aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/go/_std_1.21/src/runtime/mpagealloc.go
blob: 2861fa93ebf0d5c8c937f25453f287d14eb2ac51 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Page allocator.
//
// The page allocator manages mapped pages (defined by pageSize, NOT
// physPageSize) for allocation and re-use. It is embedded into mheap.
//
// Pages are managed using a bitmap that is sharded into chunks.
// In the bitmap, 1 means in-use, and 0 means free. The bitmap spans the
// process's address space. Chunks are managed in a sparse-array-style structure
// similar to mheap.arenas, since the bitmap may be large on some systems.
//
// The bitmap is efficiently searched by using a radix tree in combination
// with fast bit-wise intrinsics. Allocation is performed using an address-ordered
// first-fit approach.
//
// Each entry in the radix tree is a summary that describes three properties of
// a particular region of the address space: the number of contiguous free pages
// at the start and end of the region it represents, and the maximum number of
// contiguous free pages found anywhere in that region.
//
// Each level of the radix tree is stored as one contiguous array, which represents
// a different granularity of subdivision of the processes' address space. Thus, this
// radix tree is actually implicit in these large arrays, as opposed to having explicit
// dynamically-allocated pointer-based node structures. Naturally, these arrays may be
// quite large for system with large address spaces, so in these cases they are mapped
// into memory as needed. The leaf summaries of the tree correspond to a bitmap chunk.
//
// The root level (referred to as L0 and index 0 in pageAlloc.summary) has each
// summary represent the largest section of address space (16 GiB on 64-bit systems),
// with each subsequent level representing successively smaller subsections until we
// reach the finest granularity at the leaves, a chunk.
//
// More specifically, each summary in each level (except for leaf summaries)
// represents some number of entries in the following level. For example, each
// summary in the root level may represent a 16 GiB region of address space,
// and in the next level there could be 8 corresponding entries which represent 2
// GiB subsections of that 16 GiB region, each of which could correspond to 8
// entries in the next level which each represent 256 MiB regions, and so on.
//
// Thus, this design only scales to heaps so large, but can always be extended to
// larger heaps by simply adding levels to the radix tree, which mostly costs
// additional virtual address space. The choice of managing large arrays also means
// that a large amount of virtual address space may be reserved by the runtime.

package runtime

import (
	"runtime/internal/atomic"
	"unsafe"
)

const (
	// The size of a bitmap chunk, i.e. the amount of bits (that is, pages) to consider
	// in the bitmap at once.
	pallocChunkPages    = 1 << logPallocChunkPages
	pallocChunkBytes    = pallocChunkPages * pageSize
	logPallocChunkPages = 9
	logPallocChunkBytes = logPallocChunkPages + pageShift

	// The number of radix bits for each level.
	//
	// The value of 3 is chosen such that the block of summaries we need to scan at
	// each level fits in 64 bytes (2^3 summaries * 8 bytes per summary), which is
	// close to the L1 cache line width on many systems. Also, a value of 3 fits 4 tree
	// levels perfectly into the 21-bit pallocBits summary field at the root level.
	//
	// The following equation explains how each of the constants relate:
	// summaryL0Bits + (summaryLevels-1)*summaryLevelBits + logPallocChunkBytes = heapAddrBits
	//
	// summaryLevels is an architecture-dependent value defined in mpagealloc_*.go.
	summaryLevelBits = 3
	summaryL0Bits    = heapAddrBits - logPallocChunkBytes - (summaryLevels-1)*summaryLevelBits

	// pallocChunksL2Bits is the number of bits of the chunk index number
	// covered by the second level of the chunks map.
	//
	// See (*pageAlloc).chunks for more details. Update the documentation
	// there should this change.
	pallocChunksL2Bits  = heapAddrBits - logPallocChunkBytes - pallocChunksL1Bits
	pallocChunksL1Shift = pallocChunksL2Bits
)

// maxSearchAddr returns the maximum searchAddr value, which indicates
// that the heap has no free space.
//
// This function exists just to make it clear that this is the maximum address
// for the page allocator's search space. See maxOffAddr for details.
//
// It's a function (rather than a variable) because it needs to be
// usable before package runtime's dynamic initialization is complete.
// See #51913 for details.
func maxSearchAddr() offAddr { return maxOffAddr }

// Global chunk index.
//
// Represents an index into the leaf level of the radix tree.
// Similar to arenaIndex, except instead of arenas, it divides the address
// space into chunks.
type chunkIdx uint

// chunkIndex returns the global index of the palloc chunk containing the
// pointer p.
func chunkIndex(p uintptr) chunkIdx {
	return chunkIdx((p - arenaBaseOffset) / pallocChunkBytes)
}

// chunkBase returns the base address of the palloc chunk at index ci.
func chunkBase(ci chunkIdx) uintptr {
	return uintptr(ci)*pallocChunkBytes + arenaBaseOffset
}

// chunkPageIndex computes the index of the page that contains p,
// relative to the chunk which contains p.
func chunkPageIndex(p uintptr) uint {
	return uint(p % pallocChunkBytes / pageSize)
}

