1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// DWARF debug information entry parser.
// An entry is a sequence of data items of a given format.
// The first word in the entry is an index into what DWARF
// calls the ``abbreviation table.'' An abbreviation is really
// just a type descriptor: it's an array of attribute tag/value format pairs.
package dwarf
import (
"encoding/binary"
"errors"
"fmt"
"strconv"
)
// a single entry's description: a sequence of attributes
type abbrev struct {
tag Tag
children bool
field []afield
}
type afield struct {
attr Attr
fmt format
class Class
val int64 // for formImplicitConst
}
// a map from entry format ids to their descriptions
type abbrevTable map[uint32]abbrev
// parseAbbrev returns the abbreviation table that starts at byte off
// in the .debug_abbrev section.
func (d *Data) parseAbbrev(off uint64, vers int) (abbrevTable, error) {
if m, ok := d.abbrevCache[off]; ok {
return m, nil
}
data := d.abbrev
if off > uint64(len(data)) {
data = nil
} else {
data = data[off:]
}
b := makeBuf(d, unknownFormat{}, "abbrev", 0, data)
// Error handling is simplified by the buf getters
// returning an endless stream of 0s after an error.
m := make(abbrevTable)
for {
// Table ends with id == 0.
id := uint32(b.uint())
if id == 0 {
break
}
// Walk over attributes, counting.
n := 0
b1 := b // Read from copy of b.
b1.uint()
b1.uint8()
for {
tag := b1.uint()
fmt := b1.uint()
if tag == 0 && fmt == 0 {
break
}
if format(fmt) == formImplicitConst {
b1.int()
}
n++
}
if b1.err != nil {
return nil, b1.err
}
// Walk over attributes again, this time writing them down.
var a abbrev
a.tag = Tag(b.uint())
a.children = b.uint8() != 0
a.field = make([]afield, n)
for i := range a.field {
a.field[i].attr = Attr(b.uint())
a.field[i].fmt = format(b.uint())
a.field[i].class = formToClass(a.field[i].fmt, a.field[i].attr, vers, &b)
if a.field[i].fmt == formImplicitConst {
a.field[i].val = b.int()
}
}
b.uint()
b.uint()
m[id] = a
}
if b.err != nil {
return nil, b.err
}
d.abbrevCache[off] = m
return m, nil
}
// attrIsExprloc indicates attributes that allow exprloc values that
// are encoded as block values in DWARF 2 and 3. See DWARF 4, Figure
// 20.
var attrIsExprloc = map[Attr]bool{
AttrLocation: true,
AttrByteSize: true,
AttrBitOffset: true,
AttrBitSize: true,
AttrStringLength: true,
AttrLowerBound: true,
AttrReturnAddr: true,
AttrStrideSize: true,
AttrUpperBound: true,
AttrCount: true,
AttrDataMemberLoc: true,
AttrFrameBase: true,
AttrSegment: true,
AttrStaticLink: true,
AttrUseLocation: true,
AttrVtableElemLoc: true,
AttrAllocated: true,
AttrAssociated: true,
AttrDataLocation: true,
AttrStride: true,
}
// attrPtrClass indicates the *ptr class of attributes that have
// encoding formSecOffset in DWARF 4 or formData* in DWARF 2 and 3.
var attrPtrClass = map[Attr]Class{
AttrLocation: ClassLocListPtr,
AttrStmtList: ClassLinePtr,
AttrStringLength: ClassLocListPtr,
AttrReturnAddr: ClassLocListPtr,
AttrStartScope: ClassRangeListPtr,
AttrDataMemberLoc: ClassLocListPtr,
AttrFrameBase: ClassLocListPtr,
AttrMacroInfo: ClassMacPtr,
AttrSegment: ClassLocListPtr,
AttrStaticLink: ClassLocListPtr,
AttrUseLocation: ClassLocListPtr,
AttrVtableElemLoc: ClassLocListPtr,
AttrRanges: ClassRangeListPtr,
// The following are new in DWARF 5.
