aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/go/_std_1.22/src/math/big/nat.go
blob: ecb7d363d4fb368915eb64a857e53253e304e266 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file implements unsigned multi-precision integers (natural
// numbers). They are the building blocks for the implementation
// of signed integers, rationals, and floating-point numbers.
//
// Caution: This implementation relies on the function "alias"
//          which assumes that (nat) slice capacities are never
//          changed (no 3-operand slice expressions). If that
//          changes, alias needs to be updated for correctness.

package big

import (
	"encoding/binary"
	"math/bits"
	"math/rand"
	"sync"
)

// An unsigned integer x of the form
//
//	x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0]
//
// with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n,
// with the digits x[i] as the slice elements.
//
// A number is normalized if the slice contains no leading 0 digits.
// During arithmetic operations, denormalized values may occur but are
// always normalized before returning the final result. The normalized
// representation of 0 is the empty or nil slice (length = 0).
type nat []Word

var (
	natOne  = nat{1}
	natTwo  = nat{2}
	natFive = nat{5}
	natTen  = nat{10}
)

func (z nat) String() string {
	return "0x" + string(z.itoa(false, 16))
}

func (z nat) clear() {
	for i := range z {
		z[i] = 0
	}
}

func (z nat) norm() nat {
	i := len(z)
	for i > 0 && z[i-1] == 0 {
		i--
	}
	return z[0:i]
}

func (z nat) make(n int) nat {
	if n <= cap(z) {
		return z[:n] // reuse z
	}
	if n == 1 {
		// Most nats start small and stay that way; don't over-allocate.
		return make(nat, 1)
	}
	// Choosing a good value for e has significant performance impact
	// because it increases the chance that a value can be reused.
	const e = 4 // extra capacity
	return make(nat, n, n+e)
}

func (z nat) setWord(x Word) nat {
	if x == 0 {
		return z[:0]
	}
	z = z.make(1)
	z[0] = x
	return z
}

func (z nat) setUint64(x uint64) nat {
	// single-word value
	if w := Word(x); uint64(w) == x {
		return z.setWord(w)
	}
	// 2-word value
	z = z.make(2)
	z[1] = Word(x >> 32)
	z[0] = Word(x)
	return z
}

func (z nat) set(x nat) nat {
	z = z.make(len(x))
	copy(z, x)
	return z
}

func (z nat) add(x, y nat) nat {
	m := len(x)
	n := len(y)

	switch {
	case m < n:
		return z.add(y, x)
	case m == 0:
		// n == 0 because m >= n; result is 0
		return z[:0]
	case n == 0:
		// result is x
		return z.set(x)
	}
	// m > 0

	z = z.make(m + 1)
	c := addVV(z[0:n], x, y)
	if m > n {
		c = addVW(z[n:m], x[n:], c)
	}
	z[m] = c

	return z.norm()
}

func (z nat) sub(x, y nat) nat {
	m := len(x)
	n := len(y)

	switch {
	case m < n:
		panic("underflow")
	case m == 0:
		// n == 0 because m >= n; result is 0
		return z[:0]
	case n == 0:
		// result is x
		return z.set(x)
	}
	// m > 0

	z = z.make(m)
	c := subVV(z[0:n], x, y)
	if m > n {
		c = subVW(z[n:], x[n:], c)
	}
	if c != 0 {
		panic("underflow")
	}

	return z.norm()
}

func (x nat) cmp(y nat) (r int) {
	m := len(x)
	n := len(y)
	if m != n || m == 0 {
		switch {
		case m < n:
			r = -1
		case m > n:
			r = 1
		}
		return
	}

	i := m - 1
	for i > 0 && x[i] == y[i] {
		i--
	}

	switch {
	case x[i] < y[i]:
		r = -1
	case x[i] > y[i]:
		r = 1
	}
	return
}

func (z nat) mulAddWW(x nat, y, r Word) nat {
	m := len(x)
	if m == 0 || y == 0 {
		return z.setWord(r) // result is r
	}
	// m > 0

	z = z.make(m + 1)
	z[m] = mulAddVWW(z[0:m], x, y, r)

	return z.norm()
}

// basicMul multiplies x and y and leaves the result in z.
// The (non-normalized) result is placed in z[0 : len(x) + len(y)].
func basicMul(z, x, y nat) {
	z[0 : len(x)+len(y)].clear() // initialize z
	for i, d := range y {
		if d != 0 {
			z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d)
		}
	}
}