// l1 returns the index into the first level of (*pageAlloc).chunks.
func (i chunkIdx) l1() uint {
	if pallocChunksL1Bits == 0 {
		// Let the compiler optimize this away if there's no
		// L1 map.
		return 0
	} else {
		return uint(i) >> pallocChunksL1Shift
	}
}

// l2 returns the index into the second level of (*pageAlloc).chunks.
func (i chunkIdx) l2() uint {
	if pallocChunksL1Bits == 0 {
		return uint(i)
	} else {
		return uint(i) & (1<<pallocChunksL2Bits - 1)
	}
}

// offAddrToLevelIndex converts an address in the offset address space
// to the index into summary[level] containing addr.
func offAddrToLevelIndex(level int, addr offAddr) int {
	return int((addr.a - arenaBaseOffset) >> levelShift[level])
}

// levelIndexToOffAddr converts an index into summary[level] into
// the corresponding address in the offset address space.
func levelIndexToOffAddr(level, idx int) offAddr {
	return offAddr{(uintptr(idx) << levelShift[level]) + arenaBaseOffset}
}

// addrsToSummaryRange converts base and limit pointers into a range
// of entries for the given summary level.
//
// The returned range is inclusive on the lower bound and exclusive on
// the upper bound.
func addrsToSummaryRange(level int, base, limit uintptr) (lo int, hi int) {
	// This is slightly more nuanced than just a shift for the exclusive
	// upper-bound. Note that the exclusive upper bound may be within a
	// summary at this level, meaning if we just do the obvious computation
	// hi will end up being an inclusive upper bound. Unfortunately, just
	// adding 1 to that is too broad since we might be on the very edge
	// of a summary's max page count boundary for this level
	// (1 << levelLogPages[level]). So, make limit an inclusive upper bound
	// then shift, then add 1, so we get an exclusive upper bound at the end.
	lo = int((base - arenaBaseOffset) >> levelShift[level])
	hi = int(((limit-1)-arenaBaseOffset)>>levelShift[level]) + 1
	return
}

// blockAlignSummaryRange aligns indices into the given level to that
// level's block width (1 << levelBits[level]). It assumes lo is inclusive
// and hi is exclusive, and so aligns them down and up respectively.
func blockAlignSummaryRange(level int, lo, hi int) (int, int) {
	e := uintptr(1) << levelBits[level]
	return int(alignDown(uintptr(lo), e)), int(alignUp(uintptr(hi), e))
}

type pageAlloc struct {
	// Radix tree of summaries.
	//
	// Each slice's cap represents the whole memory reservation.
	// Each slice's len reflects the allocator's maximum known
	// mapped heap address for that level.
	//
	// The backing store of each summary level is reserved in init
	// and may or may not be committed in grow (small address spaces
	// may commit all the memory in init).
	//
	// The purpose of keeping len <= cap is to enforce bounds checks
	// on the top end of the slice so that instead of an unknown
	// runtime segmentation fault, we get a much friendlier out-of-bounds
	// error.
	//
	// To iterate over a summary level, use inUse to determine which ranges
	// are currently available. Otherwise one might try to access
	// memory which is only Reserved which may result in a hard fault.
	//
	// We may still get segmentation faults < len since some of that
	// memory may not be committed yet.
	summary [summaryLevels][]pallocSum

	// chunks is a slice of bitmap chunks.
	//
	// The total size of chunks is quite large on most 64-bit platforms
	// (O(GiB) or more) if flattened, so rather than making one large mapping
	// (which has problems on some platforms, even when PROT_NONE) we use a
	// two-level sparse array approach similar to the arena index in mheap.
	//
	// To find the chunk containing a memory address `a`, do:
	//   chunkOf(chunkIndex(a))
	//
	// Below is a table describing the configuration for chunks for various
	// heapAddrBits supported by the runtime.
	//
	// heapAddrBits | L1 Bits | L2 Bits | L2 Entry Size
	// ------------------------------------------------
	// 32           | 0       | 10      | 128 KiB
	// 33 (iOS)     | 0       | 11      | 256 KiB
	// 48           | 13      | 13      | 1 MiB
	//
	// There's no reason to use the L1 part of chunks on 32-bit, the
	// address space is small so the L2 is small. For platforms with a
	// 48-bit address space, we pick the L1 such that the L2 is 1 MiB
	// in size, which is a good balance between low granularity without
	// making the impact on BSS too high (note the L1 is stored directly
	// in pageAlloc).
	//
	// To iterate over the bitmap, use inUse to determine which ranges
	// are currently available. Otherwise one might iterate over unused
	// ranges.
	//
	// Protected by mheapLock.
	//
	// TODO(mknyszek): Consider changing the definition of the bitmap
	// such that 1 means free and 0 means in-use so that summaries and
	// the bitmaps align better on zero-values.
	chunks [1 << pallocChunksL1Bits]*[1 << pallocChunksL2Bits]pallocData

	// The address to start an allocation search with. It must never
	// point to any memory that is not contained in inUse, i.e.
	// inUse.contains(searchAddr.addr()) must always be true. The one
	// exception to this rule is that it may take on the value of
	// maxOffAddr to indicate that the heap is exhausted.
	//
	// We guarantee that all valid heap addresses below this value
	// are allocated and not worth searching.
	searchAddr offAddr