AttrStrOffsetsBase: ClassStrOffsetsPtr,
AttrAddrBase: ClassAddrPtr,
AttrRnglistsBase: ClassRngListsPtr,
AttrLoclistsBase: ClassLocListPtr,
}
// formToClass returns the DWARF 4 Class for the given form. If the
// DWARF version is less then 4, it will disambiguate some forms
// depending on the attribute.
func formToClass(form format, attr Attr, vers int, b *buf) Class {
switch form {
default:
b.error("cannot determine class of unknown attribute form")
return 0
case formIndirect:
return ClassUnknown
case formAddr, formAddrx, formAddrx1, formAddrx2, formAddrx3, formAddrx4:
return ClassAddress
case formDwarfBlock1, formDwarfBlock2, formDwarfBlock4, formDwarfBlock:
// In DWARF 2 and 3, ClassExprLoc was encoded as a
// block. DWARF 4 distinguishes ClassBlock and
// ClassExprLoc, but there are no attributes that can
// be both, so we also promote ClassBlock values in
// DWARF 4 that should be ClassExprLoc in case
// producers get this wrong.
if attrIsExprloc[attr] {
return ClassExprLoc
}
return ClassBlock
case formData1, formData2, formData4, formData8, formSdata, formUdata, formData16, formImplicitConst:
// In DWARF 2 and 3, ClassPtr was encoded as a
// constant. Unlike ClassExprLoc/ClassBlock, some
// DWARF 4 attributes need to distinguish Class*Ptr
// from ClassConstant, so we only do this promotion
// for versions 2 and 3.
if class, ok := attrPtrClass[attr]; vers < 4 && ok {
return class
}
return ClassConstant
case formFlag, formFlagPresent:
return ClassFlag
case formRefAddr, formRef1, formRef2, formRef4, formRef8, formRefUdata, formRefSup4, formRefSup8:
return ClassReference
case formRefSig8:
return ClassReferenceSig
case formString, formStrp, formStrx, formStrpSup, formLineStrp, formStrx1, formStrx2, formStrx3, formStrx4:
return ClassString
case formSecOffset:
// DWARF 4 defines four *ptr classes, but doesn't
// distinguish them in the encoding. Disambiguate
// these classes using the attribute.
if class, ok := attrPtrClass[attr]; ok {
return class
}
return ClassUnknown
case formExprloc:
return ClassExprLoc
case formGnuRefAlt:
return ClassReferenceAlt
case formGnuStrpAlt:
return ClassStringAlt
case formLoclistx:
return ClassLocList
case formRnglistx:
return ClassRngList
}
}
// An entry is a sequence of attribute/value pairs.
type Entry struct {
Offset Offset // offset of Entry in DWARF info
Tag Tag // tag (kind of Entry)
Children bool // whether Entry is followed by children
Field []Field
}
// A Field is a single attribute/value pair in an Entry.
//
// A value can be one of several "attribute classes" defined by DWARF.
// The Go types corresponding to each class are:
//
// DWARF class Go type Class
// ----------- ------- -----
// address uint64 ClassAddress
// block []byte ClassBlock
// constant int64 ClassConstant
// flag bool ClassFlag
// reference
// to info dwarf.Offset ClassReference
// to type unit uint64 ClassReferenceSig
// string string ClassString
// exprloc []byte ClassExprLoc
// lineptr int64 ClassLinePtr
// loclistptr int64 ClassLocListPtr
// macptr int64 ClassMacPtr
// rangelistptr int64 ClassRangeListPtr
//
// For unrecognized or vendor-defined attributes, Class may be
// ClassUnknown.
type Field struct {
Attr Attr
Val any
Class Class
}
// A Class is the DWARF 4 class of an attribute value.
//
// In general, a given attribute's value may take on one of several
// possible classes defined by DWARF, each of which leads to a
// slightly different interpretation of the attribute.
//
// DWARF version 4 distinguishes attribute value classes more finely
// than previous versions of DWARF. The reader will disambiguate
// coarser classes from earlier versions of DWARF into the appropriate
// DWARF 4 class. For example, DWARF 2 uses "constant" for constants
// as well as all types of section offsets, but the reader will
// canonicalize attributes in DWARF 2 files that refer to section
// offsets to one of the Class*Ptr classes, even though these classes
// were only defined in DWARF 3.
type Class int
const (
// ClassUnknown represents values of unknown DWARF class.
ClassUnknown Class = iota
// ClassAddress represents values of type uint64 that are
// addresses on the target machine.
