aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/go/_std_1.22/src/crypto/rsa/boring.go
blob: b9f9d3154f2589e04fcf6592511e1d55f371051e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

//go:build boringcrypto

package rsa

import (
	"crypto/internal/boring"
	"crypto/internal/boring/bbig"
	"crypto/internal/boring/bcache"
	"math/big"
)

// Cached conversions from Go PublicKey/PrivateKey to BoringCrypto.
//
// The first operation on a PublicKey or PrivateKey makes a parallel
// BoringCrypto key and saves it in pubCache or privCache.
//
// We could just assume that once used in a sign/verify/encrypt/decrypt operation,
// a particular key is never again modified, but that has not been a
// stated assumption before. Just in case there is any existing code that
// does modify the key between operations, we save the original values
// alongside the cached BoringCrypto key and check that the real key
// still matches before using the cached key. The theory is that the real
// operations are significantly more expensive than the comparison.

type boringPub struct {
	key  *boring.PublicKeyRSA
	orig PublicKey
}

var pubCache bcache.Cache[PublicKey, boringPub]
var privCache bcache.Cache[PrivateKey, boringPriv]

func init() {
	pubCache.Register()
	privCache.Register()
}

func boringPublicKey(pub *PublicKey) (*boring.PublicKeyRSA, error) {
	b := pubCache.Get(pub)
	if b != nil && publicKeyEqual(&b.orig, pub) {
		return b.key, nil
	}

	b = new(boringPub)
	b.orig = copyPublicKey(pub)
	key, err := boring.NewPublicKeyRSA(bbig.Enc(b.orig.N), bbig.Enc(big.NewInt(int64(b.orig.E))))
	if err != nil {
		return nil, err
	}
	b.key = key
	pubCache.Put(pub, b)
	return key, nil
}

type boringPriv struct {
	key  *boring.PrivateKeyRSA
	orig PrivateKey
}

func boringPrivateKey(priv *PrivateKey) (*boring.PrivateKeyRSA, error) {
	b := privCache.Get(priv)
	if b != nil && privateKeyEqual(&b.orig, priv) {
		return b.key, nil
	}

	b = new(boringPriv)
	b.orig = copyPrivateKey(priv)

	var N, E, D, P, Q, Dp, Dq, Qinv *big.Int
	N = b.orig.N
	E = big.NewInt(int64(b.orig.E))
	D = b.orig.D
	if len(b.orig.Primes) == 2 {
		P = b.orig.Primes[0]
		Q = b.orig.Primes[1]
		Dp = b.orig.Precomputed.Dp
		Dq = b.orig.Precomputed.Dq
		Qinv = b.orig.Precomputed.Qinv
	}
	key, err := boring.NewPrivateKeyRSA(bbig.Enc(N), bbig.Enc(E), bbig.Enc(D), bbig.Enc(P), bbig.Enc(Q), bbig.Enc(Dp), bbig.Enc(Dq), bbig.Enc(Qinv))
	if err != nil {
		return nil, err
	}
	b.key = key
	privCache.Put(priv, b)
	return key, nil
}

func publicKeyEqual(k1, k2 *PublicKey) bool {
	return k1.N != nil &&
		k1.N.Cmp(k2.N) == 0 &&
		k1.E == k2.E
}

func copyPublicKey(k *PublicKey) PublicKey {
	return PublicKey{
		N: new(big.Int).Set(k.N),
		E: k.E,
	}
}

func privateKeyEqual(k1, k2 *PrivateKey) bool {
	return publicKeyEqual(&k1.PublicKey, &k2.PublicKey) &&
		k1.D.Cmp(k2.D) == 0
}

func copyPrivateKey(k *PrivateKey) PrivateKey {
	dst := PrivateKey{
		PublicKey: copyPublicKey(&k.PublicKey),
		D:         new(big.Int).Set(k.D),
	}
	dst.Primes = make([]*big.Int, len(k.Primes))
	for i, p := range k.Primes {
		dst.Primes[i] = new(big.Int).Set(p)
	}
	if x := k.Precomputed.Dp; x != nil {
		dst.Precomputed.Dp = new(big.Int).Set(x)
	}
	if x := k.Precomputed.Dq; x != nil {
		dst.Precomputed.Dq = new(big.Int).Set(x)
	}
	if x := k.Precomputed.Qinv; x != nil {
		dst.Precomputed.Qinv = new(big.Int).Set(x)
	}
	return dst
}