	// start and end represent the chunk indices
	// which pageAlloc knows about. It assumes
	// chunks in the range [start, end) are
	// currently ready to use.
	start, end chunkIdx

	// inUse is a slice of ranges of address space which are
	// known by the page allocator to be currently in-use (passed
	// to grow).
	//
	// We care much more about having a contiguous heap in these cases
	// and take additional measures to ensure that, so in nearly all
	// cases this should have just 1 element.
	//
	// All access is protected by the mheapLock.
	inUse addrRanges

	// scav stores the scavenger state.
	scav struct {
		// index is an efficient index of chunks that have pages available to
		// scavenge.
		index scavengeIndex

		// releasedBg is the amount of memory released in the background this
		// scavenge cycle.
		releasedBg atomic.Uintptr

		// releasedEager is the amount of memory released eagerly this scavenge
		// cycle.
		releasedEager atomic.Uintptr
	}

	// mheap_.lock. This level of indirection makes it possible
	// to test pageAlloc independently of the runtime allocator.
	mheapLock *mutex

	// sysStat is the runtime memstat to update when new system
	// memory is committed by the pageAlloc for allocation metadata.
	sysStat *sysMemStat

	// summaryMappedReady is the number of bytes mapped in the Ready state
	// in the summary structure. Used only for testing currently.
	//
	// Protected by mheapLock.
	summaryMappedReady uintptr

	// chunkHugePages indicates whether page bitmap chunks should be backed
	// by huge pages.
	chunkHugePages bool

	// Whether or not this struct is being used in tests.
	test bool
}

func (p *pageAlloc) init(mheapLock *mutex, sysStat *sysMemStat, test bool) {
	if levelLogPages[0] > logMaxPackedValue {
		// We can't represent 1<<levelLogPages[0] pages, the maximum number
		// of pages we need to represent at the root level, in a summary, which
		// is a big problem. Throw.
		print("runtime: root level max pages = ", 1<<levelLogPages[0], "\n")
		print("runtime: summary max pages = ", maxPackedValue, "\n")
		throw("root level max pages doesn't fit in summary")
	}
	p.sysStat = sysStat

	// Initialize p.inUse.
	p.inUse.init(sysStat)

	// System-dependent initialization.
	p.sysInit(test)

	// Start with the searchAddr in a state indicating there's no free memory.
	p.searchAddr = maxSearchAddr()

	// Set the mheapLock.
	p.mheapLock = mheapLock

	// Initialize the scavenge index.
	p.summaryMappedReady += p.scav.index.init(test, sysStat)

	// Set if we're in a test.
	p.test = test
}

// tryChunkOf returns the bitmap data for the given chunk.
//
// Returns nil if the chunk data has not been mapped.
func (p *pageAlloc) tryChunkOf(ci chunkIdx) *pallocData {
	l2 := p.chunks[ci.l1()]
	if l2 == nil {
		return nil
	}
	return &l2[ci.l2()]
}

// chunkOf returns the chunk at the given chunk index.
//
// The chunk index must be valid or this method may throw.
func (p *pageAlloc) chunkOf(ci chunkIdx) *pallocData {
	return &p.chunks[ci.l1()][ci.l2()]
}

// grow sets up the metadata for the address range [base, base+size).
// It may allocate metadata, in which case *p.sysStat will be updated.
//
// p.mheapLock must be held.
func (p *pageAlloc) grow(base, size uintptr) {
	assertLockHeld(p.mheapLock)

	// Round up to chunks, since we can't deal with increments smaller
	// than chunks. Also, sysGrow expects aligned values.
	limit := alignUp(base+size, pallocChunkBytes)
	base = alignDown(base, pallocChunkBytes)

	// Grow the summary levels in a system-dependent manner.
	// We just update a bunch of additional metadata here.
	p.sysGrow(base, limit)

	// Grow the scavenge index.
	p.summaryMappedReady += p.scav.index.grow(base, limit, p.sysStat)

	// Update p.start and p.end.
	// If no growth happened yet, start == 0. This is generally
	// safe since the zero page is unmapped.
	firstGrowth := p.start == 0
	start, end := chunkIndex(base), chunkIndex(limit)
	if firstGrowth || start < p.start {
		p.start = start
	}
	if end > p.end {
		p.end = end
	}
	// Note that [base, limit) will never overlap with any existing
	// range inUse because grow only ever adds never-used memory
	// regions to the page allocator.
	p.inUse.add(makeAddrRange(base, limit))

	// A grow operation is a lot like a free operation, so if our
	// chunk ends up below p.searchAddr, update p.searchAddr to the
	// new address, just like in free.
	if b := (offAddr{base}); b.lessThan(p.searchAddr) {
		p.searchAddr = b
	}