// montgomery computes z mod m = x*y*2**(-n*_W) mod m,
// assuming k = -1/m mod 2**_W.
// z is used for storing the result which is returned;
// z must not alias x, y or m.
// See Gueron, "Efficient Software Implementations of Modular Exponentiation".
// https://eprint.iacr.org/2011/239.pdf
// In the terminology of that paper, this is an "Almost Montgomery Multiplication":
// x and y are required to satisfy 0 <= z < 2**(n*_W) and then the result
// z is guaranteed to satisfy 0 <= z < 2**(n*_W), but it may not be < m.
func (z nat) montgomery(x, y, m nat, k Word, n int) nat {
	// This code assumes x, y, m are all the same length, n.
	// (required by addMulVVW and the for loop).
	// It also assumes that x, y are already reduced mod m,
	// or else the result will not be properly reduced.
	if len(x) != n || len(y) != n || len(m) != n {
		panic("math/big: mismatched montgomery number lengths")
	}
	z = z.make(n * 2)
	z.clear()
	var c Word
	for i := 0; i < n; i++ {
		d := y[i]
		c2 := addMulVVW(z[i:n+i], x, d)
		t := z[i] * k
		c3 := addMulVVW(z[i:n+i], m, t)
		cx := c + c2
		cy := cx + c3
		z[n+i] = cy
		if cx < c2 || cy < c3 {
			c = 1
		} else {
			c = 0
		}
	}
	if c != 0 {
		subVV(z[:n], z[n:], m)
	} else {
		copy(z[:n], z[n:])
	}
	return z[:n]
}

// Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks.
// Factored out for readability - do not use outside karatsuba.
func karatsubaAdd(z, x nat, n int) {
	if c := addVV(z[0:n], z, x); c != 0 {
		addVW(z[n:n+n>>1], z[n:], c)
	}
}

// Like karatsubaAdd, but does subtract.
func karatsubaSub(z, x nat, n int) {
	if c := subVV(z[0:n], z, x); c != 0 {
		subVW(z[n:n+n>>1], z[n:], c)
	}
}

// Operands that are shorter than karatsubaThreshold are multiplied using
// "grade school" multiplication; for longer operands the Karatsuba algorithm
// is used.
var karatsubaThreshold = 40 // computed by calibrate_test.go

// karatsuba multiplies x and y and leaves the result in z.
// Both x and y must have the same length n and n must be a
// power of 2. The result vector z must have len(z) >= 6*n.
// The (non-normalized) result is placed in z[0 : 2*n].
func karatsuba(z, x, y nat) {
	n := len(y)

	// Switch to basic multiplication if numbers are odd or small.
	// (n is always even if karatsubaThreshold is even, but be
	// conservative)
	if n&1 != 0 || n < karatsubaThreshold || n < 2 {
		basicMul(z, x, y)
		return
	}
	// n&1 == 0 && n >= karatsubaThreshold && n >= 2

	// Karatsuba multiplication is based on the observation that
	// for two numbers x and y with:
	//
	//   x = x1*b + x0
	//   y = y1*b + y0
	//
	// the product x*y can be obtained with 3 products z2, z1, z0
	// instead of 4:
	//
	//   x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0
	//       =    z2*b*b +              z1*b +    z0
	//
	// with:
	//
	//   xd = x1 - x0
	//   yd = y0 - y1
	//
	//   z1 =      xd*yd                    + z2 + z0
	//      = (x1-x0)*(y0 - y1)             + z2 + z0
	//      = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z2 + z0
	//      = x1*y0 -    z2 -    z0 + x0*y1 + z2 + z0
	//      = x1*y0                 + x0*y1

	// split x, y into "digits"
	n2 := n >> 1              // n2 >= 1
	x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0
	y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0

	// z is used for the result and temporary storage:
	//
	//   6*n     5*n     4*n     3*n     2*n     1*n     0*n
	// z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ]
	//
	// For each recursive call of karatsuba, an unused slice of
	// z is passed in that has (at least) half the length of the
	// caller's z.

	// compute z0 and z2 with the result "in place" in z
	karatsuba(z, x0, y0)     // z0 = x0*y0
	karatsuba(z[n:], x1, y1) // z2 = x1*y1

	// compute xd (or the negative value if underflow occurs)
	s := 1 // sign of product xd*yd
	xd := z[2*n : 2*n+n2]
	if subVV(xd, x1, x0) != 0 { // x1-x0
		s = -s
		subVV(xd, x0, x1) // x0-x1
	}

	// compute yd (or the negative value if underflow occurs)
	yd := z[2*n+n2 : 3*n]
	if subVV(yd, y0, y1) != 0 { // y0-y1
		s = -s
		subVV(yd, y1, y0) // y1-y0
	}

	// p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0
	// p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0
	p := z[n*3:]
	karatsuba(p, xd, yd)

	// save original z2:z0
	// (ok to use upper half of z since we're done recurring)
	r := z[n*4:]
	copy(r, z[:n*2])

	// add up all partial products
	//
	//   2*n     n     0
	// z = [ z2  | z0  ]
	//   +    [ z0  ]
	//   +    [ z2  ]
	//   +    [  p  ]
	//
	karatsubaAdd(z[n2:], r, n)
	karatsubaAdd(z[n2:], r[n:], n)
	if s > 0 {
		karatsubaAdd(z[n2:], p, n)
	} else {
		karatsubaSub(z[n2:], p, n)
	}
}

// alias reports whether x and y share the same base array.
//
// Note: alias assumes that the capacity of underlying arrays
// is never changed for nat values; i.e. that there are
// no 3-operand slice expressions in this code (or worse,
// reflect-based operations to the same effect).
func alias(x, y nat) bool {
	return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1]
}

// addAt implements z += x<<(_W*i); z must be long enough.
// (we don't use nat.add because we need z to stay the same
// slice, and we don't need to normalize z after each addition)
func addAt(z, x nat, i int) {
	if n := len(x); n > 0 {
		if c := addVV(z[i:i+n], z[i:], x); c != 0 {
			j := i + n
			if j < len(z) {
				addVW(z[j:], z[j:], c)
			}
		}
	}
}

