aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/go/_std_1.22/src/math/big/ratconv.go
blob: dd99aecdc04af0982deb588205e9b0a5cb509f55 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file implements rat-to-string conversion functions.

package big

import (
	"errors"
	"fmt"
	"io"
	"strconv"
	"strings"
)

func ratTok(ch rune) bool {
	return strings.ContainsRune("+-/0123456789.eE", ch)
}

var ratZero Rat
var _ fmt.Scanner = &ratZero // *Rat must implement fmt.Scanner

// Scan is a support routine for fmt.Scanner. It accepts the formats
// 'e', 'E', 'f', 'F', 'g', 'G', and 'v'. All formats are equivalent.
func (z *Rat) Scan(s fmt.ScanState, ch rune) error {
	tok, err := s.Token(true, ratTok)
	if err != nil {
		return err
	}
	if !strings.ContainsRune("efgEFGv", ch) {
		return errors.New("Rat.Scan: invalid verb")
	}
	if _, ok := z.SetString(string(tok)); !ok {
		return errors.New("Rat.Scan: invalid syntax")
	}
	return nil
}

// SetString sets z to the value of s and returns z and a boolean indicating
// success. s can be given as a (possibly signed) fraction "a/b", or as a
// floating-point number optionally followed by an exponent.
// If a fraction is provided, both the dividend and the divisor may be a
// decimal integer or independently use a prefix of “0b”, “0” or “0o”,
// or “0x” (or their upper-case variants) to denote a binary, octal, or
// hexadecimal integer, respectively. The divisor may not be signed.
// If a floating-point number is provided, it may be in decimal form or
// use any of the same prefixes as above but for “0” to denote a non-decimal
// mantissa. A leading “0” is considered a decimal leading 0; it does not
// indicate octal representation in this case.
// An optional base-10 “e” or base-2 “p” (or their upper-case variants)
// exponent may be provided as well, except for hexadecimal floats which
// only accept an (optional) “p” exponent (because an “e” or “E” cannot
// be distinguished from a mantissa digit). If the exponent's absolute value
// is too large, the operation may fail.
// The entire string, not just a prefix, must be valid for success. If the
// operation failed, the value of z is undefined but the returned value is nil.
func (z *Rat) SetString(s string) (*Rat, bool) {
	if len(s) == 0 {
		return nil, false
	}
	// len(s) > 0

	// parse fraction a/b, if any
	if sep := strings.Index(s, "/"); sep >= 0 {
		if _, ok := z.a.SetString(s[:sep], 0); !ok {
			return nil, false
		}
		r := strings.NewReader(s[sep+1:])
		var err error
		if z.b.abs, _, _, err = z.b.abs.scan(r, 0, false); err != nil {
			return nil, false
		}
		// entire string must have been consumed
		if _, err = r.ReadByte(); err != io.EOF {
			return nil, false
		}
		if len(z.b.abs) == 0 {
			return nil, false
		}
		return z.norm(), true
	}

	// parse floating-point number
	r := strings.NewReader(s)

	// sign
	neg, err := scanSign(r)
	if err != nil {
		return nil, false
	}

	// mantissa
	var base int
	var fcount int // fractional digit count; valid if <= 0
	z.a.abs, base, fcount, err = z.a.abs.scan(r, 0, true)
	if err != nil {
		return nil, false
	}

	// exponent
	var exp int64
	var ebase int
	exp, ebase, err = scanExponent(r, true, true)
	if err != nil {
		return nil, false
	}

	// there should be no unread characters left
	if _, err = r.ReadByte(); err != io.EOF {
		return nil, false
	}

	// special-case 0 (see also issue #16176)
	if len(z.a.abs) == 0 {
		return z.norm(), true
	}
	// len(z.a.abs) > 0

	// The mantissa may have a radix point (fcount <= 0) and there
	// may be a nonzero exponent exp. The radix point amounts to a
	// division by base**(-fcount), which equals a multiplication by
	// base**fcount. An exponent means multiplication by ebase**exp.
	// Multiplications are commutative, so we can apply them in any
	// order. We only have powers of 2 and 10, and we split powers
	// of 10 into the product of the same powers of 2 and 5. This
	// may reduce the size of shift/multiplication factors or
	// divisors required to create the final fraction, depending
	// on the actual floating-point value.