	// Add entries into chunks, which is sparse, if needed. Then,
	// initialize the bitmap.
	//
	// Newly-grown memory is always considered scavenged.
	// Set all the bits in the scavenged bitmaps high.
	for c := chunkIndex(base); c < chunkIndex(limit); c++ {
		if p.chunks[c.l1()] == nil {
			// Create the necessary l2 entry.
			const l2Size = unsafe.Sizeof(*p.chunks[0])
			r := sysAlloc(l2Size, p.sysStat)
			if r == nil {
				throw("pageAlloc: out of memory")
			}
			if !p.test {
				// Make the chunk mapping eligible or ineligible
				// for huge pages, depending on what our current
				// state is.
				if p.chunkHugePages {
					sysHugePage(r, l2Size)
				} else {
					sysNoHugePage(r, l2Size)
				}
			}
			// Store the new chunk block but avoid a write barrier.
			// grow is used in call chains that disallow write barriers.
			*(*uintptr)(unsafe.Pointer(&p.chunks[c.l1()])) = uintptr(r)
		}
		p.chunkOf(c).scavenged.setRange(0, pallocChunkPages)
	}

	// Update summaries accordingly. The grow acts like a free, so
	// we need to ensure this newly-free memory is visible in the
	// summaries.
	p.update(base, size/pageSize, true, false)
}

// enableChunkHugePages enables huge pages for the chunk bitmap mappings (disabled by default).
//
// This function is idempotent.
//
// A note on latency: for sufficiently small heaps (<10s of GiB) this function will take constant
// time, but may take time proportional to the size of the mapped heap beyond that.
//
// The heap lock must not be held over this operation, since it will briefly acquire
// the heap lock.
//
// Must be called on the system stack because it acquires the heap lock.
//
//go:systemstack
func (p *pageAlloc) enableChunkHugePages() {
	// Grab the heap lock to turn on huge pages for new chunks and clone the current
	// heap address space ranges.
	//
	// After the lock is released, we can be sure that bitmaps for any new chunks may
	// be backed with huge pages, and we have the address space for the rest of the
	// chunks. At the end of this function, all chunk metadata should be backed by huge
	// pages.
	lock(&mheap_.lock)
	if p.chunkHugePages {
		unlock(&mheap_.lock)
		return
	}
	p.chunkHugePages = true
	var inUse addrRanges
	inUse.sysStat = p.sysStat
	p.inUse.cloneInto(&inUse)
	unlock(&mheap_.lock)

	// This might seem like a lot of work, but all these loops are for generality.
	//
	// For a 1 GiB contiguous heap, a 48-bit address space, 13 L1 bits, a palloc chunk size
	// of 4 MiB, and adherence to the default set of heap address hints, this will result in
	// exactly 1 call to sysHugePage.
	for _, r := range p.inUse.ranges {
		for i := chunkIndex(r.base.addr()).l1(); i < chunkIndex(r.limit.addr()-1).l1(); i++ {
			// N.B. We can assume that p.chunks[i] is non-nil and in a mapped part of p.chunks
			// because it's derived from inUse, which never shrinks.
			sysHugePage(unsafe.Pointer(p.chunks[i]), unsafe.Sizeof(*p.chunks[0]))
		}
	}
}

// update updates heap metadata. It must be called each time the bitmap
// is updated.
//
// If contig is true, update does some optimizations assuming that there was
// a contiguous allocation or free between addr and addr+npages. alloc indicates
// whether the operation performed was an allocation or a free.
//
// p.mheapLock must be held.
func (p *pageAlloc) update(base, npages uintptr, contig, alloc bool) {
	assertLockHeld(p.mheapLock)

	// base, limit, start, and end are inclusive.
	limit := base + npages*pageSize - 1
	sc, ec := chunkIndex(base), chunkIndex(limit)

	// Handle updating the lowest level first.
	if sc == ec {
		// Fast path: the allocation doesn't span more than one chunk,
		// so update this one and if the summary didn't change, return.
		x := p.summary[len(p.summary)-1][sc]
		y := p.chunkOf(sc).summarize()
		if x == y {
			return
		}
		p.summary[len(p.summary)-1][sc] = y
	} else if contig {
		// Slow contiguous path: the allocation spans more than one chunk
		// and at least one summary is guaranteed to change.
		summary := p.summary[len(p.summary)-1]

		// Update the summary for chunk sc.
		summary[sc] = p.chunkOf(sc).summarize()

		// Update the summaries for chunks in between, which are
		// either totally allocated or freed.
		whole := p.summary[len(p.summary)-1][sc+1 : ec]
		if alloc {
			// Should optimize into a memclr.
			for i := range whole {
				whole[i] = 0
			}
		} else {
			for i := range whole {
				whole[i] = freeChunkSum
			}
		}

		// Update the summary for chunk ec.
		summary[ec] = p.chunkOf(ec).summarize()
	} else {
		// Slow general path: the allocation spans more than one chunk
		// and at least one summary is guaranteed to change.
		//
		// We can't assume a contiguous allocation happened, so walk over
		// every chunk in the range and manually recompute the summary.
		summary := p.summary[len(p.summary)-1]
		for c := sc; c <= ec; c++ {
			summary[c] = p.chunkOf(c).summarize()
		}
	}

	// Walk up the radix tree and update the summaries appropriately.
	changed := true
	for l := len(p.summary) - 2; l >= 0 && changed; l-- {
		// Update summaries at level l from summaries at level l+1.
		changed = false

		// "Constants" for the previous level which we
		// need to compute the summary from that level.
		logEntriesPerBlock := levelBits[l+1]
		logMaxPages := levelLogPages[l+1]

		// lo and hi describe all the parts of the level we need to look at.
		lo, hi := addrsToSummaryRange(l, base, limit+1)

