses format with a "::ffff:"
// prefix before the dotted quad.
func (ip Addr) String() string {
	switch ip.z {
	case z0:
		return "invalid IP"
	case z4:
		return ip.string4()
	default:
		if ip.Is4In6() {
			if z := ip.Zone(); z != "" {
				return "::ffff:" + ip.Unmap().string4() + "%" + z
			} else {
				return "::ffff:" + ip.Unmap().string4()
			}
		}
		return ip.string6()
	}
}

// AppendTo appends a text encoding of ip,
// as generated by [Addr.MarshalText],
// to b and returns the extended buffer.
func (ip Addr) AppendTo(b []byte) []byte {
	switch ip.z {
	case z0:
		return b
	case z4:
		return ip.appendTo4(b)
	default:
		if ip.Is4In6() {
			b = append(b, "::ffff:"...)
			b = ip.Unmap().appendTo4(b)
			if z := ip.Zone(); z != "" {
				b = append(b, '%')
				b = append(b, z...)
			}
			return b
		}
		return ip.appendTo6(b)
	}
}

// digits is a string of the hex digits from 0 to f. It's used in
// appendDecimal and appendHex to format IP addresses.
const digits = "0123456789abcdef"

// appendDecimal appends the decimal string representation of x to b.
func appendDecimal(b []byte, x uint8) []byte {
	// Using this function rather than strconv.AppendUint makes IPv4
	// string building 2x faster.

	if x >= 100 {
		b = append(b, digits[x/100])
	}
	if x >= 10 {
		b = append(b, digits[x/10%10])
	}
	return append(b, digits[x%10])
}

// appendHex appends the hex string representation of x to b.
func appendHex(b []byte, x uint16) []byte {
	// Using this function rather than strconv.AppendUint makes IPv6
	// string building 2x faster.

	if x >= 0x1000 {
		b = append(b, digits[x>>12])
	}
	if x >= 0x100 {
		b = append(b, digits[x>>8&0xf])
	}
	if x >= 0x10 {
		b = append(b, digits[x>>4&0xf])
	}
	return append(b, digits[x&0xf])
}

// appendHexPad appends the fully padded hex string representation of x to b.
func appendHexPad(b []byte, x uint16) []byte {
	return append(b, digits[x>>12], digits[x>>8&0xf], digits[x>>4&0xf], digits[x&0xf])
}

func (ip Addr) string4() string {
	const max = len("255.255.255.255")
	ret := make([]byte, 0, max)
	ret = ip.appendTo4(ret)
	return string(ret)
}

func (ip Addr) appendTo4(ret []byte) []byte {
	ret = appendDecimal(ret, ip.v4(0))
	ret = append(ret, '.')
	ret = appendDecimal(ret, ip.v4(1))
	ret = append(ret, '.')
	ret = appendDecimal(ret, ip.v4(2))
	ret = append(ret, '.')
	ret = appendDecimal(ret, ip.v4(3))
	return ret
}

// string6 formats ip in IPv6 textual representation. It follows the
// guidelines in section 4 of RFC 5952
// (https://tools.ietf.org/html/rfc5952#section-4): no unnecessary
// zeros, use :: to elide the longest run of zeros, and don't use ::
// to compact a single zero field.
func (ip Addr) string6() string {
	// Use a zone with a "plausibly long" name, so that most zone-ful
	// IP addresses won't require additional allocation.
	//
	// The compiler does a cool optimization here, where ret ends up
	// stack-allocated and so the only allocation this function does
	// is to construct the returned string. As such, it's okay to be a
	// bit greedy here, size-wise.
	const max = len("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff%enp5s0")
	ret := make([]byte, 0, max)
	ret = ip.appendTo6(ret)
	return string(ret)
}

func (ip Addr) appendTo6(ret []byte) []byte {
	zeroStart, zeroEnd := uint8(255), uint8(255)
	for i := uint8(0); i < 8; i++ {
		j := i
		for j < 8 && ip.v6u16(j) == 0 {
			j++
		}
		if l := j - i; l >= 2 && l > zeroEnd-zeroStart {
			zeroStart, zeroEnd = i, j
		}
	}

	for i := uint8(0); i < 8; i++ {
		if i == zeroStart {
			ret = append(ret, ':', ':')
			i = zeroEnd
			if i >= 8 {
				break
			}
		} else if i > 0 {
			ret = append(ret, ':')
		}

		ret = appendHex(ret, ip.v6u16(i))
	}

	if ip.z != z6noz {
		ret = append(ret, '%')
		ret = append(ret, ip.Zone()...)
	}
	return ret
}