	// determine binary or decimal exponent contribution of radix point
	var exp2, exp5 int64
	if fcount < 0 {
		// The mantissa has a radix point ddd.dddd; and
		// -fcount is the number of digits to the right
		// of '.'. Adjust relevant exponent accordingly.
		d := int64(fcount)
		switch base {
		case 10:
			exp5 = d
			fallthrough // 10**e == 5**e * 2**e
		case 2:
			exp2 = d
		case 8:
			exp2 = d * 3 // octal digits are 3 bits each
		case 16:
			exp2 = d * 4 // hexadecimal digits are 4 bits each
		default:
			panic("unexpected mantissa base")
		}
		// fcount consumed - not needed anymore
	}

	// take actual exponent into account
	switch ebase {
	case 10:
		exp5 += exp
		fallthrough // see fallthrough above
	case 2:
		exp2 += exp
	default:
		panic("unexpected exponent base")
	}
	// exp consumed - not needed anymore

	// apply exp5 contributions
	// (start with exp5 so the numbers to multiply are smaller)
	if exp5 != 0 {
		n := exp5
		if n < 0 {
			n = -n
			if n < 0 {
				// This can occur if -n overflows. -(-1 << 63) would become
				// -1 << 63, which is still negative.
				return nil, false
			}
		}
		if n > 1e6 {
			return nil, false // avoid excessively large exponents
		}
		pow5 := z.b.abs.expNN(natFive, nat(nil).setWord(Word(n)), nil, false) // use underlying array of z.b.abs
		if exp5 > 0 {
			z.a.abs = z.a.abs.mul(z.a.abs, pow5)
			z.b.abs = z.b.abs.setWord(1)
		} else {
			z.b.abs = pow5
		}
	} else {
		z.b.abs = z.b.abs.setWord(1)
	}

	// apply exp2 contributions
	if exp2 < -1e7 || exp2 > 1e7 {
		return nil, false // avoid excessively large exponents
	}
	if exp2 > 0 {
		z.a.abs = z.a.abs.shl(z.a.abs, uint(exp2))
	} else if exp2 < 0 {
		z.b.abs = z.b.abs.shl(z.b.abs, uint(-exp2))
	}

	z.a.neg = neg && len(z.a.abs) > 0 // 0 has no sign

	return z.norm(), true
}

// scanExponent scans the longest possible prefix of r representing a base 10
// (“e”, “E”) or a base 2 (“p”, “P”) exponent, if any. It returns the
// exponent, the exponent base (10 or 2), or a read or syntax error, if any.
//
// If sepOk is set, an underscore character “_” may appear between successive
// exponent digits; such underscores do not change the value of the exponent.
// Incorrect placement of underscores is reported as an error if there are no
// other errors. If sepOk is not set, underscores are not recognized and thus
// terminate scanning like any other character that is not a valid digit.
//
//	exponent = ( "e" | "E" | "p" | "P" ) [ sign ] digits .
//	sign     = "+" | "-" .
//	digits   = digit { [ '_' ] digit } .
//	digit    = "0" ... "9" .
//
// A base 2 exponent is only permitted if base2ok is set.
func scanExponent(r io.ByteScanner, base2ok, sepOk bool) (exp int64, base int, err error) {
	// one char look-ahead
	ch, err := r.ReadByte()
	if err != nil {
		if err == io.EOF {
			err = nil
		}
		return 0, 10, err
	}

	// exponent char
	switch ch {
	case 'e', 'E':
		base = 10
	case 'p', 'P':
		if base2ok {
			base = 2
			break // ok
		}
		fallthrough // binary exponent not permitted
	default:
		r.UnreadByte() // ch does not belong to exponent anymore
		return 0, 10, nil
	}

	// sign
	var digits []byte
	ch, err = r.ReadByte()
	if err == nil && (ch == '+' || ch == '-') {
		if ch == '-' {
			digits = append(digits, '-')
		}
		ch, err = r.ReadByte()
	}

	// prev encodes the previously seen char: it is one
	// of '_', '0' (a digit), or '.' (anything else). A
	// valid separator '_' may only occur after a digit.
	prev := '.'
	invalSep := false

	// exponent value
	hasDigits := false
	for err == nil {
		if '0' <= ch && ch <= '9' {
			digits = append(digits, ch)
			prev = '0'
			hasDigits = true
		} else if ch == '_' && sepOk {
			if prev != '0' {
				invalSep = true
			}
			prev = '_'
		} else {
			r.UnreadByte() // ch does not belong to number anymore
			break
		}
		ch, err = r.ReadByte()
	}

	if err == io.EOF {
		err = nil
	}
	if err == nil && !hasDigits {
		err = errNoDigits
	}
	if err == nil {
		exp, err = strconv.ParseInt(string(digits), 10, 64)
	}
	// other errors take precedence over invalid separators
	if err == nil && (invalSep || prev == '_') {
		err = errInvalSep
	}

	return
}

// String returns a string representation of x in the form "a/b" (even if b == 1).
func (x *Rat) String() string {
	return string(x.marshal())
}

