1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
|
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package zstd
import (
"math/bits"
)
// fseEntry is one entry in an FSE table.
type fseEntry struct {
sym uint8 // value that this entry records
bits uint8 // number of bits to read to determine next state
base uint16 // add those bits to this state to get the next state
}
// readFSE reads an FSE table from data starting at off.
// maxSym is the maximum symbol value.
// maxBits is the maximum number of bits permitted for symbols in the table.
// The FSE is written into table, which must be at least 1<<maxBits in size.
// This returns the number of bits in the FSE table and the new offset.
// RFC 4.1.1.
func (r *Reader) readFSE(data block, off, maxSym, maxBits int, table []fseEntry) (tableBits, roff int, err error) {
br := r.makeBitReader(data, off)
if err := br.moreBits(); err != nil {
return 0, 0, err
}
accuracyLog := int(br.val(4)) + 5
if accuracyLog > maxBits {
return 0, 0, br.makeError("FSE accuracy log too large")
}
// The number of remaining probabilities, plus 1.
// This determines the number of bits to be read for the next value.
remaining := (1 << accuracyLog) + 1
// The current difference between small and large values,
// which depends on the number of remaining values.
// Small values use 1 less bit.
threshold := 1 << accuracyLog
// The number of bits needed to compute threshold.
bitsNeeded := accuracyLog + 1
// The next character value.
sym := 0
// Whether the last count was 0.
prev0 := false
var norm [256]int16
for remaining > 1 && sym <= maxSym {
if err := br.moreBits(); err != nil {
return 0, 0, err
}
if prev0 {
// Previous count was 0, so there is a 2-bit
// repeat flag. If the 2-bit flag is 0b11,
// it adds 3 and then there is another repeat flag.
zsym := sym
for (br.bits & 0xfff) == 0xfff {
zsym += 3 * 6
br.bits >>= 12
br.cnt -= 12
if err := br.moreBits(); err != nil {
return 0, 0, err
}
}
for (br.bits & 3) == 3 {
zsym += 3
br.bits >>= 2
br.cnt -= 2
if err := br.moreBits(); err != nil {
return 0, 0, err
}
}
// We have at least 14 bits here,
// no need to call moreBits
zsym += int(br.val(2))
if zsym > maxSym {
return 0, 0, br.makeError("FSE symbol index overflow")
}
for ; sym < zsym; sym++ {
norm[uint8(sym)] = 0
}
prev0 = false
continue
}
max := (2*threshold - 1) - remaining
var count int
if int(br.bits&uint32(threshold-1)) < max {
// A small value.
count = int(br.bits & uint32((threshold - 1)))
br.bits >>= bitsNeeded - 1
br.cnt -= uint32(bitsNeeded - 1)
} else {
// A large value.
count = int(br.bits & uint32((2*threshold - 1)))
if count >= threshold {
count -= max
}
br.bits >>= bitsNeeded
br.cnt -= uint32(bitsNeeded)
}
count--
if count >= 0 {
remaining -= count
} else {
remaining--
}
if sym >= 256 {
return 0, 0, br.makeError("FSE sym overflow")
}
norm[uint8(sym)] = int16(count)
sym++
prev0 = count == 0
for remaining < threshold {
bitsNeeded--
threshold >>= 1
}
}
if remaining != 1 {
return 0, 0, br.makeError("too many symbols in FSE table")
}
for ; sym <= maxSym; sym++ {
norm[uint8(sym)] = 0
}
br.backup()
if err := r.buildFSE(off, norm[:maxSym+1], table, accuracyLog); err != nil {
return 0, 0, err
}
return accuracyLog, int(br.off), nil
}
// buildFSE builds an FSE decoding table from a list of probabilities.
