aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/go/_std_1.21/src/crypto/tls/tls.go
blob: b529c705237bbd8df526d6549583dda34b6232d0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package tls partially implements TLS 1.2, as specified in RFC 5246,
// and TLS 1.3, as specified in RFC 8446.
package tls

// BUG(agl): The crypto/tls package only implements some countermeasures
// against Lucky13 attacks on CBC-mode encryption, and only on SHA1
// variants. See http://www.isg.rhul.ac.uk/tls/TLStiming.pdf and
// https://www.imperialviolet.org/2013/02/04/luckythirteen.html.

import (
	"bytes"
	"context"
	"crypto"
	"crypto/ecdsa"
	"crypto/ed25519"
	"crypto/rsa"
	"crypto/x509"
	"encoding/pem"
	"errors"
	"fmt"
	"net"
	"os"
	"strings"
)

// Server returns a new TLS server side connection
// using conn as the underlying transport.
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func Server(conn net.Conn, config *Config) *Conn {
	c := &Conn{
		conn:   conn,
		config: config,
	}
	c.handshakeFn = c.serverHandshake
	return c
}

// Client returns a new TLS client side connection
// using conn as the underlying transport.
// The config cannot be nil: users must set either ServerName or
// InsecureSkipVerify in the config.
func Client(conn net.Conn, config *Config) *Conn {
	c := &Conn{
		conn:     conn,
		config:   config,
		isClient: true,
	}
	c.handshakeFn = c.clientHandshake
	return c
}

// A listener implements a network listener (net.Listener) for TLS connections.
type listener struct {
	net.Listener
	config *Config
}

// Accept waits for and returns the next incoming TLS connection.
// The returned connection is of type *Conn.
func (l *listener) Accept() (net.Conn, error) {
	c, err := l.Listener.Accept()
	if err != nil {
		return nil, err
	}
	return Server(c, l.config), nil
}

// NewListener creates a Listener which accepts connections from an inner
// Listener and wraps each connection with Server.
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func NewListener(inner net.Listener, config *Config) net.Listener {
	l := new(listener)
	l.Listener = inner
	l.config = config
	return l
}

// Listen creates a TLS listener accepting connections on the
// given network address using net.Listen.
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func Listen(network, laddr string, config *Config) (net.Listener, error) {
	if config == nil || len(config.Certificates) == 0 &&
		config.GetCertificate == nil && config.GetConfigForClient == nil {
		return nil, errors.New("tls: neither Certificates, GetCertificate, nor GetConfigForClient set in Config")
	}
	l, err := net.Listen(network, laddr)
	if err != nil {
		return nil, err
	}
	return NewListener(l, config), nil
}

type timeoutError struct{}

func (timeoutError) Error() string   { return "tls: DialWithDialer timed out" }
func (timeoutError) Timeout() bool   { return true }
func (timeoutError) Temporary() bool { return true }

// DialWithDialer connects to the given network address using dialer.Dial and
// then initiates a TLS handshake, returning the resulting TLS connection. Any
// timeout or deadline given in the dialer apply to connection and TLS
// handshake as a whole.
//
// DialWithDialer interprets a nil configuration as equivalent to the zero
// configuration; see the documentation of Config for the defaults.
//
// DialWithDialer uses context.Background internally; to specify the context,
// use Dialer.DialContext with NetDialer set to the desired dialer.
func DialWithDialer(dialer *net.Dialer, network, addr string, config *Config) (*Conn, error) {
	return dial(context.Background(), dialer, network, addr, config)
}

func dial(ctx context.Context, netDialer *net.Dialer, network, addr string, config *Config) (*Conn, error) {
	if netDialer.Timeout != 0 {
		var cancel context.CancelFunc
		ctx, cancel = context.WithTimeout(ctx, netDialer.Timeout)
		defer cancel()
	}

	if !netDialer.Deadline.IsZero() {
		var cancel context.CancelFunc
		ctx, cancel = context.WithDeadline(ctx, netDialer.Deadline)
		defer cancel()
	}

	rawConn, err := netDialer.DialContext(ctx, network, addr)
	if err != nil {
		return nil, err
	}

	colonPos := strings.LastIndex(addr, ":")
	if colonPos == -1 {
		colonPos = len(addr)
	}
	hostname := addr[:colonPos]

	if config == nil {
		config = defaultConfig()
	}
	// If no ServerName is set, infer the ServerName
	// from the hostname we're connecting to.
	if config.ServerName == "" {
		// Make a copy to avoid polluting argument or default.
		c := config.Clone()
		c.ServerName = hostname
		config = c
	}

	conn := Client(rawConn, config)
	if err := conn.HandshakeContext(ctx); err != nil {
		rawConn.Close()
		return nil, err
	}
	return conn, nil
}