		// Iterate over each block, updating the corresponding summary in the less-granular level.
		for i := lo; i < hi; i++ {
			children := p.summary[l+1][i<<logEntriesPerBlock : (i+1)<<logEntriesPerBlock]
			sum := mergeSummaries(children, logMaxPages)
			old := p.summary[l][i]
			if old != sum {
				changed = true
				p.summary[l][i] = sum
			}
		}
	}
}

// allocRange marks the range of memory [base, base+npages*pageSize) as
// allocated. It also updates the summaries to reflect the newly-updated
// bitmap.
//
// Returns the amount of scavenged memory in bytes present in the
// allocated range.
//
// p.mheapLock must be held.
func (p *pageAlloc) allocRange(base, npages uintptr) uintptr {
	assertLockHeld(p.mheapLock)

	limit := base + npages*pageSize - 1
	sc, ec := chunkIndex(base), chunkIndex(limit)
	si, ei := chunkPageIndex(base), chunkPageIndex(limit)

	scav := uint(0)
	if sc == ec {
		// The range doesn't cross any chunk boundaries.
		chunk := p.chunkOf(sc)
		scav += chunk.scavenged.popcntRange(si, ei+1-si)
		chunk.allocRange(si, ei+1-si)
		p.scav.index.alloc(sc, ei+1-si)
	} else {
		// The range crosses at least one chunk boundary.
		chunk := p.chunkOf(sc)
		scav += chunk.scavenged.popcntRange(si, pallocChunkPages-si)
		chunk.allocRange(si, pallocChunkPages-si)
		p.scav.index.alloc(sc, pallocChunkPages-si)
		for c := sc + 1; c < ec; c++ {
			chunk := p.chunkOf(c)
			scav += chunk.scavenged.popcntRange(0, pallocChunkPages)
			chunk.allocAll()
			p.scav.index.alloc(c, pallocChunkPages)
		}
		chunk = p.chunkOf(ec)
		scav += chunk.scavenged.popcntRange(0, ei+1)
		chunk.allocRange(0, ei+1)
		p.scav.index.alloc(ec, ei+1)
	}
	p.update(base, npages, true, true)
	return uintptr(scav) * pageSize
}

// findMappedAddr returns the smallest mapped offAddr that is
// >= addr. That is, if addr refers to mapped memory, then it is
// returned. If addr is higher than any mapped region, then
// it returns maxOffAddr.
//
// p.mheapLock must be held.
func (p *pageAlloc) findMappedAddr(addr offAddr) offAddr {
	assertLockHeld(p.mheapLock)

	// If we're not in a test, validate first by checking mheap_.arenas.
	// This is a fast path which is only safe to use outside of testing.
	ai := arenaIndex(addr.addr())
	if p.test || mheap_.arenas[ai.l1()] == nil || mheap_.arenas[ai.l1()][ai.l2()] == nil {
		vAddr, ok := p.inUse.findAddrGreaterEqual(addr.addr())
		if ok {
			return offAddr{vAddr}
		} else {
			// The candidate search address is greater than any
			// known address, which means we definitely have no
			// free memory left.
			return maxOffAddr
		}
	}
	return addr
}

// find searches for the first (address-ordered) contiguous free region of
// npages in size and returns a base address for that region.
//
// It uses p.searchAddr to prune its search and assumes that no palloc chunks
// below chunkIndex(p.searchAddr) contain any free memory at all.
//
// find also computes and returns a candidate p.searchAddr, which may or
// may not prune more of the address space than p.searchAddr already does.
// This candidate is always a valid p.searchAddr.
//
// find represents the slow path and the full radix tree search.
//
// Returns a base address of 0 on failure, in which case the candidate
// searchAddr returned is invalid and must be ignored.
//
// p.mheapLock must be held.
func (p *pageAlloc) find(npages uintptr) (uintptr, offAddr) {
	assertLockHeld(p.mheapLock)

	// Search algorithm.
	//
	// This algorithm walks each level l of the radix tree from the root level
	// to the leaf level. It iterates over at most 1 << levelBits[l] of entries
	// in a given level in the radix tree, and uses the summary information to
	// find either:
	//  1) That a given subtree contains a large enough contiguous region, at
	//     which point it continues iterating on the next level, or
	//  2) That there are enough contiguous boundary-crossing bits to satisfy
	//     the allocation, at which point it knows exactly where to start
	//     allocating from.
	//
	// i tracks the index into the current level l's structure for the
	// contiguous 1 << levelBits[l] entries we're actually interested in.
	//
	// NOTE: Technically this search could allocate a region which crosses
	// the arenaBaseOffset boundary, which when arenaBaseOffset != 0, is
	// a discontinuity. However, the only way this could happen is if the
	// page at the zero address is mapped, and this is impossible on
	// every system we support where arenaBaseOffset != 0. So, the
	// discontinuity is already encoded in the fact that the OS will never
	// map the zero page for us, and this function doesn't try to handle
	// this case in any way.