// The probabilities are in norm. next is scratch space. The number of bits
// in the table is tableBits.
func (r *Reader) buildFSE(off int, norm []int16, table []fseEntry, tableBits int) error {
tableSize := 1 << tableBits
highThreshold := tableSize - 1
var next [256]uint16
for i, n := range norm {
if n >= 0 {
next[uint8(i)] = uint16(n)
} else {
table[highThreshold].sym = uint8(i)
highThreshold--
next[uint8(i)] = 1
}
}
pos := 0
step := (tableSize >> 1) + (tableSize >> 3) + 3
mask := tableSize - 1
for i, n := range norm {
for j := 0; j < int(n); j++ {
table[pos].sym = uint8(i)
pos = (pos + step) & mask
for pos > highThreshold {
pos = (pos + step) & mask
}
}
}
if pos != 0 {
return r.makeError(off, "FSE count error")
}
for i := 0; i < tableSize; i++ {
sym := table[i].sym
nextState := next[sym]
next[sym]++
if nextState == 0 {
return r.makeError(off, "FSE state error")
}
highBit := 15 - bits.LeadingZeros16(nextState)
bits := tableBits - highBit
table[i].bits = uint8(bits)
table[i].base = (nextState << bits) - uint16(tableSize)
}
return nil
}
// fseBaselineEntry is an entry in an FSE baseline table.
// We use these for literal/match/length values.
// Those require mapping the symbol to a baseline value,
// and then reading zero or more bits and adding the value to the baseline.
// Rather than looking thees up in separate tables,
// we convert the FSE table to an FSE baseline table.
type fseBaselineEntry struct {
baseline uint32 // baseline for value that this entry represents
basebits uint8 // number of bits to read to add to baseline
bits uint8 // number of bits to read to determine next state
base uint16 // add the bits to this base to get the next state
}
// Given a literal length code, we need to read a number of bits and
// add that to a baseline. For states 0 to 15 the baseline is the
// state and the number of bits is zero. RFC 3.1.1.3.2.1.1.
const literalLengthOffset = 16
var literalLengthBase = []uint32{
16 | (1 << 24),
18 | (1 << 24),
20 | (1 << 24),
22 | (1 << 24),
24 | (2 << 24),
28 | (2 << 24),
32 | (3 << 24),
40 | (3 << 24),
48 | (4 << 24),
64 | (6 << 24),
128 | (7 << 24),
256 | (8 << 24),
512 | (9 << 24),
1024 | (10 << 24),
2048 | (11 << 24),
4096 | (12 << 24),
8192 | (13 << 24),
16384 | (14 << 24),
32768 | (15 << 24),
65536 | (16 << 24),
}
// makeLiteralBaselineFSE converts the literal length fseTable to baselineTable.
func (r *Reader) makeLiteralBaselineFSE(off int, fseTable []fseEntry, baselineTable []fseBaselineEntry) error {
for i, e := range fseTable {
be := fseBaselineEntry{
bits: e.bits,
base: e.base,
}
if e.sym < literalLengthOffset {
be.baseline = uint32(e.sym)
be.basebits = 0
} else {
if e.sym > 35 {
return r.makeError(off, "FSE baseline symbol overflow")
}
idx := e.sym - literalLengthOffset
basebits := literalLengthBase[idx]
be.baseline = basebits & 0xffffff
be.basebits = uint8(basebits >> 24)
}
baselineTable[i] = be
}
return nil
}
// makeOffsetBaselineFSE converts the offset length fseTable to baselineTable.
func (r *Reader) makeOffsetBaselineFSE(off int, fseTable []fseEntry, baselineTable []fseBaselineEntry) error {
for i, e := range fseTable {
be := fseBaselineEntry{
bits: e.bits,
base: e.base,
}
if e.sym > 31 {
return r.makeError(off, "FSE offset symbol overflow")
}
// The simple way to write this is
// be.baseline = 1 << e.sym
// be.basebits = e.sym
// That would give us an offset value that corresponds to
// the one described in the RFC. However, for offsets > 3
// we have to subtract 3. And for offset values 1, 2, 3
// we use a repeated offset.
//
// The baseline is always a power of 2, and is never 0,
// so for those low values we will see one entry that is
// baseline 1, basebits 0, and one entry that is baseline 2,
// basebits 1. All other entries will have baseline >= 4
// basebits >= 2.