// Dial connects to the given network address using net.Dial
// and then initiates a TLS handshake, returning the resulting
// TLS connection.
// Dial interprets a nil configuration as equivalent to
// the zero configuration; see the documentation of Config
// for the defaults.
func Dial(network, addr string, config *Config) (*Conn, error) {
	return DialWithDialer(new(net.Dialer), network, addr, config)
}

// Dialer dials TLS connections given a configuration and a Dialer for the
// underlying connection.
type Dialer struct {
	// NetDialer is the optional dialer to use for the TLS connections'
	// underlying TCP connections.
	// A nil NetDialer is equivalent to the net.Dialer zero value.
	NetDialer *net.Dialer

	// Config is the TLS configuration to use for new connections.
	// A nil configuration is equivalent to the zero
	// configuration; see the documentation of Config for the
	// defaults.
	Config *Config
}

// Dial connects to the given network address and initiates a TLS
// handshake, returning the resulting TLS connection.
//
// The returned Conn, if any, will always be of type *Conn.
//
// Dial uses context.Background internally; to specify the context,
// use DialContext.
func (d *Dialer) Dial(network, addr string) (net.Conn, error) {
	return d.DialContext(context.Background(), network, addr)
}

func (d *Dialer) netDialer() *net.Dialer {
	if d.NetDialer != nil {
		return d.NetDialer
	}
	return new(net.Dialer)
}

// DialContext connects to the given network address and initiates a TLS
// handshake, returning the resulting TLS connection.
//
// The provided Context must be non-nil. If the context expires before
// the connection is complete, an error is returned. Once successfully
// connected, any expiration of the context will not affect the
// connection.
//
// The returned Conn, if any, will always be of type *Conn.
func (d *Dialer) DialContext(ctx context.Context, network, addr string) (net.Conn, error) {
	c, err := dial(ctx, d.netDialer(), network, addr, d.Config)
	if err != nil {
		// Don't return c (a typed nil) in an interface.
		return nil, err
	}
	return c, nil
}

// LoadX509KeyPair reads and parses a public/private key pair from a pair
// of files. The files must contain PEM encoded data. The certificate file
// may contain intermediate certificates following the leaf certificate to
// form a certificate chain. On successful return, Certificate.Leaf will
// be nil because the parsed form of the certificate is not retained.
func LoadX509KeyPair(certFile, keyFile string) (Certificate, error) {
	certPEMBlock, err := os.ReadFile(certFile)
	if err != nil {
		return Certificate{}, err
	}
	keyPEMBlock, err := os.ReadFile(keyFile)
	if err != nil {
		return Certificate{}, err
	}
	return X509KeyPair(certPEMBlock, keyPEMBlock)
}

// X509KeyPair parses a public/private key pair from a pair of
// PEM encoded data. On successful return, Certificate.Leaf will be nil because
// the parsed form of the certificate is not retained.
func X509KeyPair(certPEMBlock, keyPEMBlock []byte) (Certificate, error) {
	fail := func(err error) (Certificate, error) { return Certificate{}, err }

	var cert Certificate
	var skippedBlockTypes []string
	for {
		var certDERBlock *pem.Block
		certDERBlock, certPEMBlock = pem.Decode(certPEMBlock)
		if certDERBlock == nil {
			break
		}
		if certDERBlock.Type == "CERTIFICATE" {
			cert.Certificate = append(cert.Certificate, certDERBlock.Bytes)
		} else {
			skippedBlockTypes = append(skippedBlockTypes, certDERBlock.Type)
		}
	}