	// i is the beginning of the block of entries we're searching at the
	// current level.
	i := 0

	// firstFree is the region of address space that we are certain to
	// find the first free page in the heap. base and bound are the inclusive
	// bounds of this window, and both are addresses in the linearized, contiguous
	// view of the address space (with arenaBaseOffset pre-added). At each level,
	// this window is narrowed as we find the memory region containing the
	// first free page of memory. To begin with, the range reflects the
	// full process address space.
	//
	// firstFree is updated by calling foundFree each time free space in the
	// heap is discovered.
	//
	// At the end of the search, base.addr() is the best new
	// searchAddr we could deduce in this search.
	firstFree := struct {
		base, bound offAddr
	}{
		base:  minOffAddr,
		bound: maxOffAddr,
	}
	// foundFree takes the given address range [addr, addr+size) and
	// updates firstFree if it is a narrower range. The input range must
	// either be fully contained within firstFree or not overlap with it
	// at all.
	//
	// This way, we'll record the first summary we find with any free
	// pages on the root level and narrow that down if we descend into
	// that summary. But as soon as we need to iterate beyond that summary
	// in a level to find a large enough range, we'll stop narrowing.
	foundFree := func(addr offAddr, size uintptr) {
		if firstFree.base.lessEqual(addr) && addr.add(size-1).lessEqual(firstFree.bound) {
			// This range fits within the current firstFree window, so narrow
			// down the firstFree window to the base and bound of this range.
			firstFree.base = addr
			firstFree.bound = addr.add(size - 1)
		} else if !(addr.add(size-1).lessThan(firstFree.base) || firstFree.bound.lessThan(addr)) {
			// This range only partially overlaps with the firstFree range,
			// so throw.
			print("runtime: addr = ", hex(addr.addr()), ", size = ", size, "\n")
			print("runtime: base = ", hex(firstFree.base.addr()), ", bound = ", hex(firstFree.bound.addr()), "\n")
			throw("range partially overlaps")
		}
	}

	// lastSum is the summary which we saw on the previous level that made us
	// move on to the next level. Used to print additional information in the
	// case of a catastrophic failure.
	// lastSumIdx is that summary's index in the previous level.
	lastSum := packPallocSum(0, 0, 0)
	lastSumIdx := -1

nextLevel:
	for l := 0; l < len(p.summary); l++ {
		// For the root level, entriesPerBlock is the whole level.
		entriesPerBlock := 1 << levelBits[l]
		logMaxPages := levelLogPages[l]

		// We've moved into a new level, so let's update i to our new
		// starting index. This is a no-op for level 0.
		i <<= levelBits[l]

		// Slice out the block of entries we care about.
		entries := p.summary[l][i : i+entriesPerBlock]

		// Determine j0, the first index we should start iterating from.
		// The searchAddr may help us eliminate iterations if we followed the
		// searchAddr on the previous level or we're on the root level, in which
		// case the searchAddr should be the same as i after levelShift.
		j0 := 0
		if searchIdx := offAddrToLevelIndex(l, p.searchAddr); searchIdx&^(entriesPerBlock-1) == i {
			j0 = searchIdx & (entriesPerBlock - 1)
		}

		// Run over the level entries looking for
		// a contiguous run of at least npages either
		// within an entry or across entries.
		//
		// base contains the page index (relative to
		// the first entry's first page) of the currently
		// considered run of consecutive pages.
		//
		// size contains the size of the currently considered
		// run of consecutive pages.
		var base, size uint
		for j := j0; j < len(entries); j++ {
			sum := entries[j]
			if sum == 0 {
				// A full entry means we broke any streak and
				// that we should skip it altogether.
				size = 0
				continue
			}

			// We've encountered a non-zero summary which means
			// free memory, so update firstFree.
			foundFree(levelIndexToOffAddr(l, i+j), (uintptr(1)<<logMaxPages)*pageSize)

			s := sum.start()
			if size+s >= uint(npages) {
				// If size == 0 we don't have a run yet,
				// which means base isn't valid. So, set
				// base to the first page in this block.
				if size == 0 {
					base = uint(j) << logMaxPages
				}
				// We hit npages; we're done!
				size += s
				break
			}
			if sum.max() >= uint(npages) {
				// The entry itself contains npages contiguous
				// free pages, so continue on the next level
				// to find that run.
				i += j
				lastSumIdx = i
				lastSum = sum
				continue nextLevel
			}
			if size == 0 || s < 1<<logMaxPages {
				// We either don't have a current run started, or this entry
				// isn't totally free (meaning we can't continue the current
				// one), so try to begin a new run by setting size and base
				// based on sum.end.
				size = sum.end()
				base = uint(j+1)<<logMaxPages - size
				continue
			}
			// The entry is completely free, so continue the run.
			size += 1 << logMaxPages
		}
		if size >= uint(npages) {
			// We found a sufficiently large run of free pages straddling
			// some boundary, so compute the address and return it.
			addr := levelIndexToOffAddr(l, i).add(uintptr(base) * pageSize).addr()
			return addr, p.findMappedAddr(firstFree.base)
		}
		if l == 0 {
			// We're at level zero, so that means we've exhausted our search.
			return 0, maxSearchAddr()
		}

