aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/go/_std_1.22/src/crypto/internal/edwards25519/edwards25519.go
blob: e162dc8cbde3265324a95e31dda3904ef142e79c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
// Copyright (c) 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package edwards25519

import (
	"crypto/internal/edwards25519/field"
	"errors"
)

// Point types.

type projP1xP1 struct {
	X, Y, Z, T field.Element
}

type projP2 struct {
	X, Y, Z field.Element
}

// Point represents a point on the edwards25519 curve.
//
// This type works similarly to math/big.Int, and all arguments and receivers
// are allowed to alias.
//
// The zero value is NOT valid, and it may be used only as a receiver.
type Point struct {
	// Make the type not comparable (i.e. used with == or as a map key), as
	// equivalent points can be represented by different Go values.
	_ incomparable

	// The point is internally represented in extended coordinates (X, Y, Z, T)
	// where x = X/Z, y = Y/Z, and xy = T/Z per https://eprint.iacr.org/2008/522.
	x, y, z, t field.Element
}

type incomparable [0]func()

func checkInitialized(points ...*Point) {
	for _, p := range points {
		if p.x == (field.Element{}) && p.y == (field.Element{}) {
			panic("edwards25519: use of uninitialized Point")
		}
	}
}

type projCached struct {
	YplusX, YminusX, Z, T2d field.Element
}

type affineCached struct {
	YplusX, YminusX, T2d field.Element
}

// Constructors.

func (v *projP2) Zero() *projP2 {
	v.X.Zero()
	v.Y.One()
	v.Z.One()
	return v
}

// identity is the point at infinity.
var identity, _ = new(Point).SetBytes([]byte{
	1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})

// NewIdentityPoint returns a new Point set to the identity.
func NewIdentityPoint() *Point {
	return new(Point).Set(identity)
}

// generator is the canonical curve basepoint. See TestGenerator for the
// correspondence of this encoding with the values in RFC 8032.
var generator, _ = new(Point).SetBytes([]byte{
	0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
	0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
	0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
	0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66})

// NewGeneratorPoint returns a new Point set to the canonical generator.
func NewGeneratorPoint() *Point {
	return new(Point).Set(generator)
}

func (v *projCached) Zero() *projCached {
	v.YplusX.One()
	v.YminusX.One()
	v.Z.One()
	v.T2d.Zero()
	return v
}

func (v *affineCached) Zero() *affineCached {
	v.YplusX.One()
	v.YminusX.One()
	v.T2d.Zero()
	return v
}

// Assignments.

// Set sets v = u, and returns v.
func (v *Point) Set(u *Point) *Point {
	*v = *u
	return v
}

// Encoding.

// Bytes returns the canonical 32-byte encoding of v, according to RFC 8032,
// Section 5.1.2.
func (v *Point) Bytes() []byte {
	// This function is outlined to make the allocations inline in the caller
	// rather than happen on the heap.
	var buf [32]byte
	return v.bytes(&buf)
}

func (v *Point) bytes(buf *[32]byte) []byte {
	checkInitialized(v)

	var zInv, x, y field.Element
	zInv.Invert(&v.z)       // zInv = 1 / Z
	x.Multiply(&v.x, &zInv) // x = X / Z
	y.Multiply(&v.y, &zInv) // y = Y / Z

	out := copyFieldElement(buf, &y)
	out[31] |= byte(x.IsNegative() << 7)
	return out
}

var feOne = new(field.Element).One()

// SetBytes sets v = x, where x is a 32-byte encoding of v. If x does not
// represent a valid point on the curve, SetBytes returns nil and an error and
// the receiver is unchanged. Otherwise, SetBytes returns v.
//
// Note that SetBytes accepts all non-canonical encodings of valid points.
// That is, it follows decoding rules that match most implementations in
// the ecosystem rather than RFC 8032.
func (v *Point) SetBytes(x []byte) (*Point, error) {
	// Specifically, the non-canonical encodings that are accepted are
	//   1) the ones where the field element is not reduced (see the
	//      (*field.Element).SetBytes docs) and
	//   2) the ones where the x-coordinate is zero and the sign bit is set.
	//
	// Read more at https://hdevalence.ca/blog/2020-10-04-its-25519am,
	// specifically the "Canonical A, R" section.

	y, err := new(field.Element).SetBytes(x)
	if err != nil {
		return nil, errors.New("edwards25519: invalid point encoding length")
	}

	// -x² + y² = 1 + dx²y²
	// x² + dx²y² = x²(dy² + 1) = y² - 1
	// x² = (y² - 1) / (dy² + 1)

	// u = y² - 1
	y2 := new(field.Element).Square(y)
	u := new(field.Element).Subtract(y2, feOne)

	// v = dy² + 1
	vv := new(field.Element).Multiply(y2, d)
	vv = vv.Add(vv, feOne)