// StringExpanded is like [Addr.String] but IPv6 addresses are expanded with leading
// zeroes and no "::" compression. For example, "2001:db8::1" becomes
// "2001:0db8:0000:0000:0000:0000:0000:0001".
func (ip Addr) StringExpanded() string {
	switch ip.z {
	case z0, z4:
		return ip.String()
	}

	const size = len("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff")
	ret := make([]byte, 0, size)
	for i := uint8(0); i < 8; i++ {
		if i > 0 {
			ret = append(ret, ':')
		}

		ret = appendHexPad(ret, ip.v6u16(i))
	}

	if ip.z != z6noz {
		// The addition of a zone will cause a second allocation, but when there
		// is no zone the ret slice will be stack allocated.
		ret = append(ret, '%')
		ret = append(ret, ip.Zone()...)
	}
	return string(ret)
}

// MarshalText implements the [encoding.TextMarshaler] interface,
// The encoding is the same as returned by [Addr.String], with one exception:
// If ip is the zero [Addr], the encoding is the empty string.
func (ip Addr) MarshalText() ([]byte, error) {
	switch ip.z {
	case z0:
		return []byte(""), nil
	case z4:
		max := len("255.255.255.255")
		b := make([]byte, 0, max)
		return ip.appendTo4(b), nil
	default:
		max := len("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff%enp5s0")
		b := make([]byte, 0, max)
		if ip.Is4In6() {
			b = append(b, "::ffff:"...)
			b = ip.Unmap().appendTo4(b)
			if z := ip.Zone(); z != "" {
				b = append(b, '%')
				b = append(b, z...)
			}
			return b, nil
		}
		return ip.appendTo6(b), nil
	}

}

// UnmarshalText implements the encoding.TextUnmarshaler interface.
// The IP address is expected in a form accepted by [ParseAddr].
//
// If text is empty, UnmarshalText sets *ip to the zero [Addr] and
// returns no error.
func (ip *Addr) UnmarshalText(text []byte) error {
	if len(text) == 0 {
		*ip = Addr{}
		return nil
	}
	var err error
	*ip, err = ParseAddr(string(text))
	return err
}

func (ip Addr) marshalBinaryWithTrailingBytes(trailingBytes int) []byte {
	var b []byte
	switch ip.z {
	case z0:
		b = make([]byte, trailingBytes)
	case z4:
		b = make([]byte, 4+trailingBytes)
		bePutUint32(b, uint32(ip.addr.lo))
	default:
		z := ip.Zone()
		b = make([]byte, 16+len(z)+trailingBytes)
		bePutUint64(b[:8], ip.addr.hi)
		bePutUint64(b[8:], ip.addr.lo)
		copy(b[16:], z)
	}
	return b
}

// MarshalBinary implements the [encoding.BinaryMarshaler] interface.
// It returns a zero-length slice for the zero [Addr],
// the 4-byte form for an IPv4 address,
// and the 16-byte form with zone appended for an IPv6 address.
func (ip Addr) MarshalBinary() ([]byte, error) {
	return ip.marshalBinaryWithTrailingBytes(0), nil
}

// UnmarshalBinary implements the [encoding.BinaryUnmarshaler] interface.
// It expects data in the form generated by MarshalBinary.
func (ip *Addr) UnmarshalBinary(b []byte) error {
	n := len(b)
	switch {
	case n == 0:
		*ip = Addr{}
		return nil
	case n == 4:
		*ip = AddrFrom4([4]byte(b))
		return nil
	case n == 16:
		*ip = AddrFrom16([16]byte(b))
		return nil
	case n > 16:
		*ip = AddrFrom16([16]byte(b[:16])).WithZone(string(b[16:]))
		return nil
	}
	return errors.New("unexpected slice size")
}

// AddrPort is an IP and a port number.
type AddrPort struct {
	ip   Addr
	port uint16
}

// AddrPortFrom returns an [AddrPort] with the provided IP and port.
// It does not allocate.
func AddrPortFrom(ip Addr, port uint16) AddrPort { return AddrPort{ip: ip, port: port} }