		// We're not at level zero, and we exhausted the level we were looking in.
		// This means that either our calculations were wrong or the level above
		// lied to us. In either case, dump some useful state and throw.
		print("runtime: summary[", l-1, "][", lastSumIdx, "] = ", lastSum.start(), ", ", lastSum.max(), ", ", lastSum.end(), "\n")
		print("runtime: level = ", l, ", npages = ", npages, ", j0 = ", j0, "\n")
		print("runtime: p.searchAddr = ", hex(p.searchAddr.addr()), ", i = ", i, "\n")
		print("runtime: levelShift[level] = ", levelShift[l], ", levelBits[level] = ", levelBits[l], "\n")
		for j := 0; j < len(entries); j++ {
			sum := entries[j]
			print("runtime: summary[", l, "][", i+j, "] = (", sum.start(), ", ", sum.max(), ", ", sum.end(), ")\n")
		}
		throw("bad summary data")
	}

	// Since we've gotten to this point, that means we haven't found a
	// sufficiently-sized free region straddling some boundary (chunk or larger).
	// This means the last summary we inspected must have had a large enough "max"
	// value, so look inside the chunk to find a suitable run.
	//
	// After iterating over all levels, i must contain a chunk index which
	// is what the final level represents.
	ci := chunkIdx(i)
	j, searchIdx := p.chunkOf(ci).find(npages, 0)
	if j == ^uint(0) {
		// We couldn't find any space in this chunk despite the summaries telling
		// us it should be there. There's likely a bug, so dump some state and throw.
		sum := p.summary[len(p.summary)-1][i]
		print("runtime: summary[", len(p.summary)-1, "][", i, "] = (", sum.start(), ", ", sum.max(), ", ", sum.end(), ")\n")
		print("runtime: npages = ", npages, "\n")
		throw("bad summary data")
	}

	// Compute the address at which the free space starts.
	addr := chunkBase(ci) + uintptr(j)*pageSize

	// Since we actually searched the chunk, we may have
	// found an even narrower free window.
	searchAddr := chunkBase(ci) + uintptr(searchIdx)*pageSize
	foundFree(offAddr{searchAddr}, chunkBase(ci+1)-searchAddr)
	return addr, p.findMappedAddr(firstFree.base)
}

// alloc allocates npages worth of memory from the page heap, returning the base
// address for the allocation and the amount of scavenged memory in bytes
// contained in the region [base address, base address + npages*pageSize).
//
// Returns a 0 base address on failure, in which case other returned values
// should be ignored.
//
// p.mheapLock must be held.
//
// Must run on the system stack because p.mheapLock must be held.
//
//go:systemstack
func (p *pageAlloc) alloc(npages uintptr) (addr uintptr, scav uintptr) {
	assertLockHeld(p.mheapLock)

	// If the searchAddr refers to a region which has a higher address than
	// any known chunk, then we know we're out of memory.
	if chunkIndex(p.searchAddr.addr()) >= p.end {
		return 0, 0
	}

	// If npages has a chance of fitting in the chunk where the searchAddr is,
	// search it directly.
	searchAddr := minOffAddr
	if pallocChunkPages-chunkPageIndex(p.searchAddr.addr()) >= uint(npages) {
		// npages is guaranteed to be no greater than pallocChunkPages here.
		i := chunkIndex(p.searchAddr.addr())
		if max := p.summary[len(p.summary)-1][i].max(); max >= uint(npages) {
			j, searchIdx := p.chunkOf(i).find(npages, chunkPageIndex(p.searchAddr.addr()))
			if j == ^uint(0) {
				print("runtime: max = ", max, ", npages = ", npages, "\n")
				print("runtime: searchIdx = ", chunkPageIndex(p.searchAddr.addr()), ", p.searchAddr = ", hex(p.searchAddr.addr()), "\n")
				throw("bad summary data")
			}
			addr = chunkBase(i) + uintptr(j)*pageSize
			searchAddr = offAddr{chunkBase(i) + uintptr(searchIdx)*pageSize}
			goto Found
		}
	}
	// We failed to use a searchAddr for one reason or another, so try
	// the slow path.
	addr, searchAddr = p.find(npages)
	if addr == 0 {
		if npages == 1 {
			// We failed to find a single free page, the smallest unit
			// of allocation. This means we know the heap is completely
			// exhausted. Otherwise, the heap still might have free
			// space in it, just not enough contiguous space to
			// accommodate npages.
			p.searchAddr = maxSearchAddr()
		}
		return 0, 0
	}
Found:
	// Go ahead and actually mark the bits now that we have an address.
	scav = p.allocRange(addr, npages)

	// If we found a higher searchAddr, we know that all the
	// heap memory before that searchAddr in an offset address space is
	// allocated, so bump p.searchAddr up to the new one.
	if p.searchAddr.lessThan(searchAddr) {
		p.searchAddr = searchAddr
	}
	return addr, scav
}

// free returns npages worth of memory starting at base back to the page heap.
//
// p.mheapLock must be held.
//
// Must run on the system stack because p.mheapLock must be held.
//
//go:systemstack
func (p *pageAlloc) free(base, npages uintptr) {
	assertLockHeld(p.mheapLock)