	// x = +√(u/v)
	xx, wasSquare := new(field.Element).SqrtRatio(u, vv)
	if wasSquare == 0 {
		return nil, errors.New("edwards25519: invalid point encoding")
	}

	// Select the negative square root if the sign bit is set.
	xxNeg := new(field.Element).Negate(xx)
	xx = xx.Select(xxNeg, xx, int(x[31]>>7))

	v.x.Set(xx)
	v.y.Set(y)
	v.z.One()
	v.t.Multiply(xx, y) // xy = T / Z

	return v, nil
}

func copyFieldElement(buf *[32]byte, v *field.Element) []byte {
	copy(buf[:], v.Bytes())
	return buf[:]
}

// Conversions.

func (v *projP2) FromP1xP1(p *projP1xP1) *projP2 {
	v.X.Multiply(&p.X, &p.T)
	v.Y.Multiply(&p.Y, &p.Z)
	v.Z.Multiply(&p.Z, &p.T)
	return v
}

func (v *projP2) FromP3(p *Point) *projP2 {
	v.X.Set(&p.x)
	v.Y.Set(&p.y)
	v.Z.Set(&p.z)
	return v
}

func (v *Point) fromP1xP1(p *projP1xP1) *Point {
	v.x.Multiply(&p.X, &p.T)
	v.y.Multiply(&p.Y, &p.Z)
	v.z.Multiply(&p.Z, &p.T)
	v.t.Multiply(&p.X, &p.Y)
	return v
}

func (v *Point) fromP2(p *projP2) *Point {
	v.x.Multiply(&p.X, &p.Z)
	v.y.Multiply(&p.Y, &p.Z)
	v.z.Square(&p.Z)
	v.t.Multiply(&p.X, &p.Y)
	return v
}

// d is a constant in the curve equation.
var d, _ = new(field.Element).SetBytes([]byte{
	0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75,
	0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00,
	0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c,
	0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52})
var d2 = new(field.Element).Add(d, d)

func (v *projCached) FromP3(p *Point) *projCached {
	v.YplusX.Add(&p.y, &p.x)
	v.YminusX.Subtract(&p.y, &p.x)
	v.Z.Set(&p.z)
	v.T2d.Multiply(&p.t, d2)
	return v
}

func (v *affineCached) FromP3(p *Point) *affineCached {
	v.YplusX.Add(&p.y, &p.x)
	v.YminusX.Subtract(&p.y, &p.x)
	v.T2d.Multiply(&p.t, d2)

	var invZ field.Element
	invZ.Invert(&p.z)
	v.YplusX.Multiply(&v.YplusX, &invZ)
	v.YminusX.Multiply(&v.YminusX, &invZ)
	v.T2d.Multiply(&v.T2d, &invZ)
	return v
}

// (Re)addition and subtraction.

// Add sets v = p + q, and returns v.
func (v *Point) Add(p, q *Point) *Point {
	checkInitialized(p, q)
	qCached := new(projCached).FromP3(q)
	result := new(projP1xP1).Add(p, qCached)
	return v.fromP1xP1(result)
}

// Subtract sets v = p - q, and returns v.
func (v *Point) Subtract(p, q *Point) *Point {
	checkInitialized(p, q)
	qCached := new(projCached).FromP3(q)
	result := new(projP1xP1).Sub(p, qCached)
	return v.fromP1xP1(result)
}

func (v *projP1xP1) Add(p *Point, q *projCached) *projP1xP1 {
	var YplusX, YminusX, PP, MM, TT2d, ZZ2 field.Element

	YplusX.Add(&p.y, &p.x)
	YminusX.Subtract(&p.y, &p.x)

	PP.Multiply(&YplusX, &q.YplusX)
	MM.Multiply(&YminusX, &q.YminusX)
	TT2d.Multiply(&p.t, &q.T2d)
	ZZ2.Multiply(&p.z, &q.Z)

	ZZ2.Add(&ZZ2, &ZZ2)

	v.X.Subtract(&PP, &MM)
	v.Y.Add(&PP, &MM)
	v.Z.Add(&ZZ2, &TT2d)
	v.T.Subtract(&ZZ2, &TT2d)
	return v
}

func (v *projP1xP1) Sub(p *Point, q *projCached) *projP1xP1 {
	var YplusX, YminusX, PP, MM, TT2d, ZZ2 field.Element

	YplusX.Add(&p.y, &p.x)
	YminusX.Subtract(&p.y, &p.x)

	PP.Multiply(&YplusX, &q.YminusX) // flipped sign
	MM.Multiply(&YminusX, &q.YplusX) // flipped sign
	TT2d.Multiply(&p.t, &q.T2d)
	ZZ2.Multiply(&p.z, &q.Z)