// marshal implements String returning a slice of bytes
func (x *Rat) marshal() []byte {
	var buf []byte
	buf = x.a.Append(buf, 10)
	buf = append(buf, '/')
	if len(x.b.abs) != 0 {
		buf = x.b.Append(buf, 10)
	} else {
		buf = append(buf, '1')
	}
	return buf
}

// RatString returns a string representation of x in the form "a/b" if b != 1,
// and in the form "a" if b == 1.
func (x *Rat) RatString() string {
	if x.IsInt() {
		return x.a.String()
	}
	return x.String()
}

// FloatString returns a string representation of x in decimal form with prec
// digits of precision after the radix point. The last digit is rounded to
// nearest, with halves rounded away from zero.
func (x *Rat) FloatString(prec int) string {
	var buf []byte

	if x.IsInt() {
		buf = x.a.Append(buf, 10)
		if prec > 0 {
			buf = append(buf, '.')
			for i := prec; i > 0; i-- {
				buf = append(buf, '0')
			}
		}
		return string(buf)
	}
	// x.b.abs != 0

	q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs)

	p := natOne
	if prec > 0 {
		p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil, false)
	}

	r = r.mul(r, p)
	r, r2 := r.div(nat(nil), r, x.b.abs)

	// see if we need to round up
	r2 = r2.add(r2, r2)
	if x.b.abs.cmp(r2) <= 0 {
		r = r.add(r, natOne)
		if r.cmp(p) >= 0 {
			q = nat(nil).add(q, natOne)
			r = nat(nil).sub(r, p)
		}
	}

	if x.a.neg {
		buf = append(buf, '-')
	}
	buf = append(buf, q.utoa(10)...) // itoa ignores sign if q == 0

	if prec > 0 {
		buf = append(buf, '.')
		rs := r.utoa(10)
		for i := prec - len(rs); i > 0; i-- {
			buf = append(buf, '0')
		}
		buf = append(buf, rs...)
	}

	return string(buf)
}

// Note: FloatPrec (below) is in this file rather than rat.go because
//       its results are relevant for decimal representation/printing.

// FloatPrec returns the number n of non-repeating digits immediately
// following the decimal point of the decimal representation of x.
// The boolean result indicates whether a decimal representation of x
// with that many fractional digits is exact or rounded.
//
// Examples:
//
//	x      n    exact    decimal representation n fractional digits
//	0      0    true     0
//	1      0    true     1
//	1/2    1    true     0.5
//	1/3    0    false    0       (0.333... rounded)
//	1/4    2    true     0.25
//	1/6    1    false    0.2     (0.166... rounded)
func (x *Rat) FloatPrec() (n int, exact bool) {
	// Determine q and largest p2, p5 such that d = q·2^p2·5^p5.
	// The results n, exact are:
	//
	//     n = max(p2, p5)
	//     exact = q == 1
	//
	// For details see:
	// https://en.wikipedia.org/wiki/Repeating_decimal#Reciprocals_of_integers_not_coprime_to_10
	d := x.Denom().abs // d >= 1

	// Determine p2 by counting factors of 2.
	// p2 corresponds to the trailing zero bits in d.
	// Do this first to reduce q as much as possible.
	var q nat
	p2 := d.trailingZeroBits()
	q = q.shr(d, p2)

	// Determine p5 by counting factors of 5.
	// Build a table starting with an initial power of 5,
	// and use repeated squaring until the factor doesn't
	// divide q anymore. Then use the table to determine
	// the power of 5 in q.
	const fp = 13        // f == 5^fp
	var tab []nat        // tab[i] == (5^fp)^(2^i) == 5^(fp·2^i)
	f := nat{1220703125} // == 5^fp (must fit into a uint32 Word)
	var t, r nat         // temporaries
	for {
		if _, r = t.div(r, q, f); len(r) != 0 {
			break // f doesn't divide q evenly
		}
		tab = append(tab, f)
		f = nat(nil).sqr(f) // nat(nil) to ensure a new f for each table entry
	}

	// Factor q using the table entries, if any.
	// We start with the largest factor f = tab[len(tab)-1]
	// that evenly divides q. It does so at most once because
	// otherwise f·f would also divide q. That can't be true
	// because f·f is the next higher table entry, contradicting
	// how f was chosen in the first place.
	// The same reasoning applies to the subsequent factors.
	var p5 uint
	for i := len(tab) - 1; i >= 0; i-- {
		if t, r = t.div(r, q, tab[i]); len(r) == 0 {
			p5 += fp * (1 << i) // tab[i] == 5^(fp·2^i)
			q = q.set(t)
		}
	}

	// If fp != 1, we may still have multiples of 5 left.
	for {
		if t, r = t.div(r, q, natFive); len(r) != 0 {
			break
		}
		p5++
		q = q.set(t)
	}

	return int(max(p2, p5)), q.cmp(natOne) == 0
}