ClassAddress
// ClassBlock represents values of type []byte whose
// interpretation depends on the attribute.
ClassBlock
// ClassConstant represents values of type int64 that are
// constants. The interpretation of this constant depends on
// the attribute.
ClassConstant
// ClassExprLoc represents values of type []byte that contain
// an encoded DWARF expression or location description.
ClassExprLoc
// ClassFlag represents values of type bool.
ClassFlag
// ClassLinePtr represents values that are an int64 offset
// into the "line" section.
ClassLinePtr
// ClassLocListPtr represents values that are an int64 offset
// into the "loclist" section.
ClassLocListPtr
// ClassMacPtr represents values that are an int64 offset into
// the "mac" section.
ClassMacPtr
// ClassRangeListPtr represents values that are an int64 offset into
// the "rangelist" section.
ClassRangeListPtr
// ClassReference represents values that are an Offset offset
// of an Entry in the info section (for use with Reader.Seek).
// The DWARF specification combines ClassReference and
// ClassReferenceSig into class "reference".
ClassReference
// ClassReferenceSig represents values that are a uint64 type
// signature referencing a type Entry.
ClassReferenceSig
// ClassString represents values that are strings. If the
// compilation unit specifies the AttrUseUTF8 flag (strongly
// recommended), the string value will be encoded in UTF-8.
// Otherwise, the encoding is unspecified.
ClassString
// ClassReferenceAlt represents values of type int64 that are
// an offset into the DWARF "info" section of an alternate
// object file.
ClassReferenceAlt
// ClassStringAlt represents values of type int64 that are an
// offset into the DWARF string section of an alternate object
// file.
ClassStringAlt
// ClassAddrPtr represents values that are an int64 offset
// into the "addr" section.
ClassAddrPtr
// ClassLocList represents values that are an int64 offset
// into the "loclists" section.
ClassLocList
// ClassRngList represents values that are a uint64 offset
// from the base of the "rnglists" section.
ClassRngList
// ClassRngListsPtr represents values that are an int64 offset
// into the "rnglists" section. These are used as the base for
// ClassRngList values.
ClassRngListsPtr
// ClassStrOffsetsPtr represents values that are an int64
// offset into the "str_offsets" section.
ClassStrOffsetsPtr
)
//go:generate stringer -type=Class
func (i Class) GoString() string {
return "dwarf." + i.String()
}
// Val returns the value associated with attribute Attr in Entry,
// or nil if there is no such attribute.
//
// A common idiom is to merge the check for nil return with
// the check that the value has the expected dynamic type, as in:
//
// v, ok := e.Val(AttrSibling).(int64)
func (e *Entry) Val(a Attr) any {
if f := e.AttrField(a); f != nil {
return f.Val
}
return nil
}
// AttrField returns the Field associated with attribute Attr in
// Entry, or nil if there is no such attribute.
func (e *Entry) AttrField(a Attr) *Field {
for i, f := range e.Field {
if f.Attr == a {
return &e.Field[i]
}
}
return nil
}
// An Offset represents the location of an Entry within the DWARF info.
// (See Reader.Seek.)
type Offset uint32
// Entry reads a single entry from buf, decoding
// according to the given abbreviation table.
func (b *buf) entry(cu *Entry, atab abbrevTable, ubase Offset, vers int) *Entry {
off := b.off
id := uint32(b.uint())
if id == 0 {
return &Entry{}
}
a, ok := atab[id]
if !ok {
b.error("unknown abbreviation table index")
return nil
}
e := &Entry{
Offset: off,
Tag: a.tag,
Children: a.children,
Field: make([]Field, len(a.field)),
}
// If we are currently parsing the compilation unit,
// we can't evaluate Addrx or Strx until we've seen the
// relevant base entry.