// Addr returns p's IP address.
func (p AddrPort) Addr() Addr { return p.ip }

// Port returns p's port.
func (p AddrPort) Port() uint16 { return p.port }

// splitAddrPort splits s into an IP address string and a port
// string. It splits strings shaped like "foo:bar" or "[foo]:bar",
// without further validating the substrings. v6 indicates whether the
// ip string should parse as an IPv6 address or an IPv4 address, in
// order for s to be a valid ip:port string.
func splitAddrPort(s string) (ip, port string, v6 bool, err error) {
	i := bytealg.LastIndexByteString(s, ':')
	if i == -1 {
		return "", "", false, errors.New("not an ip:port")
	}

	ip, port = s[:i], s[i+1:]
	if len(ip) == 0 {
		return "", "", false, errors.New("no IP")
	}
	if len(port) == 0 {
		return "", "", false, errors.New("no port")
	}
	if ip[0] == '[' {
		if len(ip) < 2 || ip[len(ip)-1] != ']' {
			return "", "", false, errors.New("missing ]")
		}
		ip = ip[1 : len(ip)-1]
		v6 = true
	}

	return ip, port, v6, nil
}

// ParseAddrPort parses s as an [AddrPort].
//
// It doesn't do any name resolution: both the address and the port
// must be numeric.
func ParseAddrPort(s string) (AddrPort, error) {
	var ipp AddrPort
	ip, port, v6, err := splitAddrPort(s)
	if err != nil {
		return ipp, err
	}
	port16, err := strconv.ParseUint(port, 10, 16)
	if err != nil {
		return ipp, errors.New("invalid port " + strconv.Quote(port) + " parsing " + strconv.Quote(s))
	}
	ipp.port = uint16(port16)
	ipp.ip, err = ParseAddr(ip)
	if err != nil {
		return AddrPort{}, err
	}
	if v6 && ipp.ip.Is4() {
		return AddrPort{}, errors.New("invalid ip:port " + strconv.Quote(s) + ", square brackets can only be used with IPv6 addresses")
	} else if !v6 && ipp.ip.Is6() {
		return AddrPort{}, errors.New("invalid ip:port " + strconv.Quote(s) + ", IPv6 addresses must be surrounded by square brackets")
	}
	return ipp, nil
}

// MustParseAddrPort calls [ParseAddrPort](s) and panics on error.
// It is intended for use in tests with hard-coded strings.
func MustParseAddrPort(s string) AddrPort {
	ip, err := ParseAddrPort(s)
	if err != nil {
		panic(err)
	}
	return ip
}

// IsValid reports whether p.Addr() is valid.
// All ports are valid, including zero.
func (p AddrPort) IsValid() bool { return p.ip.IsValid() }

// Compare returns an integer comparing two AddrPorts.
// The result will be 0 if p == p2, -1 if p < p2, and +1 if p > p2.
// AddrPorts sort first by IP address, then port.
func (p AddrPort) Compare(p2 AddrPort) int {
	if c := p.Addr().Compare(p2.Addr()); c != 0 {
		return c
	}
	return cmp.Compare(p.Port(), p2.Port())
}

func (p AddrPort) String() string {
	switch p.ip.z {
	case z0:
		return "invalid AddrPort"
	case z4:
		const max = len("255.255.255.255:65535")
		buf := make([]byte, 0, max)
		buf = p.ip.appendTo4(buf)
		buf = append(buf, ':')
		buf = strconv.AppendUint(buf, uint64(p.port), 10)
		return string(buf)
	default:
		// TODO: this could be more efficient allocation-wise:
		return "[" + p.ip.String() + "]:" + itoa.Uitoa(uint(p.port))
	}
}

// AppendTo appends a text encoding of p,
// as generated by [AddrPort.MarshalText],
// to b and returns the extended buffer.
func (p AddrPort) AppendTo(b []byte) []byte {
	switch p.ip.z {
	case z0:
		return b
	case z4:
		b = p.ip.appendTo4(b)
	default:
		if p.ip.Is4In6() {
			b = append(b, "[::ffff:"...)
			b = p.ip.Unmap().appendTo4(b)
			if z := p.ip.Zone(); z != "" {
				b = append(b, '%')
				b = append(b, z...)
			}
		} else {
			b = append(b, '[')
			b = p.ip.appendTo6(b)
		}
		b = append(b, ']')
	}
	b = append(b, ':')
	b = strconv.AppendUint(b, uint64(p.port), 10)
	return b
}