	if len(cert.Certificate) == 0 {
		if len(skippedBlockTypes) == 0 {
			return fail(errors.New("tls: failed to find any PEM data in certificate input"))
		}
		if len(skippedBlockTypes) == 1 && strings.HasSuffix(skippedBlockTypes[0], "PRIVATE KEY") {
			return fail(errors.New("tls: failed to find certificate PEM data in certificate input, but did find a private key; PEM inputs may have been switched"))
		}
		return fail(fmt.Errorf("tls: failed to find \"CERTIFICATE\" PEM block in certificate input after skipping PEM blocks of the following types: %v", skippedBlockTypes))
	}

	skippedBlockTypes = skippedBlockTypes[:0]
	var keyDERBlock *pem.Block
	for {
		keyDERBlock, keyPEMBlock = pem.Decode(keyPEMBlock)
		if keyDERBlock == nil {
			if len(skippedBlockTypes) == 0 {
				return fail(errors.New("tls: failed to find any PEM data in key input"))
			}
			if len(skippedBlockTypes) == 1 && skippedBlockTypes[0] == "CERTIFICATE" {
				return fail(errors.New("tls: found a certificate rather than a key in the PEM for the private key"))
			}
			return fail(fmt.Errorf("tls: failed to find PEM block with type ending in \"PRIVATE KEY\" in key input after skipping PEM blocks of the following types: %v", skippedBlockTypes))
		}
		if keyDERBlock.Type == "PRIVATE KEY" || strings.HasSuffix(keyDERBlock.Type, " PRIVATE KEY") {
			break
		}
		skippedBlockTypes = append(skippedBlockTypes, keyDERBlock.Type)
	}

	// We don't need to parse the public key for TLS, but we so do anyway
	// to check that it looks sane and matches the private key.
	x509Cert, err := x509.ParseCertificate(cert.Certificate[0])
	if err != nil {
		return fail(err)
	}

	cert.PrivateKey, err = parsePrivateKey(keyDERBlock.Bytes)
	if err != nil {
		return fail(err)
	}

	switch pub := x509Cert.PublicKey.(type) {
	case *rsa.PublicKey:
		priv, ok := cert.PrivateKey.(*rsa.PrivateKey)
		if !ok {
			return fail(errors.New("tls: private key type does not match public key type"))
		}
		if pub.N.Cmp(priv.N) != 0 {
			return fail(errors.New("tls: private key does not match public key"))
		}
	case *ecdsa.PublicKey:
		priv, ok := cert.PrivateKey.(*ecdsa.PrivateKey)
		if !ok {
			return fail(errors.New("tls: private key type does not match public key type"))
		}
		if pub.X.Cmp(priv.X) != 0 || pub.Y.Cmp(priv.Y) != 0 {
			return fail(errors.New("tls: private key does not match public key"))
		}
	case ed25519.PublicKey:
		priv, ok := cert.PrivateKey.(ed25519.PrivateKey)
		if !ok {
			return fail(errors.New("tls: private key type does not match public key type"))
		}
		if !bytes.Equal(priv.Public().(ed25519.PublicKey), pub) {
			return fail(errors.New("tls: private key does not match public key"))
		}
	default:
		return fail(errors.New("tls: unknown public key algorithm"))
	}

	return cert, nil
}

// Attempt to parse the given private key DER block. OpenSSL 0.9.8 generates
// PKCS #1 private keys by default, while OpenSSL 1.0.0 generates PKCS #8 keys.
// OpenSSL ecparam generates SEC1 EC private keys for ECDSA. We try all three.
func parsePrivateKey(der []byte) (crypto.PrivateKey, error) {
	if key, err := x509.ParsePKCS1PrivateKey(der); err == nil {
		return key, nil
	}
	if key, err := x509.ParsePKCS8PrivateKey(der); err == nil {
		switch key := key.(type) {
		case *rsa.PrivateKey, *ecdsa.PrivateKey, ed25519.PrivateKey:
			return key, nil
		default:
			return nil, errors.New("tls: found unknown private key type in PKCS#8 wrapping")
		}
	}
	if key, err := x509.ParseECPrivateKey(der); err == nil {
		return key, nil
	}

	return nil, errors.New("tls: failed to parse private key")
}