type delayed struct {
idx int
off uint64
fmt format
}
var delay []delayed
resolveStrx := func(strBase, off uint64) string {
off += strBase
if uint64(int(off)) != off {
b.error("DW_FORM_strx offset out of range")
}
b1 := makeBuf(b.dwarf, b.format, "str_offsets", 0, b.dwarf.strOffsets)
b1.skip(int(off))
is64, _ := b.format.dwarf64()
if is64 {
off = b1.uint64()
} else {
off = uint64(b1.uint32())
}
if b1.err != nil {
b.err = b1.err
return ""
}
if uint64(int(off)) != off {
b.error("DW_FORM_strx indirect offset out of range")
}
b1 = makeBuf(b.dwarf, b.format, "str", 0, b.dwarf.str)
b1.skip(int(off))
val := b1.string()
if b1.err != nil {
b.err = b1.err
}
return val
}
resolveRnglistx := func(rnglistsBase, off uint64) uint64 {
is64, _ := b.format.dwarf64()
if is64 {
off *= 8
} else {
off *= 4
}
off += rnglistsBase
if uint64(int(off)) != off {
b.error("DW_FORM_rnglistx offset out of range")
}
b1 := makeBuf(b.dwarf, b.format, "rnglists", 0, b.dwarf.rngLists)
b1.skip(int(off))
if is64 {
off = b1.uint64()
} else {
off = uint64(b1.uint32())
}
if b1.err != nil {
b.err = b1.err
return 0
}
if uint64(int(off)) != off {
b.error("DW_FORM_rnglistx indirect offset out of range")
}
return rnglistsBase + off
}
for i := range e.Field {
e.Field[i].Attr = a.field[i].attr
e.Field[i].Class = a.field[i].class
fmt := a.field[i].fmt
if fmt == formIndirect {
fmt = format(b.uint())
e.Field[i].Class = formToClass(fmt, a.field[i].attr, vers, b)
}
var val any
switch fmt {
default:
b.error("unknown entry attr format 0x" + strconv.FormatInt(int64(fmt), 16))
// address
case formAddr:
val = b.addr()
case formAddrx, formAddrx1, formAddrx2, formAddrx3, formAddrx4:
var off uint64
switch fmt {
case formAddrx:
off = b.uint()
case formAddrx1:
off = uint64(b.uint8())
case formAddrx2:
off = uint64(b.uint16())
case formAddrx3:
off = uint64(b.uint24())
case formAddrx4:
off = uint64(b.uint32())
}
if b.dwarf.addr == nil {
b.error("DW_FORM_addrx with no .debug_addr section")
}
if b.err != nil {
return nil
}
// We have to adjust by the offset of the
// compilation unit. This won't work if the
// program uses Reader.Seek to skip over the
// unit. Not much we can do about that.
var addrBase int64
if cu != nil {
addrBase, _ = cu.Val(AttrAddrBase).(int64)
} else if a.tag == TagCompileUnit {
delay = append(delay, delayed{i, off, formAddrx})
break
}
var err error
val, err = b.dwarf.debugAddr(b.format, uint64(addrBase), off)
if err != nil {
if b.err == nil {
b.err = err
}
return nil
}
// block
case formDwarfBlock1:
val = b.bytes(int(b.uint8()))
case formDwarfBlock2:
val = b.bytes(int(b.uint16()))
case formDwarfBlock4:
val = b.bytes(int(b.uint32()))
case formDwarfBlock:
val = b.bytes(int(b.uint()))
// constant
case formData1:
val = int64(b.uint8())
case formData2:
val = int64(b.uint16())
case formData4:
val = int64(b.uint32())
case formData8:
val = int64(b.uint64())
case formData16:
val = b.bytes(16)
case formSdata:
val = int64(b.int())
case formUdata:
val = int64(b.uint())
case formImplicitConst:
val = a.field[i].val
// flag
case formFlag:
val = b.uint8() == 1
// New in DWARF 4.
case formFlagPresent:
// The attribute is implicitly indicated as present, and no value is
// encoded in the debugging information entry itself.