// MarshalText implements the [encoding.TextMarshaler] interface. The
// encoding is the same as returned by [AddrPort.String], with one exception: if
// p.Addr() is the zero [Addr], the encoding is the empty string.
func (p AddrPort) MarshalText() ([]byte, error) {
	var max int
	switch p.ip.z {
	case z0:
	case z4:
		max = len("255.255.255.255:65535")
	default:
		max = len("[ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff%enp5s0]:65535")
	}
	b := make([]byte, 0, max)
	b = p.AppendTo(b)
	return b, nil
}

// UnmarshalText implements the encoding.TextUnmarshaler
// interface. The [AddrPort] is expected in a form
// generated by [AddrPort.MarshalText] or accepted by [ParseAddrPort].
func (p *AddrPort) UnmarshalText(text []byte) error {
	if len(text) == 0 {
		*p = AddrPort{}
		return nil
	}
	var err error
	*p, err = ParseAddrPort(string(text))
	return err
}

// MarshalBinary implements the [encoding.BinaryMarshaler] interface.
// It returns [Addr.MarshalBinary] with an additional two bytes appended
// containing the port in little-endian.
func (p AddrPort) MarshalBinary() ([]byte, error) {
	b := p.Addr().marshalBinaryWithTrailingBytes(2)
	lePutUint16(b[len(b)-2:], p.Port())
	return b, nil
}

// UnmarshalBinary implements the [encoding.BinaryUnmarshaler] interface.
// It expects data in the form generated by [AddrPort.MarshalBinary].
func (p *AddrPort) UnmarshalBinary(b []byte) error {
	if len(b) < 2 {
		return errors.New("unexpected slice size")
	}
	var addr Addr
	err := addr.UnmarshalBinary(b[:len(b)-2])
	if err != nil {
		return err
	}
	*p = AddrPortFrom(addr, leUint16(b[len(b)-2:]))
	return nil
}

// Prefix is an IP address prefix (CIDR) representing an IP network.
//
// The first [Prefix.Bits]() of [Addr]() are specified. The remaining bits match any address.
// The range of Bits() is [0,32] for IPv4 or [0,128] for IPv6.
type Prefix struct {
	ip Addr

	// bitsPlusOne stores the prefix bit length plus one.
	// A Prefix is valid if and only if bitsPlusOne is non-zero.
	bitsPlusOne uint8
}

// PrefixFrom returns a [Prefix] with the provided IP address and bit
// prefix length.
//
// It does not allocate. Unlike [Addr.Prefix], [PrefixFrom] does not mask
// off the host bits of ip.
//
// If bits is less than zero or greater than ip.BitLen, [Prefix.Bits]
// will return an invalid value -1.
func PrefixFrom(ip Addr, bits int) Prefix {
	var bitsPlusOne uint8
	if !ip.isZero() && bits >= 0 && bits <= ip.BitLen() {
		bitsPlusOne = uint8(bits) + 1
	}
	return Prefix{
		ip:          ip.withoutZone(),
		bitsPlusOne: bitsPlusOne,
	}
}

// Addr returns p's IP address.
func (p Prefix) Addr() Addr { return p.ip }

// Bits returns p's prefix length.
//
// It reports -1 if invalid.
func (p Prefix) Bits() int { return int(p.bitsPlusOne) - 1 }

// IsValid reports whether p.Bits() has a valid range for p.Addr().
// If p.Addr() is the zero [Addr], IsValid returns false.
// Note that if p is the zero [Prefix], then p.IsValid() == false.
func (p Prefix) IsValid() bool { return p.bitsPlusOne > 0 }

func (p Prefix) isZero() bool { return p == Prefix{} }

// IsSingleIP reports whether p contains exactly one IP.
func (p Prefix) IsSingleIP() bool { return p.IsValid() && p.Bits() == p.ip.BitLen() }