// karatsubaLen computes an approximation to the maximum k <= n such that
// k = p<<i for a number p <= threshold and an i >= 0. Thus, the
// result is the largest number that can be divided repeatedly by 2 before
// becoming about the value of threshold.
func karatsubaLen(n, threshold int) int {
	i := uint(0)
	for n > threshold {
		n >>= 1
		i++
	}
	return n << i
}

func (z nat) mul(x, y nat) nat {
	m := len(x)
	n := len(y)

	switch {
	case m < n:
		return z.mul(y, x)
	case m == 0 || n == 0:
		return z[:0]
	case n == 1:
		return z.mulAddWW(x, y[0], 0)
	}
	// m >= n > 1

	// determine if z can be reused
	if alias(z, x) || alias(z, y) {
		z = nil // z is an alias for x or y - cannot reuse
	}

	// use basic multiplication if the numbers are small
	if n < karatsubaThreshold {
		z = z.make(m + n)
		basicMul(z, x, y)
		return z.norm()
	}
	// m >= n && n >= karatsubaThreshold && n >= 2

	// determine Karatsuba length k such that
	//
	//   x = xh*b + x0  (0 <= x0 < b)
	//   y = yh*b + y0  (0 <= y0 < b)
	//   b = 1<<(_W*k)  ("base" of digits xi, yi)
	//
	k := karatsubaLen(n, karatsubaThreshold)
	// k <= n

	// multiply x0 and y0 via Karatsuba
	x0 := x[0:k]              // x0 is not normalized
	y0 := y[0:k]              // y0 is not normalized
	z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y
	karatsuba(z, x0, y0)
	z = z[0 : m+n]  // z has final length but may be incomplete
	z[2*k:].clear() // upper portion of z is garbage (and 2*k <= m+n since k <= n <= m)

	// If xh != 0 or yh != 0, add the missing terms to z. For
	//
	//   xh = xi*b^i + ... + x2*b^2 + x1*b (0 <= xi < b)
	//   yh =                         y1*b (0 <= y1 < b)
	//
	// the missing terms are
	//
	//   x0*y1*b and xi*y0*b^i, xi*y1*b^(i+1) for i > 0
	//
	// since all the yi for i > 1 are 0 by choice of k: If any of them
	// were > 0, then yh >= b^2 and thus y >= b^2. Then k' = k*2 would
	// be a larger valid threshold contradicting the assumption about k.
	//
	if k < n || m != n {
		tp := getNat(3 * k)
		t := *tp

		// add x0*y1*b
		x0 := x0.norm()
		y1 := y[k:]       // y1 is normalized because y is
		t = t.mul(x0, y1) // update t so we don't lose t's underlying array
		addAt(z, t, k)

		// add xi*y0<<i, xi*y1*b<<(i+k)
		y0 := y0.norm()
		for i := k; i < len(x); i += k {
			xi := x[i:]
			if len(xi) > k {
				xi = xi[:k]
			}
			xi = xi.norm()
			t = t.mul(xi, y0)
			addAt(z, t, i)
			t = t.mul(xi, y1)
			addAt(z, t, i+k)
		}

		putNat(tp)
	}

	return z.norm()
}

// basicSqr sets z = x*x and is asymptotically faster than basicMul
// by about a factor of 2, but slower for small arguments due to overhead.
// Requirements: len(x) > 0, len(z) == 2*len(x)
// The (non-normalized) result is placed in z.
func basicSqr(z, x nat) {
	n := len(x)
	tp := getNat(2 * n)
	t := *tp // temporary variable to hold the products
	t.clear()
	z[1], z[0] = mulWW(x[0], x[0]) // the initial square
	for i := 1; i < n; i++ {
		d := x[i]
		// z collects the squares x[i] * x[i]
		z[2*i+1], z[2*i] = mulWW(d, d)
		// t collects the products x[i] * x[j] where j < i
		t[2*i] = addMulVVW(t[i:2*i], x[0:i], d)
	}
	t[2*n-1] = shlVU(t[1:2*n-1], t[1:2*n-1], 1) // double the j < i products
	addVV(z, z, t)                              // combine the result
	putNat(tp)
}

// karatsubaSqr squares x and leaves the result in z.
// len(x) must be a power of 2 and len(z) >= 6*len(x).
// The (non-normalized) result is placed in z[0 : 2*len(x)].
//
// The algorithm and the layout of z are the same as for karatsuba.
func karatsubaSqr(z, x nat) {
	n := len(x)

	if n&1 != 0 || n < karatsubaSqrThreshold || n < 2 {
		basicSqr(z[:2*n], x)
		return
	}

	n2 := n >> 1
	x1, x0 := x[n2:], x[0:n2]

	karatsubaSqr(z, x0)
	karatsubaSqr(z[n:], x1)

