1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package elliptic implements the standard NIST P-224, P-256, P-384, and P-521
// elliptic curves over prime fields.
//
// Direct use of this package is deprecated, beyond the [P224], [P256], [P384],
// and [P521] values necessary to use [crypto/ecdsa]. Most other uses
// should migrate to the more efficient and safer [crypto/ecdh], or to
// third-party modules for lower-level functionality.
package elliptic
import (
"io"
"math/big"
"sync"
)
// A Curve represents a short-form Weierstrass curve with a=-3.
//
// The behavior of Add, Double, and ScalarMult when the input is not a point on
// the curve is undefined.
//
// Note that the conventional point at infinity (0, 0) is not considered on the
// curve, although it can be returned by Add, Double, ScalarMult, or
// ScalarBaseMult (but not the [Unmarshal] or [UnmarshalCompressed] functions).
//
// Using Curve implementations besides those returned by [P224], [P256], [P384],
// and [P521] is deprecated.
type Curve interface {
// Params returns the parameters for the curve.
Params() *CurveParams
// IsOnCurve reports whether the given (x,y) lies on the curve.
//
// Deprecated: this is a low-level unsafe API. For ECDH, use the crypto/ecdh
// package. The NewPublicKey methods of NIST curves in crypto/ecdh accept
// the same encoding as the Unmarshal function, and perform on-curve checks.
IsOnCurve(x, y *big.Int) bool
// Add returns the sum of (x1,y1) and (x2,y2).
//
// Deprecated: this is a low-level unsafe API.
Add(x1, y1, x2, y2 *big.Int) (x, y *big.Int)
// Double returns 2*(x,y).
//
// Deprecated: this is a low-level unsafe API.
Double(x1, y1 *big.Int) (x, y *big.Int)
// ScalarMult returns k*(x,y) where k is an integer in big-endian form.
//
// Deprecated: this is a low-level unsafe API. For ECDH, use the crypto/ecdh
// package. Most uses of ScalarMult can be replaced by a call to the ECDH
// methods of NIST curves in crypto/ecdh.
ScalarMult(x1, y1 *big.Int, k []byte) (x, y *big.Int)
// ScalarBaseMult returns k*G, where G is the base point of the group
// and k is an integer in big-endian form.
//
// Deprecated: this is a low-level unsafe API. For ECDH, use the crypto/ecdh
// package. Most uses of ScalarBaseMult can be replaced by a call to the
// PrivateKey.PublicKey method in crypto/ecdh.
ScalarBaseMult(k []byte) (x, y *big.Int)
}
var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f}
// GenerateKey returns a public/private key pair. The private key is
// generated using the given reader, which must return random data.
//
// Deprecated: for ECDH, use the GenerateKey methods of the [crypto/ecdh] package;
// for ECDSA, use the GenerateKey function of the crypto/ecdsa package.
func GenerateKey(curve Curve, rand io.Reader) (priv []byte, x, y *big.Int, err error) {
N := curve.Params().N
bitSize := N.BitLen()
byteLen := (bitSize + 7) / 8
priv = make([]byte, byteLen)
for x == nil {
_, err = io.ReadFull(rand, priv)
if err != nil {
return
}
// We have to mask off any excess bits in the case that the size of the
// underlying field is not a whole number of bytes.
priv[0] &= mask[bitSize%8]
// This is because, in tests, rand will return all zeros and we don't
// want to get the point at infinity and loop forever.
priv[1] ^= 0x42
// If the scalar is out of range, sample another random number.
if new(big.Int).SetBytes(priv).Cmp(N) >= 0 {
continue
}
x, y = curve.ScalarBaseMult(priv)
}
return
}
// Marshal converts a point on the curve into the uncompressed form specified in
// SEC 1, Version 2.0, Section 2.3.3. If the point is not on the curve (or is
// the conventional point at infinity), the behavior is undefined.
//
// Deprecated: for ECDH, use the crypto/ecdh package. This function returns an
// encoding equivalent to that of PublicKey.Bytes in crypto/ecdh.
func Marshal(curve Curve, x, y *big.Int) []byte {
panicIfNotOnCurve(curve, x, y)
byteLen := (curve.Params().BitSize + 7) / 8
ret := make([]byte, 1+2*byteLen)
ret[0] = 4 // uncompressed point
x.FillBytes(ret[1 : 1+byteLen])
y.FillBytes(ret[1+byteLen : 1+2*byteLen])
return ret
}
// MarshalCompressed converts a point on the curve into the compressed form
// specified in SEC 1, Version 2.0, Section 2.3.3. If the point is not on the
// curve (or is the conventional point at infinity), the behavior is undefined.
func MarshalCompressed(curve Curve, x, y *big.Int) []byte {
panicIfNotOnCurve(curve, x, y)
byteLen := (curve.Params().BitSize + 7) / 8
compressed := make([]byte, 1+byteLen)
compressed[0] = byte(y.Bit(0)) | 2
x.FillBytes(compressed[1:])
return compressed
}
// unmarshaler is implemented by curves with their own constant-time Unmarshal.