val = true
// reference to other entry
case formRefAddr:
vers := b.format.version()
if vers == 0 {
b.error("unknown version for DW_FORM_ref_addr")
} else if vers == 2 {
val = Offset(b.addr())
} else {
is64, known := b.format.dwarf64()
if !known {
b.error("unknown size for DW_FORM_ref_addr")
} else if is64 {
val = Offset(b.uint64())
} else {
val = Offset(b.uint32())
}
}
case formRef1:
val = Offset(b.uint8()) + ubase
case formRef2:
val = Offset(b.uint16()) + ubase
case formRef4:
val = Offset(b.uint32()) + ubase
case formRef8:
val = Offset(b.uint64()) + ubase
case formRefUdata:
val = Offset(b.uint()) + ubase
// string
case formString:
val = b.string()
case formStrp, formLineStrp:
var off uint64 // offset into .debug_str
is64, known := b.format.dwarf64()
if !known {
b.error("unknown size for DW_FORM_strp/line_strp")
} else if is64 {
off = b.uint64()
} else {
off = uint64(b.uint32())
}
if uint64(int(off)) != off {
b.error("DW_FORM_strp/line_strp offset out of range")
}
if b.err != nil {
return nil
}
var b1 buf
if fmt == formStrp {
b1 = makeBuf(b.dwarf, b.format, "str", 0, b.dwarf.str)
} else {
if len(b.dwarf.lineStr) == 0 {
b.error("DW_FORM_line_strp with no .debug_line_str section")
return nil
}
b1 = makeBuf(b.dwarf, b.format, "line_str", 0, b.dwarf.lineStr)
}
b1.skip(int(off))
val = b1.string()
if b1.err != nil {
b.err = b1.err
return nil
}
case formStrx, formStrx1, formStrx2, formStrx3, formStrx4:
var off uint64
switch fmt {
case formStrx:
off = b.uint()
case formStrx1:
off = uint64(b.uint8())
case formStrx2:
off = uint64(b.uint16())
case formStrx3:
off = uint64(b.uint24())
case formStrx4:
off = uint64(b.uint32())
}
if len(b.dwarf.strOffsets) == 0 {
b.error("DW_FORM_strx with no .debug_str_offsets section")
}
is64, known := b.format.dwarf64()
if !known {
b.error("unknown offset size for DW_FORM_strx")
}
if b.err != nil {
return nil
}
if is64 {
off *= 8
} else {
off *= 4
}
// We have to adjust by the offset of the
// compilation unit. This won't work if the
// program uses Reader.Seek to skip over the
// unit. Not much we can do about that.
var strBase int64
if cu != nil {
strBase, _ = cu.Val(AttrStrOffsetsBase).(int64)
} else if a.tag == TagCompileUnit {
delay = append(delay, delayed{i, off, formStrx})
break
}
val = resolveStrx(uint64(strBase), off)
case formStrpSup:
is64, known := b.format.dwarf64()
if !known {
b.error("unknown size for DW_FORM_strp_sup")
} else if is64 {
val = b.uint64()
} else {
val = b.uint32()
}
// lineptr, loclistptr, macptr, rangelistptr
// New in DWARF 4, but clang can generate them with -gdwarf-2.
// Section reference, replacing use of formData4 and formData8.
case formSecOffset, formGnuRefAlt, formGnuStrpAlt:
is64, known := b.format.dwarf64()
if !known {
b.error("unknown size for form 0x" + strconv.FormatInt(int64(fmt), 16))
} else if is64 {
val = int64(b.uint64())
} else {
val = int64(b.uint32())
}
// exprloc
// New in DWARF 4.
case formExprloc:
val = b.bytes(int(b.uint()))
// reference
// New in DWARF 4.
case formRefSig8:
// 64-bit type signature.
val = b.uint64()
case formRefSup4:
val = b.uint32()
case formRefSup8:
val = b.uint64()
// loclist
case formLoclistx:
val = b.uint()
// rnglist
case formRnglistx:
off := b.uint()
// We have to adjust by the rnglists_base of
// the compilation unit. This won't work if
// the program uses Reader.Seek to skip over
// the unit. Not much we can do about that.
var rnglistsBase int64
if cu != nil {
rnglistsBase, _ = cu.Val(AttrRnglistsBase).(int64)
} else if a.tag == TagCompileUnit {
delay = append(delay, delayed{i, off, formRnglistx})
break
}
val = resolveRnglistx(uint64(rnglistsBase), off)
}
e.Field[i].Val = val
}
if b.err != nil {
return nil
}
for _, del := range delay {
switch del.fmt {
case formAddrx:
addrBase, _ := e.Val(AttrAddrBase).(int64)
val, err := b.dwarf.debugAddr(b.format, uint64(addrBase), del.off)
if err != nil {
b.err = err
return nil
}
e.Field[del.idx].Val = val
case formStrx:
strBase, _ := e.Val(AttrStrOffsetsBase).(int64)
e.Field[del.idx].Val = resolveStrx(uint64(strBase), del.off)
if b.err != nil {
return nil
}
case formRnglistx:
rnglistsBase, _ := e.Val(AttrRnglistsBase).(int64)
e.Field[del.idx].Val = resolveRnglistx(uint64(rnglistsBase), del.off)
if b.err != nil {
return nil
}
}
}
return e
}
// A Reader allows reading Entry structures from a DWARF “info” section.