	// s = sign(xd*yd) == -1 for xd != 0; s == 1 for xd == 0
	xd := z[2*n : 2*n+n2]
	if subVV(xd, x1, x0) != 0 {
		subVV(xd, x0, x1)
	}

	p := z[n*3:]
	karatsubaSqr(p, xd)

	r := z[n*4:]
	copy(r, z[:n*2])

	karatsubaAdd(z[n2:], r, n)
	karatsubaAdd(z[n2:], r[n:], n)
	karatsubaSub(z[n2:], p, n) // s == -1 for p != 0; s == 1 for p == 0
}

// Operands that are shorter than basicSqrThreshold are squared using
// "grade school" multiplication; for operands longer than karatsubaSqrThreshold
// we use the Karatsuba algorithm optimized for x == y.
var basicSqrThreshold = 20      // computed by calibrate_test.go
var karatsubaSqrThreshold = 260 // computed by calibrate_test.go

// z = x*x
func (z nat) sqr(x nat) nat {
	n := len(x)
	switch {
	case n == 0:
		return z[:0]
	case n == 1:
		d := x[0]
		z = z.make(2)
		z[1], z[0] = mulWW(d, d)
		return z.norm()
	}

	if alias(z, x) {
		z = nil // z is an alias for x - cannot reuse
	}

	if n < basicSqrThreshold {
		z = z.make(2 * n)
		basicMul(z, x, x)
		return z.norm()
	}
	if n < karatsubaSqrThreshold {
		z = z.make(2 * n)
		basicSqr(z, x)
		return z.norm()
	}

	// Use Karatsuba multiplication optimized for x == y.
	// The algorithm and layout of z are the same as for mul.

	// z = (x1*b + x0)^2 = x1^2*b^2 + 2*x1*x0*b + x0^2

	k := karatsubaLen(n, karatsubaSqrThreshold)

	x0 := x[0:k]
	z = z.make(max(6*k, 2*n))
	karatsubaSqr(z, x0) // z = x0^2
	z = z[0 : 2*n]
	z[2*k:].clear()

	if k < n {
		tp := getNat(2 * k)
		t := *tp
		x0 := x0.norm()
		x1 := x[k:]
		t = t.mul(x0, x1)
		addAt(z, t, k)
		addAt(z, t, k) // z = 2*x1*x0*b + x0^2
		t = t.sqr(x1)
		addAt(z, t, 2*k) // z = x1^2*b^2 + 2*x1*x0*b + x0^2
		putNat(tp)
	}

	return z.norm()
}

// mulRange computes the product of all the unsigned integers in the
// range [a, b] inclusively. If a > b (empty range), the result is 1.
func (z nat) mulRange(a, b uint64) nat {
	switch {
	case a == 0:
		// cut long ranges short (optimization)
		return z.setUint64(0)
	case a > b:
		return z.setUint64(1)
	case a == b:
		return z.setUint64(a)
	case a+1 == b:
		return z.mul(nat(nil).setUint64(a), nat(nil).setUint64(b))
	}
	m := a + (b-a)/2 // avoid overflow
	return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b))
}

// getNat returns a *nat of len n. The contents may not be zero.
// The pool holds *nat to avoid allocation when converting to interface{}.
func getNat(n int) *nat {
	var z *nat
	if v := natPool.Get(); v != nil {
		z = v.(*nat)
	}
	if z == nil {
		z = new(nat)
	}
	*z = z.make(n)
	if n > 0 {
		(*z)[0] = 0xfedcb // break code expecting zero
	}
	return z
}

func putNat(x *nat) {
	natPool.Put(x)
}

var natPool sync.Pool

// bitLen returns the length of x in bits.
// Unlike most methods, it works even if x is not normalized.
func (x nat) bitLen() int {
	// This function is used in cryptographic operations. It must not leak
	// anything but the Int's sign and bit size through side-channels. Any
	// changes must be reviewed by a security expert.
	if i := len(x) - 1; i >= 0 {
		// bits.Len uses a lookup table for the low-order bits on some
		// architectures. Neutralize any input-dependent behavior by setting all
		// bits after the first one bit.
		top := uint(x[i])
		top |= top >> 1
		top |= top >> 2
		top |= top >> 4
		top |= top >> 8
		top |= top >> 16
		top |= top >> 16 >> 16 // ">> 32" doesn't compile on 32-bit architectures
		return i*_W + bits.Len(top)
	}
	return 0
}

// trailingZeroBits returns the number of consecutive least significant zero
// bits of x.
func (x nat) trailingZeroBits() uint {
	if len(x) == 0 {
		return 0
	}
	var i uint
	for x[i] == 0 {
		i++
	}
	// x[i] != 0
	return i*_W + uint(bits.TrailingZeros(uint(x[i])))
}

// isPow2 returns i, true when x == 2**i and 0, false otherwise.
func (x nat) isPow2() (uint, bool) {
	var i uint
	for x[i] == 0 {
		i++
	}
	if i == uint(len(x))-1 && x[i]&(x[i]-1) == 0 {
		return i*_W + uint(bits.TrailingZeros(uint(x[i]))), true
	}
	return 0, false
}

func same(x, y nat) bool {
	return len(x) == len(y) && len(x) > 0 && &x[0] == &y[0]
}