	ZZ2.Add(&ZZ2, &ZZ2)

	v.X.Subtract(&PP, &MM)
	v.Y.Add(&PP, &MM)
	v.Z.Subtract(&ZZ2, &TT2d) // flipped sign
	v.T.Add(&ZZ2, &TT2d)      // flipped sign
	return v
}

func (v *projP1xP1) AddAffine(p *Point, q *affineCached) *projP1xP1 {
	var YplusX, YminusX, PP, MM, TT2d, Z2 field.Element

	YplusX.Add(&p.y, &p.x)
	YminusX.Subtract(&p.y, &p.x)

	PP.Multiply(&YplusX, &q.YplusX)
	MM.Multiply(&YminusX, &q.YminusX)
	TT2d.Multiply(&p.t, &q.T2d)

	Z2.Add(&p.z, &p.z)

	v.X.Subtract(&PP, &MM)
	v.Y.Add(&PP, &MM)
	v.Z.Add(&Z2, &TT2d)
	v.T.Subtract(&Z2, &TT2d)
	return v
}

func (v *projP1xP1) SubAffine(p *Point, q *affineCached) *projP1xP1 {
	var YplusX, YminusX, PP, MM, TT2d, Z2 field.Element

	YplusX.Add(&p.y, &p.x)
	YminusX.Subtract(&p.y, &p.x)

	PP.Multiply(&YplusX, &q.YminusX) // flipped sign
	MM.Multiply(&YminusX, &q.YplusX) // flipped sign
	TT2d.Multiply(&p.t, &q.T2d)

	Z2.Add(&p.z, &p.z)

	v.X.Subtract(&PP, &MM)
	v.Y.Add(&PP, &MM)
	v.Z.Subtract(&Z2, &TT2d) // flipped sign
	v.T.Add(&Z2, &TT2d)      // flipped sign
	return v
}

// Doubling.

func (v *projP1xP1) Double(p *projP2) *projP1xP1 {
	var XX, YY, ZZ2, XplusYsq field.Element

	XX.Square(&p.X)
	YY.Square(&p.Y)
	ZZ2.Square(&p.Z)
	ZZ2.Add(&ZZ2, &ZZ2)
	XplusYsq.Add(&p.X, &p.Y)
	XplusYsq.Square(&XplusYsq)

	v.Y.Add(&YY, &XX)
	v.Z.Subtract(&YY, &XX)

	v.X.Subtract(&XplusYsq, &v.Y)
	v.T.Subtract(&ZZ2, &v.Z)
	return v
}

// Negation.

// Negate sets v = -p, and returns v.
func (v *Point) Negate(p *Point) *Point {
	checkInitialized(p)
	v.x.Negate(&p.x)
	v.y.Set(&p.y)
	v.z.Set(&p.z)
	v.t.Negate(&p.t)
	return v
}

// Equal returns 1 if v is equivalent to u, and 0 otherwise.
func (v *Point) Equal(u *Point) int {
	checkInitialized(v, u)

	var t1, t2, t3, t4 field.Element
	t1.Multiply(&v.x, &u.z)
	t2.Multiply(&u.x, &v.z)
	t3.Multiply(&v.y, &u.z)
	t4.Multiply(&u.y, &v.z)

	return t1.Equal(&t2) & t3.Equal(&t4)
}

// Constant-time operations

// Select sets v to a if cond == 1 and to b if cond == 0.
func (v *projCached) Select(a, b *projCached, cond int) *projCached {
	v.YplusX.Select(&a.YplusX, &b.YplusX, cond)
	v.YminusX.Select(&a.YminusX, &b.YminusX, cond)
	v.Z.Select(&a.Z, &b.Z, cond)
	v.T2d.Select(&a.T2d, &b.T2d, cond)
	return v
}

// Select sets v to a if cond == 1 and to b if cond == 0.
func (v *affineCached) Select(a, b *affineCached, cond int) *affineCached {
	v.YplusX.Select(&a.YplusX, &b.YplusX, cond)
	v.YminusX.Select(&a.YminusX, &b.YminusX, cond)
	v.T2d.Select(&a.T2d, &b.T2d, cond)
	return v
}

// CondNeg negates v if cond == 1 and leaves it unchanged if cond == 0.
func (v *projCached) CondNeg(cond int) *projCached {
	v.YplusX.Swap(&v.YminusX, cond)
	v.T2d.Select(new(field.Element).Negate(&v.T2d), &v.T2d, cond)
	return v
}

// CondNeg negates v if cond == 1 and leaves it unchanged if cond == 0.
func (v *affineCached) CondNeg(cond int) *affineCached {
	v.YplusX.Swap(&v.YminusX, cond)
	v.T2d.Select(new(field.Element).Negate(&v.T2d), &v.T2d, cond)
	return v
}