// The Entry structures are arranged in a tree. The Reader's Next function
// return successive entries from a pre-order traversal of the tree.
// If an entry has children, its Children field will be true, and the children
// follow, terminated by an Entry with Tag 0.
type Reader struct {
b buf
d *Data
err error
unit int
lastUnit bool // set if last entry returned by Next is TagCompileUnit/TagPartialUnit
lastChildren bool // .Children of last entry returned by Next
lastSibling Offset // .Val(AttrSibling) of last entry returned by Next
cu *Entry // current compilation unit
}
// Reader returns a new Reader for Data.
// The reader is positioned at byte offset 0 in the DWARF “info” section.
func (d *Data) Reader() *Reader {
r := &Reader{d: d}
r.Seek(0)
return r
}
// AddressSize returns the size in bytes of addresses in the current compilation
// unit.
func (r *Reader) AddressSize() int {
return r.d.unit[r.unit].asize
}
// ByteOrder returns the byte order in the current compilation unit.
func (r *Reader) ByteOrder() binary.ByteOrder {
return r.b.order
}
// Seek positions the Reader at offset off in the encoded entry stream.
// Offset 0 can be used to denote the first entry.
func (r *Reader) Seek(off Offset) {
d := r.d
r.err = nil
r.lastChildren = false
if off == 0 {
if len(d.unit) == 0 {
return
}
u := &d.unit[0]
r.unit = 0
r.b = makeBuf(r.d, u, "info", u.off, u.data)
r.cu = nil
return
}
i := d.offsetToUnit(off)
if i == -1 {
r.err = errors.New("offset out of range")
return
}
if i != r.unit {
r.cu = nil
}
u := &d.unit[i]
r.unit = i
r.b = makeBuf(r.d, u, "info", off, u.data[off-u.off:])
}
// maybeNextUnit advances to the next unit if this one is finished.
func (r *Reader) maybeNextUnit() {
for len(r.b.data) == 0 && r.unit+1 < len(r.d.unit) {
r.nextUnit()
}
}
// nextUnit advances to the next unit.
func (r *Reader) nextUnit() {
r.unit++
u := &r.d.unit[r.unit]
r.b = makeBuf(r.d, u, "info", u.off, u.data)
r.cu = nil
}
// Next reads the next entry from the encoded entry stream.
// It returns nil, nil when it reaches the end of the section.
// It returns an error if the current offset is invalid or the data at the
// offset cannot be decoded as a valid Entry.
func (r *Reader) Next() (*Entry, error) {
if r.err != nil {
return nil, r.err
}
r.maybeNextUnit()
if len(r.b.data) == 0 {
return nil, nil
}
u := &r.d.unit[r.unit]
e := r.b.entry(r.cu, u.atable, u.base, u.vers)
if r.b.err != nil {
r.err = r.b.err
return nil, r.err
}
r.lastUnit = false
if e != nil {
r.lastChildren = e.Children
if r.lastChildren {
r.lastSibling, _ = e.Val(AttrSibling).(Offset)
}
if e.Tag == TagCompileUnit || e.Tag == TagPartialUnit {
r.lastUnit = true
r.cu = e
}
} else {
r.lastChildren = false
}
return e, nil
}
// SkipChildren skips over the child entries associated with
// the last Entry returned by Next. If that Entry did not have
// children or Next has not been called, SkipChildren is a no-op.
func (r *Reader) SkipChildren() {
if r.err != nil || !r.lastChildren {
return
}
// If the last entry had a sibling attribute,
// that attribute gives the offset of the next
// sibling, so we can avoid decoding the
// child subtrees.
