1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package net
import (
"os"
"syscall"
"unsafe"
)
// If the ifindex is zero, interfaceTable returns mappings of all
// network interfaces. Otherwise it returns a mapping of a specific
// interface.
func interfaceTable(ifindex int) ([]Interface, error) {
tab, err := syscall.NetlinkRIB(syscall.RTM_GETLINK, syscall.AF_UNSPEC)
if err != nil {
return nil, os.NewSyscallError("netlinkrib", err)
}
msgs, err := syscall.ParseNetlinkMessage(tab)
if err != nil {
return nil, os.NewSyscallError("parsenetlinkmessage", err)
}
var ift []Interface
loop:
for _, m := range msgs {
switch m.Header.Type {
case syscall.NLMSG_DONE:
break loop
case syscall.RTM_NEWLINK:
ifim := (*syscall.IfInfomsg)(unsafe.Pointer(&m.Data[0]))
if ifindex == 0 || ifindex == int(ifim.Index) {
attrs, err := syscall.ParseNetlinkRouteAttr(&m)
if err != nil {
return nil, os.NewSyscallError("parsenetlinkrouteattr", err)
}
ift = append(ift, *newLink(ifim, attrs))
if ifindex == int(ifim.Index) {
break loop
}
}
}
}
return ift, nil
}
const (
// See linux/if_arp.h.
// Note that Linux doesn't support IPv4 over IPv6 tunneling.
sysARPHardwareIPv4IPv4 = 768 // IPv4 over IPv4 tunneling
sysARPHardwareIPv6IPv6 = 769 // IPv6 over IPv6 tunneling
sysARPHardwareIPv6IPv4 = 776 // IPv6 over IPv4 tunneling
sysARPHardwareGREIPv4 = 778 // any over GRE over IPv4 tunneling
sysARPHardwareGREIPv6 = 823 // any over GRE over IPv6 tunneling
)
func newLink(ifim *syscall.IfInfomsg, attrs []syscall.NetlinkRouteAttr) *Interface {
ifi := &Interface{Index: int(ifim.Index), Flags: linkFlags(ifim.Flags)}
for _, a := range attrs {
switch a.Attr.Type {
case syscall.IFLA_ADDRESS:
// We never return any /32 or /128 IP address
// prefix on any IP tunnel interface as the
// hardware address.
switch len(a.Value) {
case IPv4len:
switch ifim.Type {
case sysARPHardwareIPv4IPv4, sysARPHardwareGREIPv4, sysARPHardwareIPv6IPv4:
continue
}
case IPv6len:
switch ifim.Type {
case sysARPHardwareIPv6IPv6, sysARPHardwareGREIPv6:
continue
}
}
var nonzero bool
for _, b := range a.Value {
if b != 0 {
nonzero = true
break
}
}
if nonzero {
ifi.HardwareAddr = a.Value[:]
}
case syscall.IFLA_IFNAME:
ifi.Name = string(a.Value[:len(a.Value)-1])
case syscall.IFLA_MTU:
ifi.MTU = int(*(*uint32)(unsafe.Pointer(&a.Value[:4][0])))
}
}
return ifi
}
func linkFlags(rawFlags uint32) Flags {
var f Flags
if rawFlags&syscall.IFF_UP != 0 {
f |= FlagUp
}
if rawFlags&syscall.IFF_RUNNING != 0 {
f |= FlagRunning
}
if rawFlags&syscall.IFF_BROADCAST != 0 {
f |= FlagBroadcast
}
if rawFlags&syscall.IFF_LOOPBACK != 0 {
f |= FlagLoopback
}
if rawFlags&syscall.IFF_POINTOPOINT != 0 {
f |= FlagPointToPoint
}
if rawFlags&syscall.IFF_MULTICAST != 0 {
f |= FlagMulticast
}
return f
}
// If the ifi is nil, interfaceAddrTable returns addresses for all
// network interfaces. Otherwise it returns addresses for a specific
// interface.