// z = x << s
func (z nat) shl(x nat, s uint) nat {
	if s == 0 {
		if same(z, x) {
			return z
		}
		if !alias(z, x) {
			return z.set(x)
		}
	}

	m := len(x)
	if m == 0 {
		return z[:0]
	}
	// m > 0

	n := m + int(s/_W)
	z = z.make(n + 1)
	z[n] = shlVU(z[n-m:n], x, s%_W)
	z[0 : n-m].clear()

	return z.norm()
}

// z = x >> s
func (z nat) shr(x nat, s uint) nat {
	if s == 0 {
		if same(z, x) {
			return z
		}
		if !alias(z, x) {
			return z.set(x)
		}
	}

	m := len(x)
	n := m - int(s/_W)
	if n <= 0 {
		return z[:0]
	}
	// n > 0

	z = z.make(n)
	shrVU(z, x[m-n:], s%_W)

	return z.norm()
}

func (z nat) setBit(x nat, i uint, b uint) nat {
	j := int(i / _W)
	m := Word(1) << (i % _W)
	n := len(x)
	switch b {
	case 0:
		z = z.make(n)
		copy(z, x)
		if j >= n {
			// no need to grow
			return z
		}
		z[j] &^= m
		return z.norm()
	case 1:
		if j >= n {
			z = z.make(j + 1)
			z[n:].clear()
		} else {
			z = z.make(n)
		}
		copy(z, x)
		z[j] |= m
		// no need to normalize
		return z
	}
	panic("set bit is not 0 or 1")
}

// bit returns the value of the i'th bit, with lsb == bit 0.
func (x nat) bit(i uint) uint {
	j := i / _W
	if j >= uint(len(x)) {
		return 0
	}
	// 0 <= j < len(x)
	return uint(x[j] >> (i % _W) & 1)
}

// sticky returns 1 if there's a 1 bit within the
// i least significant bits, otherwise it returns 0.
func (x nat) sticky(i uint) uint {
	j := i / _W
	if j >= uint(len(x)) {
		if len(x) == 0 {
			return 0
		}
		return 1
	}
	// 0 <= j < len(x)
	for _, x := range x[:j] {
		if x != 0 {
			return 1
		}
	}
	if x[j]<<(_W-i%_W) != 0 {
		return 1
	}
	return 0
}

func (z nat) and(x, y nat) nat {
	m := len(x)
	n := len(y)
	if m > n {
		m = n
	}
	// m <= n

	z = z.make(m)
	for i := 0; i < m; i++ {
		z[i] = x[i] & y[i]
	}

	return z.norm()
}

// trunc returns z = x mod 2ⁿ.
func (z nat) trunc(x nat, n uint) nat {
	w := (n + _W - 1) / _W
	if uint(len(x)) < w {
		return z.set(x)
	}
	z = z.make(int(w))
	copy(z, x)
	if n%_W != 0 {
		z[len(z)-1] &= 1<<(n%_W) - 1
	}
	return z.norm()
}

func (z nat) andNot(x, y nat) nat {
	m := len(x)
	n := len(y)
	if n > m {
		n = m
	}
	// m >= n

	z = z.make(m)
	for i := 0; i < n; i++ {
		z[i] = x[i] &^ y[i]
	}
	copy(z[n:m], x[n:m])

	return z.norm()
}

func (z nat) or(x, y nat) nat {
	m := len(x)
	n := len(y)
	s := x
	if m < n {
		n, m = m, n
		s = y
	}
	// m >= n

	z = z.make(m)
	for i := 0; i < n; i++ {
		z[i] = x[i] | y[i]
	}
	copy(z[n:m], s[n:m])

	return z.norm()
}

func (z nat) xor(x, y nat) nat {
	m := len(x)
	n := len(y)
	s := x
	if m < n {
		n, m = m, n
		s = y
	}
	// m >= n

	z = z.make(m)
	for i := 0; i < n; i++ {
		z[i] = x[i] ^ y[i]
	}
	copy(z[n:m], s[n:m])

	return z.norm()
}

// random creates a random integer in [0..limit), using the space in z if
// possible. n is the bit length of limit.
func (z nat) random(rand *rand.Rand, limit nat, n int) nat {
	if alias(z, limit) {
		z = nil // z is an alias for limit - cannot reuse
	}
	z = z.make(len(limit))

	bitLengthOfMSW := uint(n % _W)
	if bitLengthOfMSW == 0 {
		bitLengthOfMSW = _W
	}
	mask := Word((1 << bitLengthOfMSW) - 1)

	for {
		switch _W {
		case 32:
			for i := range z {
				z[i] = Word(rand.Uint32())
			}
		case 64:
			for i := range z {
				z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32
			}
		default:
			panic("unknown word size")
		}
		z[len(limit)-1] &= mask
		if z.cmp(limit) < 0 {
			break
		}
	}

	return z.norm()
}

// If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m;
// otherwise it sets z to x**y. The result is the value of z.
func (z nat) expNN(x, y, m nat, slow bool) nat {
	if alias(z, x) || alias(z, y) {
		// We cannot allow in-place modification of x or y.
		z = nil
	}

	// x**y mod 1 == 0
	if len(m) == 1 && m[0] == 1 {
		return z.setWord(0)
	}
	// m == 0 || m > 1