if r.lastSibling >= r.b.off {
r.Seek(r.lastSibling)
return
}
if r.lastUnit && r.unit+1 < len(r.d.unit) {
r.nextUnit()
return
}
for {
e, err := r.Next()
if err != nil || e == nil || e.Tag == 0 {
break
}
if e.Children {
r.SkipChildren()
}
}
}
// clone returns a copy of the reader. This is used by the typeReader
// interface.
func (r *Reader) clone() typeReader {
return r.d.Reader()
}
// offset returns the current buffer offset. This is used by the
// typeReader interface.
func (r *Reader) offset() Offset {
return r.b.off
}
// SeekPC returns the Entry for the compilation unit that includes pc,
// and positions the reader to read the children of that unit. If pc
// is not covered by any unit, SeekPC returns ErrUnknownPC and the
// position of the reader is undefined.
//
// Because compilation units can describe multiple regions of the
// executable, in the worst case SeekPC must search through all the
// ranges in all the compilation units. Each call to SeekPC starts the
// search at the compilation unit of the last call, so in general
// looking up a series of PCs will be faster if they are sorted. If
// the caller wishes to do repeated fast PC lookups, it should build
// an appropriate index using the Ranges method.
func (r *Reader) SeekPC(pc uint64) (*Entry, error) {
unit := r.unit
for i := 0; i < len(r.d.unit); i++ {
if unit >= len(r.d.unit) {
unit = 0
}
r.err = nil
r.lastChildren = false
r.unit = unit
r.cu = nil
u := &r.d.unit[unit]
r.b = makeBuf(r.d, u, "info", u.off, u.data)
e, err := r.Next()
if err != nil {
return nil, err
}
if e == nil || e.Tag == 0 {
return nil, ErrUnknownPC
}
ranges, err := r.d.Ranges(e)
if err != nil {
return nil, err
}
for _, pcs := range ranges {
if pcs[0] <= pc && pc < pcs[1] {
return e, nil
}
}
unit++
}
return nil, ErrUnknownPC
}
// Ranges returns the PC ranges covered by e, a slice of [low,high) pairs.
// Only some entry types, such as TagCompileUnit or TagSubprogram, have PC
// ranges; for others, this will return nil with no error.
func (d *Data) Ranges(e *Entry) ([][2]uint64, error) {
var ret [][2]uint64
low, lowOK := e.Val(AttrLowpc).(uint64)
var high uint64
var highOK bool
highField := e.AttrField(AttrHighpc)
if highField != nil {
switch highField.Class {
case ClassAddress:
high, highOK = highField.Val.(uint64)
case ClassConstant:
off, ok := highField.Val.(int64)
if ok {
high = low + uint64(off)
highOK = true
}
}
}
if lowOK && highOK {
ret = append(ret, [2]uint64{low, high})
}
var u *unit
if uidx := d.offsetToUnit(e.Offset); uidx >= 0 && uidx < len(d.unit) {
u = &d.unit[uidx]
}
if u != nil && u.vers >= 5 && d.rngLists != nil {
// DWARF version 5 and later
field := e.AttrField(AttrRanges)
if field == nil {
return ret, nil
}
switch field.Class {
case ClassRangeListPtr:
ranges, rangesOK := field.Val.(int64)
if !rangesOK {
return ret, nil
}
cu, base, err := d.baseAddressForEntry(e)
if err != nil {
return nil, err
}
return d.dwarf5Ranges(u, cu, base, ranges, ret)
case ClassRngList:
rnglist, ok := field.Val.(uint64)
if !ok {
return ret, nil
}
cu, base, err := d.baseAddressForEntry(e)
if err != nil {
return nil, err
}
return d.dwarf5Ranges(u, cu, base, int64(rnglist), ret)
default:
return ret, nil
}
}
// DWARF version 2 through 4
ranges, rangesOK := e.Val(AttrRanges).(int64)
if rangesOK && d.ranges != nil {
_, base, err := d.baseAddressForEntry(e)
if err != nil {
return nil, err
}
return d.dwarf2Ranges(u, base, ranges, ret)
}
return ret, nil
}
// baseAddressForEntry returns the initial base address to be used when
// looking up the range list of entry e.