//
// So we can check for RFC offset <= 3 by checking for
// basebits <= 1. That means that we can subtract 3 here
// and not worry about doing it in the hot loop.
be.baseline = 1 << e.sym
if e.sym >= 2 {
be.baseline -= 3
}
be.basebits = e.sym
baselineTable[i] = be
}
return nil
}
// Given a match length code, we need to read a number of bits and add
// that to a baseline. For states 0 to 31 the baseline is state+3 and
// the number of bits is zero. RFC 3.1.1.3.2.1.1.
const matchLengthOffset = 32
var matchLengthBase = []uint32{
35 | (1 << 24),
37 | (1 << 24),
39 | (1 << 24),
41 | (1 << 24),
43 | (2 << 24),
47 | (2 << 24),
51 | (3 << 24),
59 | (3 << 24),
67 | (4 << 24),
83 | (4 << 24),
99 | (5 << 24),
131 | (7 << 24),
259 | (8 << 24),
515 | (9 << 24),
1027 | (10 << 24),
2051 | (11 << 24),
4099 | (12 << 24),
8195 | (13 << 24),
16387 | (14 << 24),
32771 | (15 << 24),
65539 | (16 << 24),
}
// makeMatchBaselineFSE converts the match length fseTable to baselineTable.
func (r *Reader) makeMatchBaselineFSE(off int, fseTable []fseEntry, baselineTable []fseBaselineEntry) error {
for i, e := range fseTable {
be := fseBaselineEntry{
bits: e.bits,
base: e.base,
}
if e.sym < matchLengthOffset {
be.baseline = uint32(e.sym) + 3
be.basebits = 0
} else {
if e.sym > 52 {
return r.makeError(off, "FSE baseline symbol overflow")
}
idx := e.sym - matchLengthOffset
basebits := matchLengthBase[idx]
be.baseline = basebits & 0xffffff
be.basebits = uint8(basebits >> 24)
}
baselineTable[i] = be
}
return nil
}
// predefinedLiteralTable is the predefined table to use for literal lengths.
// Generated from table in RFC 3.1.1.3.2.2.1.
// Checked by TestPredefinedTables.
var predefinedLiteralTable = [...]fseBaselineEntry{
{0, 0, 4, 0}, {0, 0, 4, 16}, {1, 0, 5, 32},
{3, 0, 5, 0}, {4, 0, 5, 0}, {6, 0, 5, 0},
{7, 0, 5, 0}, {9, 0, 5, 0}, {10, 0, 5, 0},
{12, 0, 5, 0}, {14, 0, 6, 0}, {16, 1, 5, 0},
{20, 1, 5, 0}, {22, 1, 5, 0}, {28, 2, 5, 0},
{32, 3, 5, 0}, {48, 4, 5, 0}, {64, 6, 5, 32},
{128, 7, 5, 0}, {256, 8, 6, 0}, {1024, 10, 6, 0},
{4096, 12, 6, 0}, {0, 0, 4, 32}, {1, 0, 4, 0},
{2, 0, 5, 0}, {4, 0, 5, 32}, {5, 0, 5, 0},
{7, 0, 5, 32}, {8, 0, 5, 0}, {10, 0, 5, 32},
{11, 0, 5, 0}, {13, 0, 6, 0}, {16, 1, 5, 32},
{18, 1, 5, 0}, {22, 1, 5, 32}, {24, 2, 5, 0},
{32, 3, 5, 32}, {40, 3, 5, 0}, {64, 6, 4, 0},
{64, 6, 4, 16}, {128, 7, 5, 32}, {512, 9, 6, 0},
{2048, 11, 6, 0}, {0, 0, 4, 48}, {1, 0, 4, 16},
{2, 0, 5, 32}, {3, 0, 5, 32}, {5, 0, 5, 32},
{6, 0, 5, 32}, {8, 0, 5, 32}, {9, 0, 5, 32},
{11, 0, 5, 32}, {12, 0, 5, 32}, {15, 0, 6, 0},
{18, 1, 5, 32}, {20, 1, 5, 32}, {24, 2, 5, 32},
{28, 2, 5, 32}, {40, 3, 5, 32}, {48, 4, 5, 32},
{65536, 16, 6, 0}, {32768, 15, 6, 0}, {16384, 14, 6, 0},
{8192, 13, 6, 0},
}
// predefinedOffsetTable is the predefined table to use for offsets.