// compare returns an integer comparing two prefixes.
// The result will be 0 if p == p2, -1 if p < p2, and +1 if p > p2.
// Prefixes sort first by validity (invalid before valid), then
// address family (IPv4 before IPv6), then prefix length, then
// address.
//
// Unexported for Go 1.22 because we may want to compare by p.Addr first.
// See post-acceptance discussion on go.dev/issue/61642.
func (p Prefix) compare(p2 Prefix) int {
	if c := cmp.Compare(p.Addr().BitLen(), p2.Addr().BitLen()); c != 0 {
		return c
	}
	if c := cmp.Compare(p.Bits(), p2.Bits()); c != 0 {
		return c
	}
	return p.Addr().Compare(p2.Addr())
}

// ParsePrefix parses s as an IP address prefix.
// The string can be in the form "192.168.1.0/24" or "2001:db8::/32",
// the CIDR notation defined in RFC 4632 and RFC 4291.
// IPv6 zones are not permitted in prefixes, and an error will be returned if a
// zone is present.
//
// Note that masked address bits are not zeroed. Use Masked for that.
func ParsePrefix(s string) (Prefix, error) {
	i := bytealg.LastIndexByteString(s, '/')
	if i < 0 {
		return Prefix{}, errors.New("netip.ParsePrefix(" + strconv.Quote(s) + "): no '/'")
	}
	ip, err := ParseAddr(s[:i])
	if err != nil {
		return Prefix{}, errors.New("netip.ParsePrefix(" + strconv.Quote(s) + "): " + err.Error())
	}
	// IPv6 zones are not allowed: https://go.dev/issue/51899
	if ip.Is6() && ip.z != z6noz {
		return Prefix{}, errors.New("netip.ParsePrefix(" + strconv.Quote(s) + "): IPv6 zones cannot be present in a prefix")
	}

	bitsStr := s[i+1:]

	// strconv.Atoi accepts a leading sign and leading zeroes, but we don't want that.
	if len(bitsStr) > 1 && (bitsStr[0] < '1' || bitsStr[0] > '9') {
		return Prefix{}, errors.New("netip.ParsePrefix(" + strconv.Quote(s) + "): bad bits after slash: " + strconv.Quote(bitsStr))
	}

	bits, err := strconv.Atoi(bitsStr)
	if err != nil {
		return Prefix{}, errors.New("netip.ParsePrefix(" + strconv.Quote(s) + "): bad bits after slash: " + strconv.Quote(bitsStr))
	}
	maxBits := 32
	if ip.Is6() {
		maxBits = 128
	}
	if bits < 0 || bits > maxBits {
		return Prefix{}, errors.New("netip.ParsePrefix(" + strconv.Quote(s) + "): prefix length out of range")
	}
	return PrefixFrom(ip, bits), nil
}

// MustParsePrefix calls [ParsePrefix](s) and panics on error.
// It is intended for use in tests with hard-coded strings.
func MustParsePrefix(s string) Prefix {
	ip, err := ParsePrefix(s)
	if err != nil {
		panic(err)
	}
	return ip
}

// Masked returns p in its canonical form, with all but the high
// p.Bits() bits of p.Addr() masked off.
//
// If p is zero or otherwise invalid, Masked returns the zero [Prefix].
func (p Prefix) Masked() Prefix {
	m, _ := p.ip.Prefix(p.Bits())
	return m
}

// Contains reports whether the network p includes ip.
//
// An IPv4 address will not match an IPv6 prefix.
// An IPv4-mapped IPv6 address will not match an IPv4 prefix.
// A zero-value IP will not match any prefix.
// If ip has an IPv6 zone, Contains returns false,
// because Prefixes strip zones.
func (p Prefix) Contains(ip Addr) bool {
	if !p.IsValid() || ip.hasZone() {
		return false
	}
	if f1, f2 := p.ip.BitLen(), ip.BitLen(); f1 == 0 || f2 == 0 || f1 != f2 {
		return false
	}
	if ip.Is4() {
		// xor the IP addresses together; mismatched bits are now ones.
		// Shift away the number of bits we don't care about.
		// Shifts in Go are more efficient if the compiler can prove
		// that the shift amount is smaller than the width of the shifted type (64 here).
		// We know that p.bits is in the range 0..32 because p is Valid;
		// the compiler doesn't know that, so mask with 63 to help it.
		// Now truncate to 32 bits, because this is IPv4.
		// If all the bits we care about are equal, the result will be zero.
		return uint32((ip.addr.lo^p.ip.addr.lo)>>((32-p.Bits())&63)) == 0
	} else {
		// xor the IP addresses together.
		// Mask away the bits we don't care about.
		// If all the bits we care about are equal, the result will be zero.
		return ip.addr.xor(p.ip.addr).and(mask6(p.Bits())).isZero()
	}
}

