aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/go/_std_1.21/src/slices/slices.go
blob: afeed0afb522ceafe29a63aaa0194ae7b9e2d46b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package slices defines various functions useful with slices of any type.
package slices

import (
	"cmp"
	"unsafe"
)

// Equal reports whether two slices are equal: the same length and all
// elements equal. If the lengths are different, Equal returns false.
// Otherwise, the elements are compared in increasing index order, and the
// comparison stops at the first unequal pair.
// Floating point NaNs are not considered equal.
func Equal[S ~[]E, E comparable](s1, s2 S) bool {
	if len(s1) != len(s2) {
		return false
	}
	for i := range s1 {
		if s1[i] != s2[i] {
			return false
		}
	}
	return true
}

// EqualFunc reports whether two slices are equal using an equality
// function on each pair of elements. If the lengths are different,
// EqualFunc returns false. Otherwise, the elements are compared in
// increasing index order, and the comparison stops at the first index
// for which eq returns false.
func EqualFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, eq func(E1, E2) bool) bool {
	if len(s1) != len(s2) {
		return false
	}
	for i, v1 := range s1 {
		v2 := s2[i]
		if !eq(v1, v2) {
			return false
		}
	}
	return true
}

// Compare compares the elements of s1 and s2, using [cmp.Compare] on each pair
// of elements. The elements are compared sequentially, starting at index 0,
// until one element is not equal to the other.
// The result of comparing the first non-matching elements is returned.
// If both slices are equal until one of them ends, the shorter slice is
// considered less than the longer one.
// The result is 0 if s1 == s2, -1 if s1 < s2, and +1 if s1 > s2.
func Compare[S ~[]E, E cmp.Ordered](s1, s2 S) int {
	for i, v1 := range s1 {
		if i >= len(s2) {
			return +1
		}
		v2 := s2[i]
		if c := cmp.Compare(v1, v2); c != 0 {
			return c
		}
	}
	if len(s1) < len(s2) {
		return -1
	}
	return 0
}

// CompareFunc is like [Compare] but uses a custom comparison function on each
// pair of elements.
// The result is the first non-zero result of cmp; if cmp always
// returns 0 the result is 0 if len(s1) == len(s2), -1 if len(s1) < len(s2),
// and +1 if len(s1) > len(s2).
func CompareFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, cmp func(E1, E2) int) int {
	for i, v1 := range s1 {
		if i >= len(s2) {
			return +1
		}
		v2 := s2[i]
		if c := cmp(v1, v2); c != 0 {
			return c
		}
	}
	if len(s1) < len(s2) {
		return -1
	}
	return 0
}

// Index returns the index of the first occurrence of v in s,
// or -1 if not present.
func Index[S ~[]E, E comparable](s S, v E) int {
	for i := range s {
		if v == s[i] {
			return i
		}
	}
	return -1
}

// IndexFunc returns the first index i satisfying f(s[i]),
// or -1 if none do.
func IndexFunc[S ~[]E, E any](s S, f func(E) bool) int {
	for i := range s {
		if f(s[i]) {
			return i
		}
	}
	return -1
}

// Contains reports whether v is present in s.
func Contains[S ~[]E, E comparable](s S, v E) bool {
	return Index(s, v) >= 0
}

// ContainsFunc reports whether at least one
// element e of s satisfies f(e).
func ContainsFunc[S ~[]E, E any](s S, f func(E) bool) bool {
	return IndexFunc(s, f) >= 0
}

// Insert inserts the values v... into s at index i,
// returning the modified slice.
// The elements at s[i:] are shifted up to make room.
// In the returned slice r, r[i] == v[0],
// and r[i+len(v)] == value originally at r[i].
// Insert panics if i is out of range.
// This function is O(len(s) + len(v)).
func Insert[S ~[]E, E any](s S, i int, v ...E) S {
	m := len(v)
	if m == 0 {
		return s
	}
	n := len(s)
	if i == n {
		return append(s, v...)
	}
	if n+m > cap(s) {
		// Use append rather than make so that we bump the size of
		// the slice up to the next storage class.
		// This is what Grow does but we don't call Grow because
		// that might copy the values twice.
		s2 := append(s[:i], make(S, n+m-i)...)
		copy(s2[i:], v)
		copy(s2[i+m:], s[i:])
		return s2
	}
	s = s[:n+m]

	// before:
	// s: aaaaaaaabbbbccccccccdddd
	//            ^   ^       ^   ^
	//            i  i+m      n  n+m
	// after:
	// s: aaaaaaaavvvvbbbbcccccccc
	//            ^   ^       ^   ^
	//            i  i+m      n  n+m
	//
	// a are the values that don't move in s.
	// v are the values copied in from v.
	// b and c are the values from s that are shifted up in index.
	// d are the values that get overwritten, never to be seen again.

	if !overlaps(v, s[i+m:]) {
		// Easy case - v does not overlap either the c or d regions.
		// (It might be in some of a or b, or elsewhere entirely.)
		// The data we copy up doesn't write to v at all, so just do it.