// Generated from table in RFC 3.1.1.3.2.2.3.
// Checked by TestPredefinedTables.
var predefinedOffsetTable = [...]fseBaselineEntry{
{1, 0, 5, 0}, {61, 6, 4, 0}, {509, 9, 5, 0},
{32765, 15, 5, 0}, {2097149, 21, 5, 0}, {5, 3, 5, 0},
{125, 7, 4, 0}, {4093, 12, 5, 0}, {262141, 18, 5, 0},
{8388605, 23, 5, 0}, {29, 5, 5, 0}, {253, 8, 4, 0},
{16381, 14, 5, 0}, {1048573, 20, 5, 0}, {1, 2, 5, 0},
{125, 7, 4, 16}, {2045, 11, 5, 0}, {131069, 17, 5, 0},
{4194301, 22, 5, 0}, {13, 4, 5, 0}, {253, 8, 4, 16},
{8189, 13, 5, 0}, {524285, 19, 5, 0}, {2, 1, 5, 0},
{61, 6, 4, 16}, {1021, 10, 5, 0}, {65533, 16, 5, 0},
{268435453, 28, 5, 0}, {134217725, 27, 5, 0}, {67108861, 26, 5, 0},
{33554429, 25, 5, 0}, {16777213, 24, 5, 0},
}
// predefinedMatchTable is the predefined table to use for match lengths.
// Generated from table in RFC 3.1.1.3.2.2.2.
// Checked by TestPredefinedTables.
var predefinedMatchTable = [...]fseBaselineEntry{
{3, 0, 6, 0}, {4, 0, 4, 0}, {5, 0, 5, 32},
{6, 0, 5, 0}, {8, 0, 5, 0}, {9, 0, 5, 0},
{11, 0, 5, 0}, {13, 0, 6, 0}, {16, 0, 6, 0},
{19, 0, 6, 0}, {22, 0, 6, 0}, {25, 0, 6, 0},
{28, 0, 6, 0}, {31, 0, 6, 0}, {34, 0, 6, 0},
{37, 1, 6, 0}, {41, 1, 6, 0}, {47, 2, 6, 0},
{59, 3, 6, 0}, {83, 4, 6, 0}, {131, 7, 6, 0},
{515, 9, 6, 0}, {4, 0, 4, 16}, {5, 0, 4, 0},
{6, 0, 5, 32}, {7, 0, 5, 0}, {9, 0, 5, 32},
{10, 0, 5, 0}, {12, 0, 6, 0}, {15, 0, 6, 0},
{18, 0, 6, 0}, {21, 0, 6, 0}, {24, 0, 6, 0},
{27, 0, 6, 0}, {30, 0, 6, 0}, {33, 0, 6, 0},
{35, 1, 6, 0}, {39, 1, 6, 0}, {43, 2, 6, 0},
{51, 3, 6, 0}, {67, 4, 6, 0}, {99, 5, 6, 0},
{259, 8, 6, 0}, {4, 0, 4, 32}, {4, 0, 4, 48},
{5, 0, 4, 16}, {7, 0, 5, 32}, {8, 0, 5, 32},
{10, 0, 5, 32}, {11, 0, 5, 32}, {14, 0, 6, 0},
{17, 0, 6, 0}, {20, 0, 6, 0}, {23, 0, 6, 0},
{26, 0, 6, 0}, {29, 0, 6, 0}, {32, 0, 6, 0},
{65539, 16, 6, 0}, {32771, 15, 6, 0}, {16387, 14, 6, 0},
{8195, 13, 6, 0}, {4099, 12, 6, 0}, {2051, 11, 6, 0},
{1027, 10, 6, 0},
}
|