// DWARF specifies that this should be the lowpc attribute of the enclosing
// compilation unit, however comments in gdb/dwarf2read.c say that some
// versions of GCC use the entrypc attribute, so we check that too.
func (d *Data) baseAddressForEntry(e *Entry) (*Entry, uint64, error) {
var cu *Entry
if e.Tag == TagCompileUnit {
cu = e
} else {
i := d.offsetToUnit(e.Offset)
if i == -1 {
return nil, 0, errors.New("no unit for entry")
}
u := &d.unit[i]
b := makeBuf(d, u, "info", u.off, u.data)
cu = b.entry(nil, u.atable, u.base, u.vers)
if b.err != nil {
return nil, 0, b.err
}
}
if cuEntry, cuEntryOK := cu.Val(AttrEntrypc).(uint64); cuEntryOK {
return cu, cuEntry, nil
} else if cuLow, cuLowOK := cu.Val(AttrLowpc).(uint64); cuLowOK {
return cu, cuLow, nil
}
return cu, 0, nil
}
func (d *Data) dwarf2Ranges(u *unit, base uint64, ranges int64, ret [][2]uint64) ([][2]uint64, error) {
if ranges < 0 || ranges > int64(len(d.ranges)) {
return nil, fmt.Errorf("invalid range offset %d (max %d)", ranges, len(d.ranges))
}
buf := makeBuf(d, u, "ranges", Offset(ranges), d.ranges[ranges:])
for len(buf.data) > 0 {
low := buf.addr()
high := buf.addr()
if low == 0 && high == 0 {
break
}
if low == ^uint64(0)>>uint((8-u.addrsize())*8) {
base = high
} else {
ret = append(ret, [2]uint64{base + low, base + high})
}
}
return ret, nil
}
// dwarf5Ranges interprets a debug_rnglists sequence, see DWARFv5 section
// 2.17.3 (page 53).
func (d *Data) dwarf5Ranges(u *unit, cu *Entry, base uint64, ranges int64, ret [][2]uint64) ([][2]uint64, error) {
if ranges < 0 || ranges > int64(len(d.rngLists)) {
return nil, fmt.Errorf("invalid rnglist offset %d (max %d)", ranges, len(d.ranges))
}
var addrBase int64
if cu != nil {
addrBase, _ = cu.Val(AttrAddrBase).(int64)
}
buf := makeBuf(d, u, "rnglists", 0, d.rngLists)
buf.skip(int(ranges))
for {
opcode := buf.uint8()
switch opcode {
case rleEndOfList:
if buf.err != nil {
return nil, buf.err
}
return ret, nil
case rleBaseAddressx:
baseIdx := buf.uint()
var err error
base, err = d.debugAddr(u, uint64(addrBase), baseIdx)
if err != nil {
return nil, err
}
case rleStartxEndx:
startIdx := buf.uint()
endIdx := buf.uint()
start, err := d.debugAddr(u, uint64(addrBase), startIdx)
if err != nil {
return nil, err
}
end, err := d.debugAddr(u, uint64(addrBase), endIdx)
if err != nil {
return nil, err
}
ret = append(ret, [2]uint64{start, end})
case rleStartxLength:
startIdx := buf.uint()
len := buf.uint()
start, err := d.debugAddr(u, uint64(addrBase), startIdx)
if err != nil {
return nil, err
}
ret = append(ret, [2]uint64{start, start + len})
case rleOffsetPair:
off1 := buf.uint()
off2 := buf.uint()
ret = append(ret, [2]uint64{base + off1, base + off2})
case rleBaseAddress:
base = buf.addr()
case rleStartEnd:
start := buf.addr()
end := buf.addr()
ret = append(ret, [2]uint64{start, end})
case rleStartLength:
start := buf.addr()
len := buf.uint()
ret = append(ret, [2]uint64{start, start + len})
}
}
}
// debugAddr returns the address at idx in debug_addr
func (d *Data) debugAddr(format dataFormat, addrBase, idx uint64) (uint64, error) {
off := idx*uint64(format.addrsize()) + addrBase
if uint64(int(off)) != off {
return 0, errors.New("offset out of range")
}
b := makeBuf(d, format, "addr", 0, d.addr)
b.skip(int(off))
val := b.addr()
if b.err != nil {
return 0, b.err
}
return val, nil
}
|