func interfaceAddrTable(ifi *Interface) ([]Addr, error) {
tab, err := syscall.NetlinkRIB(syscall.RTM_GETADDR, syscall.AF_UNSPEC)
if err != nil {
return nil, os.NewSyscallError("netlinkrib", err)
}
msgs, err := syscall.ParseNetlinkMessage(tab)
if err != nil {
return nil, os.NewSyscallError("parsenetlinkmessage", err)
}
var ift []Interface
if ifi == nil {
var err error
ift, err = interfaceTable(0)
if err != nil {
return nil, err
}
}
ifat, err := addrTable(ift, ifi, msgs)
if err != nil {
return nil, err
}
return ifat, nil
}
func addrTable(ift []Interface, ifi *Interface, msgs []syscall.NetlinkMessage) ([]Addr, error) {
var ifat []Addr
loop:
for _, m := range msgs {
switch m.Header.Type {
case syscall.NLMSG_DONE:
break loop
case syscall.RTM_NEWADDR:
ifam := (*syscall.IfAddrmsg)(unsafe.Pointer(&m.Data[0]))
if len(ift) != 0 || ifi.Index == int(ifam.Index) {
if len(ift) != 0 {
var err error
ifi, err = interfaceByIndex(ift, int(ifam.Index))
if err != nil {
return nil, err
}
}
attrs, err := syscall.ParseNetlinkRouteAttr(&m)
if err != nil {
return nil, os.NewSyscallError("parsenetlinkrouteattr", err)
}
ifa := newAddr(ifam, attrs)
if ifa != nil {
ifat = append(ifat, ifa)
}
}
}
}
return ifat, nil
}
func newAddr(ifam *syscall.IfAddrmsg, attrs []syscall.NetlinkRouteAttr) Addr {
var ipPointToPoint bool
// Seems like we need to make sure whether the IP interface
// stack consists of IP point-to-point numbered or unnumbered
// addressing.
for _, a := range attrs {
if a.Attr.Type == syscall.IFA_LOCAL {
ipPointToPoint = true
break
}
}
for _, a := range attrs {
if ipPointToPoint && a.Attr.Type == syscall.IFA_ADDRESS {
continue
}
switch ifam.Family {
case syscall.AF_INET:
return &IPNet{IP: IPv4(a.Value[0], a.Value[1], a.Value[2], a.Value[3]), Mask: CIDRMask(int(ifam.Prefixlen), 8*IPv4len)}
case syscall.AF_INET6:
ifa := &IPNet{IP: make(IP, IPv6len), Mask: CIDRMask(int(ifam.Prefixlen), 8*IPv6len)}
copy(ifa.IP, a.Value[:])
return ifa
}
}
return nil
}
// interfaceMulticastAddrTable returns addresses for a specific
// interface.
func interfaceMulticastAddrTable(ifi *Interface) ([]Addr, error) {
ifmat4 := parseProcNetIGMP("/proc/net/igmp", ifi)
ifmat6 := parseProcNetIGMP6("/proc/net/igmp6", ifi)
return append(ifmat4, ifmat6...), nil
}
func parseProcNetIGMP(path string, ifi *Interface) []Addr {
fd, err := open(path)
if err != nil {
return nil
}
defer fd.close()
var (
ifmat []Addr
name string
)
fd.readLine() // skip first line
b := make([]byte, IPv4len)
for l, ok := fd.readLine(); ok; l, ok = fd.readLine() {
f := splitAtBytes(l, " :\r\t\n")
if len(f) < 4 {
continue
}
switch {
case l[0] != ' ' && l[0] != '\t': // new interface line
name = f[1]
case len(f[0]) == 8:
if ifi == nil || name == ifi.Name {
// The Linux kernel puts the IP
// address in /proc/net/igmp in native
// endianness.
for i := 0; i+1 < len(f[0]); i += 2 {
b[i/2], _ = xtoi2(f[0][i:i+2], 0)
}
i := *(*uint32)(unsafe.Pointer(&b[:4][0]))
ifma := &IPAddr{IP: IPv4(byte(i>>24), byte(i>>16), byte(i>>8), byte(i))}
ifmat = append(ifmat, ifma)
}
}
}
return ifmat
}
func parseProcNetIGMP6(path string, ifi *Interface) []Addr {
fd, err := open(path)
if err != nil {
return nil
}
defer fd.close()
var ifmat []Addr
b := make([]byte, IPv6len)
for l, ok := fd.readLine(); ok; l, ok = fd.readLine() {
f := splitAtBytes(l, " \r\t\n")
if len(f) < 6 {
continue
}
if ifi == nil || f[1] == ifi.Name {
for i := 0; i+1 < len(f[2]); i += 2 {
b[i/2], _ = xtoi2(f[2][i:i+2], 0)
}
ifma := &IPAddr{IP: IP{b[0], b[1], b[2], b[3], b[4], b[5], b[6], b[7], b[8], b[9], b[10], b[11], b[12], b[13], b[14], b[15]}}
ifmat = append(ifmat, ifma)
}
}
return ifmat
}
|