1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package poll
import (
"internal/syscall/unix"
"runtime"
"sync"
"syscall"
"unsafe"
)
const (
// maxSpliceSize is the maximum amount of data Splice asks
// the kernel to move in a single call to splice(2).
// We use 1MB as Splice writes data through a pipe, and 1MB is the default maximum pipe buffer size,
// which is determined by /proc/sys/fs/pipe-max-size.
maxSpliceSize = 1 << 20
)
// Splice transfers at most remain bytes of data from src to dst, using the
// splice system call to minimize copies of data from and to userspace.
//
// Splice gets a pipe buffer from the pool or creates a new one if needed, to serve as a buffer for the data transfer.
// src and dst must both be stream-oriented sockets.
//
// If err != nil, sc is the system call which caused the error.
func Splice(dst, src *FD, remain int64) (written int64, handled bool, sc string, err error) {
p, sc, err := getPipe()
if err != nil {
return 0, false, sc, err
}
defer putPipe(p)
var inPipe, n int
for err == nil && remain > 0 {
max := maxSpliceSize
if int64(max) > remain {
max = int(remain)
}
inPipe, err = spliceDrain(p.wfd, src, max)
// The operation is considered handled if splice returns no
// error, or an error other than EINVAL. An EINVAL means the
// kernel does not support splice for the socket type of src.
// The failed syscall does not consume any data so it is safe
// to fall back to a generic copy.
//
// spliceDrain should never return EAGAIN, so if err != nil,
// Splice cannot continue.
//
// If inPipe == 0 && err == nil, src is at EOF, and the
// transfer is complete.
handled = handled || (err != syscall.EINVAL)
if err != nil || inPipe == 0 {
break
}
p.data += inPipe
n, err = splicePump(dst, p.rfd, inPipe)
if n > 0 {
written += int64(n)
remain -= int64(n)
p.data -= n
}
}
if err != nil {
return written, handled, "splice", err
}
return written, true, "", nil
}
// spliceDrain moves data from a socket to a pipe.
//
// Invariant: when entering spliceDrain, the pipe is empty. It is either in its
// initial state, or splicePump has emptied it previously.
//
// Given this, spliceDrain can reasonably assume that the pipe is ready for
// writing, so if splice returns EAGAIN, it must be because the socket is not
// ready for reading.
//
// If spliceDrain returns (0, nil), src is at EOF.
func spliceDrain(pipefd int, sock *FD, max int) (int, error) {
if err := sock.readLock(); err != nil {
return 0, err
}
defer sock.readUnlock()
if err := sock.pd.prepareRead(sock.isFile); err != nil {
return 0, err
}
for {
n, err := splice(pipefd, sock.Sysfd, max, 0)
if err == syscall.EINTR {
continue
}
if err != syscall.EAGAIN {
return n, err
}
if sock.pd.pollable() {
if err := sock.pd.waitRead(sock.isFile); err != nil {
return n, err
}
}
}
}
// splicePump moves all the buffered data from a pipe to a socket.
//
// Invariant: when entering splicePump, there are exactly inPipe
// bytes of data in the pipe, from a previous call to spliceDrain.
//
// By analogy to the condition from spliceDrain, splicePump
// only needs to poll the socket for readiness, if splice returns
// EAGAIN.
//
// If splicePump cannot move all the data in a single call to
// splice(2), it loops over the buffered data until it has written
// all of it to the socket. This behavior is similar to the Write
// step of an io.Copy in userspace.
func splicePump(sock *FD, pipefd int, inPipe int) (int, error) {
if err := sock.writeLock(); err != nil {
return 0, err
}
defer sock.writeUnlock()
if err := sock.pd.prepareWrite(sock.isFile); err != nil {
return 0, err
}
written := 0
for inPipe > 0 {
n, err := splice(sock.Sysfd, pipefd, inPipe, 0)
// Here, the condition n == 0 && err == nil should never be
// observed, since Splice controls the write side of the pipe.
if n > 0 {
inPipe -= n
written += n
continue
}
if err != syscall.EAGAIN {
return written, err
}
if sock.pd.pollable() {
if err := sock.pd.waitWrite(sock.isFile); err != nil {
return written, err
}
}
}
return written, nil
}
// splice wraps the splice system call. Since the current implementation
// only uses splice on sockets and pipes, the offset arguments are unused.
// splice returns int instead of int64, because callers never ask it to
// move more data in a single call than can fit in an int32.
func splice(out int, in int, max int, flags int) (int, error) {
n, err := syscall.Splice(in, nil, out, nil, max, flags)
return int(n), err
}
type splicePipeFields struct {
rfd int
wfd int
data int
}
type splicePipe struct {
splicePipeFields
// We want to use a finalizer, so ensure that the size is
// large enough to not use the tiny allocator.
_ [24 - unsafe.Sizeof(splicePipeFields{})%24]byte
}
// splicePipePool caches pipes to avoid high-frequency construction and destruction of pipe buffers.
// The garbage collector will free all pipes in the sync.Pool periodically, thus we need to set up
// a finalizer for each pipe to close its file descriptors before the actual GC.
var splicePipePool = sync.Pool{New: newPoolPipe}
func newPoolPipe() any {
// Discard the error which occurred during the creation of pipe buffer,
// redirecting the data transmission to the conventional way utilizing read() + write() as a fallback.
p := newPipe()
if p == nil {
return nil
}
runtime.SetFinalizer(p, destroyPipe)
return p
}
// getPipe tries to acquire a pipe buffer from the pool or create a new one with newPipe() if it gets nil from the cache.
//
// Note that it may fail to create a new pipe buffer by newPipe(), in which case getPipe() will return a generic error
// and system call name splice in a string as the indication.
func getPipe() (*splicePipe, string, error) {
v := splicePipePool.Get()
if v == nil {
return nil, "splice", syscall.EINVAL
}
return v.(*splicePipe), "", nil
}
func putPipe(p *splicePipe) {
// If there is still data left in the pipe,
// then close and discard it instead of putting it back into the pool.
if p.data != 0 {
runtime.SetFinalizer(p, nil)
destroyPipe(p)
return
}
splicePipePool.Put(p)
}
// newPipe sets up a pipe for a splice operation.
func newPipe() *splicePipe {
var fds [2]int
if err := syscall.Pipe2(fds[:], syscall.O_CLOEXEC|syscall.O_NONBLOCK); err != nil {
return nil
}
// Splice will loop writing maxSpliceSize bytes from the source to the pipe,
// and then write those bytes from the pipe to the destination.
// Set the pipe buffer size to maxSpliceSize to optimize that.
// Ignore errors here, as a smaller buffer size will work,
// although it will require more system calls.
unix.Fcntl(fds[0], syscall.F_SETPIPE_SZ, maxSpliceSize)
return &splicePipe{splicePipeFields: splicePipeFields{rfd: fds[0], wfd: fds[1]}}
}
// destroyPipe destroys a pipe.
func destroyPipe(p *splicePipe) {
CloseFunc(p.rfd)
CloseFunc(p.wfd)
}
|