	// x**0 == 1
	if len(y) == 0 {
		return z.setWord(1)
	}
	// y > 0

	// 0**y = 0
	if len(x) == 0 {
		return z.setWord(0)
	}
	// x > 0

	// 1**y = 1
	if len(x) == 1 && x[0] == 1 {
		return z.setWord(1)
	}
	// x > 1

	// x**1 == x
	if len(y) == 1 && y[0] == 1 {
		if len(m) != 0 {
			return z.rem(x, m)
		}
		return z.set(x)
	}
	// y > 1

	if len(m) != 0 {
		// We likely end up being as long as the modulus.
		z = z.make(len(m))

		// If the exponent is large, we use the Montgomery method for odd values,
		// and a 4-bit, windowed exponentiation for powers of two,
		// and a CRT-decomposed Montgomery method for the remaining values
		// (even values times non-trivial odd values, which decompose into one
		// instance of each of the first two cases).
		if len(y) > 1 && !slow {
			if m[0]&1 == 1 {
				return z.expNNMontgomery(x, y, m)
			}
			if logM, ok := m.isPow2(); ok {
				return z.expNNWindowed(x, y, logM)
			}
			return z.expNNMontgomeryEven(x, y, m)
		}
	}

	z = z.set(x)
	v := y[len(y)-1] // v > 0 because y is normalized and y > 0
	shift := nlz(v) + 1
	v <<= shift
	var q nat

	const mask = 1 << (_W - 1)

	// We walk through the bits of the exponent one by one. Each time we
	// see a bit, we square, thus doubling the power. If the bit is a one,
	// we also multiply by x, thus adding one to the power.

	w := _W - int(shift)
	// zz and r are used to avoid allocating in mul and div as
	// otherwise the arguments would alias.
	var zz, r nat
	for j := 0; j < w; j++ {
		zz = zz.sqr(z)
		zz, z = z, zz

		if v&mask != 0 {
			zz = zz.mul(z, x)
			zz, z = z, zz
		}

		if len(m) != 0 {
			zz, r = zz.div(r, z, m)
			zz, r, q, z = q, z, zz, r
		}

		v <<= 1
	}

	for i := len(y) - 2; i >= 0; i-- {
		v = y[i]

		for j := 0; j < _W; j++ {
			zz = zz.sqr(z)
			zz, z = z, zz

			if v&mask != 0 {
				zz = zz.mul(z, x)
				zz, z = z, zz
			}

			if len(m) != 0 {
				zz, r = zz.div(r, z, m)
				zz, r, q, z = q, z, zz, r
			}

			v <<= 1
		}
	}

	return z.norm()
}

// expNNMontgomeryEven calculates x**y mod m where m = m1 × m2 for m1 = 2ⁿ and m2 odd.
// It uses two recursive calls to expNN for x**y mod m1 and x**y mod m2
// and then uses the Chinese Remainder Theorem to combine the results.
// The recursive call using m1 will use expNNWindowed,
// while the recursive call using m2 will use expNNMontgomery.
// For more details, see Ç. K. Koç, “Montgomery Reduction with Even Modulus”,
// IEE Proceedings: Computers and Digital Techniques, 141(5) 314-316, September 1994.
// http://www.people.vcu.edu/~jwang3/CMSC691/j34monex.pdf
func (z nat) expNNMontgomeryEven(x, y, m nat) nat {
	// Split m = m₁ × m₂ where m₁ = 2ⁿ
	n := m.trailingZeroBits()
	m1 := nat(nil).shl(natOne, n)
	m2 := nat(nil).shr(m, n)

	// We want z = x**y mod m.
	// z₁ = x**y mod m1 = (x**y mod m) mod m1 = z mod m1
	// z₂ = x**y mod m2 = (x**y mod m) mod m2 = z mod m2
	// (We are using the math/big convention for names here,
	// where the computation is z = x**y mod m, so its parts are z1 and z2.
	// The paper is computing x = a**e mod n; it refers to these as x2 and z1.)
	z1 := nat(nil).expNN(x, y, m1, false)
	z2 := nat(nil).expNN(x, y, m2, false)

	// Reconstruct z from z₁, z₂ using CRT, using algorithm from paper,
	// which uses only a single modInverse (and an easy one at that).
	//	p = (z₁ - z₂) × m₂⁻¹ (mod m₁)
	//	z = z₂ + p × m₂
	// The final addition is in range because:
	//	z = z₂ + p × m₂
	//	  ≤ z₂ + (m₁-1) × m₂
	//	  < m₂ + (m₁-1) × m₂
	//	  = m₁ × m₂
	//	  = m.
	z = z.set(z2)

	// Compute (z₁ - z₂) mod m1 [m1 == 2**n] into z1.
	z1 = z1.subMod2N(z1, z2, n)

	// Reuse z2 for p = (z₁ - z₂) [in z1] * m2⁻¹ (mod m₁ [= 2ⁿ]).
	m2inv := nat(nil).modInverse(m2, m1)
	z2 = z2.mul(z1, m2inv)
	z2 = z2.trunc(z2, n)