//
// There isn't an equivalent interface for Marshal/MarshalCompressed because
// that doesn't involve any mathematical operations, only FillBytes and Bit.
type unmarshaler interface {
Unmarshal([]byte) (x, y *big.Int)
UnmarshalCompressed([]byte) (x, y *big.Int)
}
// Assert that the known curves implement unmarshaler.
var _ = []unmarshaler{p224, p256, p384, p521}
// Unmarshal converts a point, serialized by [Marshal], into an x, y pair. It is
// an error if the point is not in uncompressed form, is not on the curve, or is
// the point at infinity. On error, x = nil.
//
// Deprecated: for ECDH, use the crypto/ecdh package. This function accepts an
// encoding equivalent to that of the NewPublicKey methods in crypto/ecdh.
func Unmarshal(curve Curve, data []byte) (x, y *big.Int) {
if c, ok := curve.(unmarshaler); ok {
return c.Unmarshal(data)
}
byteLen := (curve.Params().BitSize + 7) / 8
if len(data) != 1+2*byteLen {
return nil, nil
}
if data[0] != 4 { // uncompressed form
return nil, nil
}
p := curve.Params().P
x = new(big.Int).SetBytes(data[1 : 1+byteLen])
y = new(big.Int).SetBytes(data[1+byteLen:])
if x.Cmp(p) >= 0 || y.Cmp(p) >= 0 {
return nil, nil
}
if !curve.IsOnCurve(x, y) {
return nil, nil
}
return
}
// UnmarshalCompressed converts a point, serialized by [MarshalCompressed], into
// an x, y pair. It is an error if the point is not in compressed form, is not
// on the curve, or is the point at infinity. On error, x = nil.
func UnmarshalCompressed(curve Curve, data []byte) (x, y *big.Int) {
if c, ok := curve.(unmarshaler); ok {
return c.UnmarshalCompressed(data)
}
byteLen := (curve.Params().BitSize + 7) / 8
if len(data) != 1+byteLen {
return nil, nil
}
if data[0] != 2 && data[0] != 3 { // compressed form
return nil, nil
}
p := curve.Params().P
x = new(big.Int).SetBytes(data[1:])
if x.Cmp(p) >= 0 {
return nil, nil
}
// y² = x³ - 3x + b
y = curve.Params().polynomial(x)
y = y.ModSqrt(y, p)
if y == nil {
return nil, nil
}
if byte(y.Bit(0)) != data[0]&1 {
y.Neg(y).Mod(y, p)
}
if !curve.IsOnCurve(x, y) {
return nil, nil
}
return
}
func panicIfNotOnCurve(curve Curve, x, y *big.Int) {
// (0, 0) is the point at infinity by convention. It's ok to operate on it,
// although IsOnCurve is documented to return false for it. See Issue 37294.
if x.Sign() == 0 && y.Sign() == 0 {
return
}
if !curve.IsOnCurve(x, y) {
panic("crypto/elliptic: attempted operation on invalid point")
}
}
var initonce sync.Once
func initAll() {
initP224()
initP256()
initP384()
initP521()
}
// P224 returns a [Curve] which implements NIST P-224 (FIPS 186-3, section D.2.2),
// also known as secp224r1. The CurveParams.Name of this [Curve] is "P-224".
//
// Multiple invocations of this function will return the same value, so it can
// be used for equality checks and switch statements.
//
// The cryptographic operations are implemented using constant-time algorithms.
func P224() Curve {
initonce.Do(initAll)
return p224
}
// P256 returns a [Curve] which implements NIST P-256 (FIPS 186-3, section D.2.3),
// also known as secp256r1 or prime256v1. The CurveParams.Name of this [Curve] is
// "P-256".
//
// Multiple invocations of this function will return the same value, so it can
// be used for equality checks and switch statements.
//
// The cryptographic operations are implemented using constant-time algorithms.
func P256() Curve {
initonce.Do(initAll)
return p256
}
// P384 returns a [Curve] which implements NIST P-384 (FIPS 186-3, section D.2.4),
// also known as secp384r1. The CurveParams.Name of this [Curve] is "P-384".
//
// Multiple invocations of this function will return the same value, so it can
// be used for equality checks and switch statements.
//
// The cryptographic operations are implemented using constant-time algorithms.
func P384() Curve {
initonce.Do(initAll)
return p384
}
// P521 returns a [Curve] which implements NIST P-521 (FIPS 186-3, section D.2.5),
// also known as secp521r1. The CurveParams.Name of this [Curve] is "P-521".
//
// Multiple invocations of this function will return the same value, so it can
// be used for equality checks and switch statements.
//
// The cryptographic operations are implemented using constant-time algorithms.
func P521() Curve {
initonce.Do(initAll)
return p521
}
|