		copy(s[i+m:], s[i:])

		// Now we have
		// s: aaaaaaaabbbbbbbbcccccccc
		//            ^   ^       ^   ^
		//            i  i+m      n  n+m
		// Note the b values are duplicated.

		copy(s[i:], v)

		// Now we have
		// s: aaaaaaaavvvvbbbbcccccccc
		//            ^   ^       ^   ^
		//            i  i+m      n  n+m
		// That's the result we want.
		return s
	}

	// The hard case - v overlaps c or d. We can't just shift up
	// the data because we'd move or clobber the values we're trying
	// to insert.
	// So instead, write v on top of d, then rotate.
	copy(s[n:], v)

	// Now we have
	// s: aaaaaaaabbbbccccccccvvvv
	//            ^   ^       ^   ^
	//            i  i+m      n  n+m

	rotateRight(s[i:], m)

	// Now we have
	// s: aaaaaaaavvvvbbbbcccccccc
	//            ^   ^       ^   ^
	//            i  i+m      n  n+m
	// That's the result we want.
	return s
}

// Delete removes the elements s[i:j] from s, returning the modified slice.
// Delete panics if s[i:j] is not a valid slice of s.
// Delete is O(len(s)-j), so if many items must be deleted, it is better to
// make a single call deleting them all together than to delete one at a time.
// Delete might not modify the elements s[len(s)-(j-i):len(s)]. If those
// elements contain pointers you might consider zeroing those elements so that
// objects they reference can be garbage collected.
func Delete[S ~[]E, E any](s S, i, j int) S {
	_ = s[i:j] // bounds check

	return append(s[:i], s[j:]...)
}

// DeleteFunc removes any elements from s for which del returns true,
// returning the modified slice.
// When DeleteFunc removes m elements, it might not modify the elements
// s[len(s)-m:len(s)]. If those elements contain pointers you might consider
// zeroing those elements so that objects they reference can be garbage
// collected.
func DeleteFunc[S ~[]E, E any](s S, del func(E) bool) S {
	// Don't start copying elements until we find one to delete.
	for i, v := range s {
		if del(v) {
			j := i
			for i++; i < len(s); i++ {
				v = s[i]
				if !del(v) {
					s[j] = v
					j++
				}
			}
			return s[:j]
		}
	}
	return s
}

// Replace replaces the elements s[i:j] by the given v, and returns the
// modified slice. Replace panics if s[i:j] is not a valid slice of s.
func Replace[S ~[]E, E any](s S, i, j int, v ...E) S {
	_ = s[i:j] // verify that i:j is a valid subslice

	if i == j {
		return Insert(s, i, v...)
	}
	if j == len(s) {
		return append(s[:i], v...)
	}

	tot := len(s[:i]) + len(v) + len(s[j:])
	if tot > cap(s) {
		// Too big to fit, allocate and copy over.
		s2 := append(s[:i], make(S, tot-i)...) // See Insert
		copy(s2[i:], v)
		copy(s2[i+len(v):], s[j:])
		return s2
	}

	r := s[:tot]

	if i+len(v) <= j {
		// Easy, as v fits in the deleted portion.
		copy(r[i:], v)
		if i+len(v) != j {
			copy(r[i+len(v):], s[j:])
		}
		return r
	}

	// We are expanding (v is bigger than j-i).
	// The situation is something like this:
	// (example has i=4,j=8,len(s)=16,len(v)=6)
	// s: aaaaxxxxbbbbbbbbyy
	//        ^   ^       ^ ^
	//        i   j  len(s) tot
	// a: prefix of s
	// x: deleted range
	// b: more of s
	// y: area to expand into

	if !overlaps(r[i+len(v):], v) {
		// Easy, as v is not clobbered by the first copy.
		copy(r[i+len(v):], s[j:])
		copy(r[i:], v)
		return r
	}

	// This is a situation where we don't have a single place to which
	// we can copy v. Parts of it need to go to two different places.
	// We want to copy the prefix of v into y and the suffix into x, then
	// rotate |y| spots to the right.
	//
	//        v[2:]      v[:2]
	//         |           |
	// s: aaaavvvvbbbbbbbbvv
	//        ^   ^       ^ ^
	//        i   j  len(s) tot
	//
	// If either of those two destinations don't alias v, then we're good.
	y := len(v) - (j - i) // length of y portion

	if !overlaps(r[i:j], v) {
		copy(r[i:j], v[y:])
		copy(r[len(s):], v[:y])
		rotateRight(r[i:], y)
		return r
	}
	if !overlaps(r[len(s):], v) {
		copy(r[len(s):], v[:y])
		copy(r[i:j], v[y:])
		rotateRight(r[i:], y)
		return r
	}

	// Now we know that v overlaps both x and y.
	// That means that the entirety of b is *inside* v.
	// So we don't need to preserve b at all; instead we
	// can copy v first, then copy the b part of v out of
	// v to the right destination.
	k := startIdx(v, s[j:])
	copy(r[i:], v)
	copy(r[i+len(v):], r[i+k:])
	return r
}