	// Reuse z1 for p * m2.
	z = z.add(z, z1.mul(z2, m2))

	return z
}

// expNNWindowed calculates x**y mod m using a fixed, 4-bit window,
// where m = 2**logM.
func (z nat) expNNWindowed(x, y nat, logM uint) nat {
	if len(y) <= 1 {
		panic("big: misuse of expNNWindowed")
	}
	if x[0]&1 == 0 {
		// len(y) > 1, so y  > logM.
		// x is even, so x**y is a multiple of 2**y which is a multiple of 2**logM.
		return z.setWord(0)
	}
	if logM == 1 {
		return z.setWord(1)
	}

	// zz is used to avoid allocating in mul as otherwise
	// the arguments would alias.
	w := int((logM + _W - 1) / _W)
	zzp := getNat(w)
	zz := *zzp

	const n = 4
	// powers[i] contains x^i.
	var powers [1 << n]*nat
	for i := range powers {
		powers[i] = getNat(w)
	}
	*powers[0] = powers[0].set(natOne)
	*powers[1] = powers[1].trunc(x, logM)
	for i := 2; i < 1<<n; i += 2 {
		p2, p, p1 := powers[i/2], powers[i], powers[i+1]
		*p = p.sqr(*p2)
		*p = p.trunc(*p, logM)
		*p1 = p1.mul(*p, x)
		*p1 = p1.trunc(*p1, logM)
	}

	// Because phi(2**logM) = 2**(logM-1), x**(2**(logM-1)) = 1,
	// so we can compute x**(y mod 2**(logM-1)) instead of x**y.
	// That is, we can throw away all but the bottom logM-1 bits of y.
	// Instead of allocating a new y, we start reading y at the right word
	// and truncate it appropriately at the start of the loop.
	i := len(y) - 1
	mtop := int((logM - 2) / _W) // -2 because the top word of N bits is the (N-1)/W'th word.
	mmask := ^Word(0)
	if mbits := (logM - 1) & (_W - 1); mbits != 0 {
		mmask = (1 << mbits) - 1
	}
	if i > mtop {
		i = mtop
	}
	advance := false
	z = z.setWord(1)
	for ; i >= 0; i-- {
		yi := y[i]
		if i == mtop {
			yi &= mmask
		}
		for j := 0; j < _W; j += n {
			if advance {
				// Account for use of 4 bits in previous iteration.
				// Unrolled loop for significant performance
				// gain. Use go test -bench=".*" in crypto/rsa
				// to check performance before making changes.
				zz = zz.sqr(z)
				zz, z = z, zz
				z = z.trunc(z, logM)

				zz = zz.sqr(z)
				zz, z = z, zz
				z = z.trunc(z, logM)

				zz = zz.sqr(z)
				zz, z = z, zz
				z = z.trunc(z, logM)

				zz = zz.sqr(z)
				zz, z = z, zz
				z = z.trunc(z, logM)
			}

			zz = zz.mul(z, *powers[yi>>(_W-n)])
			zz, z = z, zz
			z = z.trunc(z, logM)

			yi <<= n
			advance = true
		}
	}

	*zzp = zz
	putNat(zzp)
	for i := range powers {
		putNat(powers[i])
	}

	return z.norm()
}

// expNNMontgomery calculates x**y mod m using a fixed, 4-bit window.
// Uses Montgomery representation.
func (z nat) expNNMontgomery(x, y, m nat) nat {
	numWords := len(m)

	// We want the lengths of x and m to be equal.
	// It is OK if x >= m as long as len(x) == len(m).
	if len(x) > numWords {
		_, x = nat(nil).div(nil, x, m)
		// Note: now len(x) <= numWords, not guaranteed ==.
	}
	if len(x) < numWords {
		rr := make(nat, numWords)
		copy(rr, x)
		x = rr
	}

	// Ideally the precomputations would be performed outside, and reused
	// k0 = -m**-1 mod 2**_W. Algorithm from: Dumas, J.G. "On Newton–Raphson
	// Iteration for Multiplicative Inverses Modulo Prime Powers".
	k0 := 2 - m[0]
	t := m[0] - 1
	for i := 1; i < _W; i <<= 1 {
		t *= t
		k0 *= (t + 1)
	}
	k0 = -k0

	// RR = 2**(2*_W*len(m)) mod m
	RR := nat(nil).setWord(1)
	zz := nat(nil).shl(RR, uint(2*numWords*_W))
	_, RR = nat(nil).div(RR, zz, m)
	if len(RR) < numWords {
		zz = zz.make(numWords)
		copy(zz, RR)
		RR = zz
	}
	// one = 1, with equal length to that of m
	one := make(nat, numWords)
	one[0] = 1

	const n = 4
	// powers[i] contains x^i
	var powers [1 << n]nat
	powers[0] = powers[0].montgomery(one, RR, m, k0, numWords)
	powers[1] = powers[1].montgomery(x, RR, m, k0, numWords)
	for i := 2; i < 1<<n; i++ {
		powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords)
	}

	// initialize z = 1 (Montgomery 1)
	z = z.make(numWords)
	copy(z, powers[0])

	zz = zz.make(numWords)