// Overlaps reports whether p and o contain any IP addresses in common.
//
// If p and o are of different address families or either have a zero
// IP, it reports false. Like the Contains method, a prefix with an
// IPv4-mapped IPv6 address is still treated as an IPv6 mask.
func (p Prefix) Overlaps(o Prefix) bool {
	if !p.IsValid() || !o.IsValid() {
		return false
	}
	if p == o {
		return true
	}
	if p.ip.Is4() != o.ip.Is4() {
		return false
	}
	var minBits int
	if pb, ob := p.Bits(), o.Bits(); pb < ob {
		minBits = pb
	} else {
		minBits = ob
	}
	if minBits == 0 {
		return true
	}
	// One of these Prefix calls might look redundant, but we don't require
	// that p and o values are normalized (via Prefix.Masked) first,
	// so the Prefix call on the one that's already minBits serves to zero
	// out any remaining bits in IP.
	var err error
	if p, err = p.ip.Prefix(minBits); err != nil {
		return false
	}
	if o, err = o.ip.Prefix(minBits); err != nil {
		return false
	}
	return p.ip == o.ip
}

// AppendTo appends a text encoding of p,
// as generated by [Prefix.MarshalText],
// to b and returns the extended buffer.
func (p Prefix) AppendTo(b []byte) []byte {
	if p.isZero() {
		return b
	}
	if !p.IsValid() {
		return append(b, "invalid Prefix"...)
	}

	// p.ip is non-nil, because p is valid.
	if p.ip.z == z4 {
		b = p.ip.appendTo4(b)
	} else {
		if p.ip.Is4In6() {
			b = append(b, "::ffff:"...)
			b = p.ip.Unmap().appendTo4(b)
		} else {
			b = p.ip.appendTo6(b)
		}
	}

	b = append(b, '/')
	b = appendDecimal(b, uint8(p.Bits()))
	return b
}

// MarshalText implements the [encoding.TextMarshaler] interface,
// The encoding is the same as returned by [Prefix.String], with one exception:
// If p is the zero value, the encoding is the empty string.
func (p Prefix) MarshalText() ([]byte, error) {
	var max int
	switch p.ip.z {
	case z0:
	case z4:
		max = len("255.255.255.255/32")
	default:
		max = len("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff%enp5s0/128")
	}
	b := make([]byte, 0, max)
	b = p.AppendTo(b)
	return b, nil
}

// UnmarshalText implements the encoding.TextUnmarshaler interface.
// The IP address is expected in a form accepted by [ParsePrefix]
// or generated by [Prefix.MarshalText].
func (p *Prefix) UnmarshalText(text []byte) error {
	if len(text) == 0 {
		*p = Prefix{}
		return nil
	}
	var err error
	*p, err = ParsePrefix(string(text))
	return err
}

// MarshalBinary implements the [encoding.BinaryMarshaler] interface.
// It returns [Addr.MarshalBinary] with an additional byte appended
// containing the prefix bits.
func (p Prefix) MarshalBinary() ([]byte, error) {
	b := p.Addr().withoutZone().marshalBinaryWithTrailingBytes(1)
	b[len(b)-1] = uint8(p.Bits())
	return b, nil
}

// UnmarshalBinary implements the [encoding.BinaryUnmarshaler] interface.
// It expects data in the form generated by [Prefix.MarshalBinary].
func (p *Prefix) UnmarshalBinary(b []byte) error {
	if len(b) < 1 {
		return errors.New("unexpected slice size")
	}
	var addr Addr
	err := addr.UnmarshalBinary(b[:len(b)-1])
	if err != nil {
		return err
	}
	*p = PrefixFrom(addr, int(b[len(b)-1]))
	return nil
}

// String returns the CIDR notation of p: "<ip>/<bits>".
func (p Prefix) String() string {
	if !p.IsValid() {
		return "invalid Prefix"
	}
	return p.ip.String() + "/" + itoa.Itoa(p.Bits())
}