// Clone returns a copy of the slice.
// The elements are copied using assignment, so this is a shallow clone.
func Clone[S ~[]E, E any](s S) S {
	// Preserve nil in case it matters.
	if s == nil {
		return nil
	}
	return append(S([]E{}), s...)
}

// Compact replaces consecutive runs of equal elements with a single copy.
// This is like the uniq command found on Unix.
// Compact modifies the contents of the slice s and returns the modified slice,
// which may have a smaller length.
// When Compact discards m elements in total, it might not modify the elements
// s[len(s)-m:len(s)]. If those elements contain pointers you might consider
// zeroing those elements so that objects they reference can be garbage collected.
func Compact[S ~[]E, E comparable](s S) S {
	if len(s) < 2 {
		return s
	}
	i := 1
	for k := 1; k < len(s); k++ {
		if s[k] != s[k-1] {
			if i != k {
				s[i] = s[k]
			}
			i++
		}
	}
	return s[:i]
}

// CompactFunc is like [Compact] but uses an equality function to compare elements.
// For runs of elements that compare equal, CompactFunc keeps the first one.
func CompactFunc[S ~[]E, E any](s S, eq func(E, E) bool) S {
	if len(s) < 2 {
		return s
	}
	i := 1
	for k := 1; k < len(s); k++ {
		if !eq(s[k], s[k-1]) {
			if i != k {
				s[i] = s[k]
			}
			i++
		}
	}
	return s[:i]
}

// Grow increases the slice's capacity, if necessary, to guarantee space for
// another n elements. After Grow(n), at least n elements can be appended
// to the slice without another allocation. If n is negative or too large to
// allocate the memory, Grow panics.
func Grow[S ~[]E, E any](s S, n int) S {
	if n < 0 {
		panic("cannot be negative")
	}
	if n -= cap(s) - len(s); n > 0 {
		s = append(s[:cap(s)], make([]E, n)...)[:len(s)]
	}
	return s
}

// Clip removes unused capacity from the slice, returning s[:len(s):len(s)].
func Clip[S ~[]E, E any](s S) S {
	return s[:len(s):len(s)]
}

// Rotation algorithm explanation:
//
// rotate left by 2
// start with
//   0123456789
// split up like this
//   01 234567 89
// swap first 2 and last 2
//   89 234567 01
// join first parts
//   89234567 01
// recursively rotate first left part by 2
//   23456789 01
// join at the end
//   2345678901
//
// rotate left by 8
// start with
//   0123456789
// split up like this
//   01 234567 89
// swap first 2 and last 2
//   89 234567 01
// join last parts
//   89 23456701
// recursively rotate second part left by 6
//   89 01234567
// join at the end
//   8901234567

// TODO: There are other rotate algorithms.
// This algorithm has the desirable property that it moves each element exactly twice.
// The triple-reverse algorithm is simpler and more cache friendly, but takes more writes.
// The follow-cycles algorithm can be 1-write but it is not very cache friendly.

// rotateLeft rotates b left by n spaces.
// s_final[i] = s_orig[i+r], wrapping around.
func rotateLeft[E any](s []E, r int) {
	for r != 0 && r != len(s) {
		if r*2 <= len(s) {
			swap(s[:r], s[len(s)-r:])
			s = s[:len(s)-r]
		} else {
			swap(s[:len(s)-r], s[r:])
			s, r = s[len(s)-r:], r*2-len(s)
		}
	}
}
func rotateRight[E any](s []E, r int) {
	rotateLeft(s, len(s)-r)
}

// swap swaps the contents of x and y. x and y must be equal length and disjoint.
func swap[E any](x, y []E) {
	for i := 0; i < len(x); i++ {
		x[i], y[i] = y[i], x[i]
	}
}

// overlaps reports whether the memory ranges a[0:len(a)] and b[0:len(b)] overlap.
func overlaps[E any](a, b []E) bool {
	if len(a) == 0 || len(b) == 0 {
		return false
	}
	elemSize := unsafe.Sizeof(a[0])
	if elemSize == 0 {
		return false
	}
	// TODO: use a runtime/unsafe facility once one becomes available. See issue 12445.
	// Also see crypto/internal/alias/alias.go:AnyOverlap
	return uintptr(unsafe.Pointer(&a[0])) <= uintptr(unsafe.Pointer(&b[len(b)-1]))+(elemSize-1) &&
		uintptr(unsafe.Pointer(&b[0])) <= uintptr(unsafe.Pointer(&a[len(a)-1]))+(elemSize-1)
}

// startIdx returns the index in haystack where the needle starts.
// prerequisite: the needle must be aliased entirely inside the haystack.
func startIdx[E any](haystack, needle []E) int {
	p := &needle[0]
	for i := range haystack {
		if p == &haystack[i] {
			return i
		}
	}
	// TODO: what if the overlap is by a non-integral number of Es?
	panic("needle not found")
}

// Reverse reverses the elements of the slice in place.
func Reverse[S ~[]E, E any](s S) {
	for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 {
		s[i], s[j] = s[j], s[i]
	}
}