	// same windowed exponent, but with Montgomery multiplications
	for i := len(y) - 1; i >= 0; i-- {
		yi := y[i]
		for j := 0; j < _W; j += n {
			if i != len(y)-1 || j != 0 {
				zz = zz.montgomery(z, z, m, k0, numWords)
				z = z.montgomery(zz, zz, m, k0, numWords)
				zz = zz.montgomery(z, z, m, k0, numWords)
				z = z.montgomery(zz, zz, m, k0, numWords)
			}
			zz = zz.montgomery(z, powers[yi>>(_W-n)], m, k0, numWords)
			z, zz = zz, z
			yi <<= n
		}
	}
	// convert to regular number
	zz = zz.montgomery(z, one, m, k0, numWords)

	// One last reduction, just in case.
	// See golang.org/issue/13907.
	if zz.cmp(m) >= 0 {
		// Common case is m has high bit set; in that case,
		// since zz is the same length as m, there can be just
		// one multiple of m to remove. Just subtract.
		// We think that the subtract should be sufficient in general,
		// so do that unconditionally, but double-check,
		// in case our beliefs are wrong.
		// The div is not expected to be reached.
		zz = zz.sub(zz, m)
		if zz.cmp(m) >= 0 {
			_, zz = nat(nil).div(nil, zz, m)
		}
	}

	return zz.norm()
}

// bytes writes the value of z into buf using big-endian encoding.
// The value of z is encoded in the slice buf[i:]. If the value of z
// cannot be represented in buf, bytes panics. The number i of unused
// bytes at the beginning of buf is returned as result.
func (z nat) bytes(buf []byte) (i int) {
	// This function is used in cryptographic operations. It must not leak
	// anything but the Int's sign and bit size through side-channels. Any
	// changes must be reviewed by a security expert.
	i = len(buf)
	for _, d := range z {
		for j := 0; j < _S; j++ {
			i--
			if i >= 0 {
				buf[i] = byte(d)
			} else if byte(d) != 0 {
				panic("math/big: buffer too small to fit value")
			}
			d >>= 8
		}
	}

	if i < 0 {
		i = 0
	}
	for i < len(buf) && buf[i] == 0 {
		i++
	}

	return
}

// bigEndianWord returns the contents of buf interpreted as a big-endian encoded Word value.
func bigEndianWord(buf []byte) Word {
	if _W == 64 {
		return Word(binary.BigEndian.Uint64(buf))
	}
	return Word(binary.BigEndian.Uint32(buf))
}

// setBytes interprets buf as the bytes of a big-endian unsigned
// integer, sets z to that value, and returns z.
func (z nat) setBytes(buf []byte) nat {
	z = z.make((len(buf) + _S - 1) / _S)

	i := len(buf)
	for k := 0; i >= _S; k++ {
		z[k] = bigEndianWord(buf[i-_S : i])
		i -= _S
	}
	if i > 0 {
		var d Word
		for s := uint(0); i > 0; s += 8 {
			d |= Word(buf[i-1]) << s
			i--
		}
		z[len(z)-1] = d
	}

	return z.norm()
}

// sqrt sets z = ⌊√x⌋
func (z nat) sqrt(x nat) nat {
	if x.cmp(natOne) <= 0 {
		return z.set(x)
	}
	if alias(z, x) {
		z = nil
	}

	// Start with value known to be too large and repeat "z = ⌊(z + ⌊x/z⌋)/2⌋" until it stops getting smaller.
	// See Brent and Zimmermann, Modern Computer Arithmetic, Algorithm 1.13 (SqrtInt).
	// https://members.loria.fr/PZimmermann/mca/pub226.html
	// If x is one less than a perfect square, the sequence oscillates between the correct z and z+1;
	// otherwise it converges to the correct z and stays there.
	var z1, z2 nat
	z1 = z
	z1 = z1.setUint64(1)
	z1 = z1.shl(z1, uint(x.bitLen()+1)/2) // must be ≥ √x
	for n := 0; ; n++ {
		z2, _ = z2.div(nil, x, z1)
		z2 = z2.add(z2, z1)
		z2 = z2.shr(z2, 1)
		if z2.cmp(z1) >= 0 {
			// z1 is answer.
			// Figure out whether z1 or z2 is currently aliased to z by looking at loop count.
			if n&1 == 0 {
				return z1
			}
			return z.set(z1)
		}
		z1, z2 = z2, z1
	}
}

// subMod2N returns z = (x - y) mod 2ⁿ.
func (z nat) subMod2N(x, y nat, n uint) nat {
	if uint(x.bitLen()) > n {
		if alias(z, x) {
			// ok to overwrite x in place
			x = x.trunc(x, n)
		} else {
			x = nat(nil).trunc(x, n)
		}
	}
	if uint(y.bitLen()) > n {
		if alias(z, y) {
			// ok to overwrite y in place
			y = y.trunc(y, n)
		} else {
			y = nat(nil).trunc(y, n)
		}
	}
	if x.cmp(y) >= 0 {
		return z.sub(x, y)
	}
	// x - y < 0; x - y mod 2ⁿ = x - y + 2ⁿ = 2ⁿ - (y - x) = 1 + 2ⁿ-1 - (y - x) = 1 + ^(y - x).
	z = z.sub(y, x)
	for uint(len(z))*_W < n {
		z = append(z, 0)
	}
	for i := range z {
		z[i] = ^z[i]
	}
	z = z.trunc(z, n)
	return z.add(z, natOne)
}