	// If we're freeing pages below the p.searchAddr, update searchAddr.
	if b := (offAddr{base}); b.lessThan(p.searchAddr) {
		p.searchAddr = b
	}
	limit := base + npages*pageSize - 1
	if npages == 1 {
		// Fast path: we're clearing a single bit, and we know exactly
		// where it is, so mark it directly.
		i := chunkIndex(base)
		pi := chunkPageIndex(base)
		p.chunkOf(i).free1(pi)
		p.scav.index.free(i, pi, 1)
	} else {
		// Slow path: we're clearing more bits so we may need to iterate.
		sc, ec := chunkIndex(base), chunkIndex(limit)
		si, ei := chunkPageIndex(base), chunkPageIndex(limit)

		if sc == ec {
			// The range doesn't cross any chunk boundaries.
			p.chunkOf(sc).free(si, ei+1-si)
			p.scav.index.free(sc, si, ei+1-si)
		} else {
			// The range crosses at least one chunk boundary.
			p.chunkOf(sc).free(si, pallocChunkPages-si)
			p.scav.index.free(sc, si, pallocChunkPages-si)
			for c := sc + 1; c < ec; c++ {
				p.chunkOf(c).freeAll()
				p.scav.index.free(c, 0, pallocChunkPages)
			}
			p.chunkOf(ec).free(0, ei+1)
			p.scav.index.free(ec, 0, ei+1)
		}
	}
	p.update(base, npages, true, false)
}

const (
	pallocSumBytes = unsafe.Sizeof(pallocSum(0))

	// maxPackedValue is the maximum value that any of the three fields in
	// the pallocSum may take on.
	maxPackedValue    = 1 << logMaxPackedValue
	logMaxPackedValue = logPallocChunkPages + (summaryLevels-1)*summaryLevelBits

	freeChunkSum = pallocSum(uint64(pallocChunkPages) |
		uint64(pallocChunkPages<<logMaxPackedValue) |
		uint64(pallocChunkPages<<(2*logMaxPackedValue)))
)

// pallocSum is a packed summary type which packs three numbers: start, max,
// and end into a single 8-byte value. Each of these values are a summary of
// a bitmap and are thus counts, each of which may have a maximum value of
// 2^21 - 1, or all three may be equal to 2^21. The latter case is represented
// by just setting the 64th bit.
type pallocSum uint64

// packPallocSum takes a start, max, and end value and produces a pallocSum.
func packPallocSum(start, max, end uint) pallocSum {
	if max == maxPackedValue {
		return pallocSum(uint64(1 << 63))
	}
	return pallocSum((uint64(start) & (maxPackedValue - 1)) |
		((uint64(max) & (maxPackedValue - 1)) << logMaxPackedValue) |
		((uint64(end) & (maxPackedValue - 1)) << (2 * logMaxPackedValue)))
}

// start extracts the start value from a packed sum.
func (p pallocSum) start() uint {
	if uint64(p)&uint64(1<<63) != 0 {
		return maxPackedValue
	}
	return uint(uint64(p) & (maxPackedValue - 1))
}

// max extracts the max value from a packed sum.
func (p pallocSum) max() uint {
	if uint64(p)&uint64(1<<63) != 0 {
		return maxPackedValue
	}
	return uint((uint64(p) >> logMaxPackedValue) & (maxPackedValue - 1))
}

// end extracts the end value from a packed sum.
func (p pallocSum) end() uint {
	if uint64(p)&uint64(1<<63) != 0 {
		return maxPackedValue
	}
	return uint((uint64(p) >> (2 * logMaxPackedValue)) & (maxPackedValue - 1))
}

// unpack unpacks all three values from the summary.
func (p pallocSum) unpack() (uint, uint, uint) {
	if uint64(p)&uint64(1<<63) != 0 {
		return maxPackedValue, maxPackedValue, maxPackedValue
	}
	return uint(uint64(p) & (maxPackedValue - 1)),
		uint((uint64(p) >> logMaxPackedValue) & (maxPackedValue - 1)),
		uint((uint64(p) >> (2 * logMaxPackedValue)) & (maxPackedValue - 1))
}

// mergeSummaries merges consecutive summaries which may each represent at
// most 1 << logMaxPagesPerSum pages each together into one.
func mergeSummaries(sums []pallocSum, logMaxPagesPerSum uint) pallocSum {
	// Merge the summaries in sums into one.
	//
	// We do this by keeping a running summary representing the merged
	// summaries of sums[:i] in start, max, and end.
	start, max, end := sums[0].unpack()
	for i := 1; i < len(sums); i++ {
		// Merge in sums[i].
		si, mi, ei := sums[i].unpack()

		// Merge in sums[i].start only if the running summary is
		// completely free, otherwise this summary's start
		// plays no role in the combined sum.
		if start == uint(i)<<logMaxPagesPerSum {
			start += si
		}

		// Recompute the max value of the running sum by looking
		// across the boundary between the running sum and sums[i]
		// and at the max sums[i], taking the greatest of those two
		// and the max of the running sum.
		if end+si > max {
			max = end + si
		}
		if mi > max {
			max = mi
		}

		// Merge in end by checking if this new summary is totally
		// free. If it is, then we want to extend the running sum's
		// end by the new summary. If not, then we have some alloc'd
		// pages in there and we just want to take the end value in
		// sums[i].
		if ei == 1<<logMaxPagesPerSum {
			end += 1 << logMaxPagesPerSum
		} else {
			end = ei
		}
	}
	return packPallocSum(start, max, end)
}