1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ecdsa
import (
"crypto/elliptic"
"errors"
"io"
"math/big"
"golang.org/x/crypto/cryptobyte"
"golang.org/x/crypto/cryptobyte/asn1"
)
// This file contains a math/big implementation of ECDSA that is only used for
// deprecated custom curves.
func generateLegacy(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) {
k, err := randFieldElement(c, rand)
if err != nil {
return nil, err
}
priv := new(PrivateKey)
priv.PublicKey.Curve = c
priv.D = k
priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
return priv, nil
}
// hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4,
// we use the left-most bits of the hash to match the bit-length of the order of
// the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3.
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
orderBits := c.Params().N.BitLen()
orderBytes := (orderBits + 7) / 8
if len(hash) > orderBytes {
hash = hash[:orderBytes]
}
ret := new(big.Int).SetBytes(hash)
excess := len(hash)*8 - orderBits
if excess > 0 {
ret.Rsh(ret, uint(excess))
}
return ret
}
var errZeroParam = errors.New("zero parameter")
// Sign signs a hash (which should be the result of hashing a larger message)
// using the private key, priv. If the hash is longer than the bit-length of the
// private key's curve order, the hash will be truncated to that length. It
// returns the signature as a pair of integers. Most applications should use
// [SignASN1] instead of dealing directly with r, s.
func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
sig, err := SignASN1(rand, priv, hash)
if err != nil {
return nil, nil, err
}
r, s = new(big.Int), new(big.Int)
var inner cryptobyte.String
input := cryptobyte.String(sig)
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1Integer(r) ||
!inner.ReadASN1Integer(s) ||
!inner.Empty() {
return nil, nil, errors.New("invalid ASN.1 from SignASN1")
}
return r, s, nil
}
func signLegacy(priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) {
c := priv.Curve
// SEC 1, Version 2.0, Section 4.1.3
N := c.Params().N
if N.Sign() == 0 {
return nil, errZeroParam
}
var k, kInv, r, s *big.Int
for {
for {
k, err = randFieldElement(c, csprng)
if err != nil {
return nil, err
}
kInv = new(big.Int).ModInverse(k, N)
r, _ = c.ScalarBaseMult(k.Bytes())
r.Mod(r, N)
if r.Sign() != 0 {
break
}
}
e := hashToInt(hash, c)
s = new(big.Int).Mul(priv.D, r)
s.Add(s, e)
s.Mul(s, kInv)
s.Mod(s, N) // N != 0
if s.Sign() != 0 {
break
}
}
return encodeSignature(r.Bytes(), s.Bytes())
}
// Verify verifies the signature in r, s of hash using the public key, pub. Its
// return value records whether the signature is valid. Most applications should
// use VerifyASN1 instead of dealing directly with r, s.
func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
if r.Sign() <= 0 || s.Sign() <= 0 {
return false
}
sig, err := encodeSignature(r.Bytes(), s.Bytes())
if err != nil {
return false
}
return VerifyASN1(pub, hash, sig)
}
func verifyLegacy(pub *PublicKey, hash []byte, sig []byte) bool {
rBytes, sBytes, err := parseSignature(sig)
if err != nil {
return false
}
r, s := new(big.Int).SetBytes(rBytes), new(big.Int).SetBytes(sBytes)
c := pub.Curve
N := c.Params().N
if r.Sign() <= 0 || s.Sign() <= 0 {
return false
}
if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
return false
}
// SEC 1, Version 2.0, Section 4.1.4
e := hashToInt(hash, c)
w := new(big.Int).ModInverse(s, N)
u1 := e.Mul(e, w)
u1.Mod(u1, N)
u2 := w.Mul(r, w)
u2.Mod(u2, N)
x1, y1 := c.ScalarBaseMult(u1.Bytes())
x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
x, y := c.Add(x1, y1, x2, y2)
if x.Sign() == 0 && y.Sign() == 0 {
return false
}
x.Mod(x, N)
return x.Cmp(r) == 0
}
var one = new(big.Int).SetInt64(1)
// randFieldElement returns a random element of the order of the given
// curve using the procedure given in FIPS 186-4, Appendix B.5.2.
func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
// See randomPoint for notes on the algorithm. This has to match, or s390x
// signatures will come out different from other architectures, which will
// break TLS recorded tests.
for {
N := c.Params().N
b := make([]byte, (N.BitLen()+7)/8)
if _, err = io.ReadFull(rand, b); err != nil {
return
}
if excess := len(b)*8 - N.BitLen(); excess > 0 {
b[0] >>= excess
}
k = new(big.Int).SetBytes(b)
if k.Sign() != 0 && k.Cmp(N) < 0 {
return
}
}
}
|